Date:	Examination No.:	Version:2023-2024	Start:7/1/2024	
Module	Numerical Analysis and Probability 5164			
Name - Code				
Module	English			
Language:				
Responsible:	Kanar Shukr Muhamad			
Lecture (s):	Kanar Shukr Muhamad			
College:	College of Engineering – Salahaddin University-Erbil			
Duration:	15 week – 1 semester			
Course	Upon completion of this course, students will be able to solve engineering problems using scientific			
outcomes:	programming techniques (algorithm development and implementation). Specific problems that			
	students are expected to formulate and solve include:			
	- Root finding; solutions for nonlinear algebraic equations			
	- Solving sets of linear equations			
	- Interpolation and curve fitting models			
	 Numerical Differentiation and Integration Numerical solution of ordinary differential equations 			
	- Engineering applications	s (optimization, etc.)		
Course	- Lect1(Introduction and Error Analysis)			
Content:	- Lect2(Significant Figures and Rounding Significant Digits))	
	- Lect3(Significant Figure Mixed Operations and Error Propagations)			
	- Lect4(Equations, Solution of Equations, Newton Raphson Method)			
	- Lect5(Steffensen Method, Budan Theorem and Bisection Method)			
	- Lect6(Solution of linea	- Lect6(Solution of linear simultaneous, Graphical Method)		
	- Lect7(Gauss – Jacobi I	teration Method and Gauss–Seidel I	Method)	
	- Lect8(Interpolation and	l Least Square Regression)		
	- Lect9(Numerical Integr	ration and Numerical Differentiation	n)	
	- Lect10(Newton's inter	polating polynomials)		
	- Lect11(Lagrange Meth	od and Least polynomial Interpolati	ion)	
	- Lect12(Spline Interpola	ation Method)		
	- Lect13(Secant Method)			
	- Lect14 (Review)			

Literature:	The following references are recommended:		
	 D. Faires and R. Burden, Numerical methods, any edition, 		
	Gilat, A., and Subramaniam, V., Numerical Methods for Engineers and Scientists: An		
	Introduction with Applications Using MATLAB, any edition, , ISBN 978-0-471-73440-6.		
	 Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers. any Edition., New York 		
	 Loftus, J., Loftus, E.: Essence of Statistics. Second Edition, Alfred A. Knopf, New York 		
	 Matlab Software 		
Type of	4 hrs. in lectures (2 hrs. theory, 2 hrs. practical)		
Teaching:			
Pre-			
requisites:			
Preparation			
Modules:			
Frequency:	Spring Semester		
Requirements	For the award of credit points, it is necessary to pass the module exam. It contains:		
for credit	Quizzes, normal Exams, Activities, Assignments and Final examination.		
points:	Student's attendance is required in all classes.		
Credit point:	5		
Grade	The following grade system is used for the evaluation of the module exam:		
Distribution:	The module exam is based on the summation of two categories of evaluations:		
	First: (50%) of the mark is based on the academic semester.		
	Second: (50%) of the mark is based on final examination that is comprehensive for the whole of the		
	study materials reviewed during the academic semester.		
Work load:	The workload is 150 hrs. It is the result of 60 hrs. attendance and 90 hrs. self-studies (Assignments,		
	preparation for exam and applications).		