
Lecturer

Kanar Shukr Muhamad

Advanced Object Oriented 

Programming

2023-2024

University of Salahaddin-Hawler
College of Engineering
Software Engineering Department
High Diploma



Objectives

2

➢ Understand major concepts of object-oriented programming

➢ Knowledge and skills in OO design and program development.

➢ Experience in Java programming and program development within an integrated

development environment

➢ Certain skills in internet and windows programming and using graphical user

interface.

➢ Finishing this course successfully learns to put object oriented methodologies

under practice.



Syllabus

3

WeekDateSubject TitleDateSubject Title

122-OctCoursebook overview and Introduction

229-OctMethods, and method overloading  29-OctRecursion

35-Nov
Java Classes, objects and access 

modifiers 
5-NovInitialization & Cleanup

412-Nov
Object Oriented Programming:  

Encapsulation
12-NovJava Image Classes 

519-Nov
Object Oriented Programming:  

Inheritance
19-NovPackage

626-Nov
Object Oriented Programming:  

Polymormism
26-NovException Handling

73-DecInner Classes3-DecAlgorithm Design

810-DecMultiThreading10-DecAbstract Class and Interface

917-DecAccessing Databases with JDBC17-DecJava Two Dimensional Arrays

1024-DecNetwork Programming24-DecGeneric in Java

117-JanGeneric Collection Class

1214-JanGraphical User Interface (GUI) and event handling 



References

4

➢ Paul Deitel, Harvey Deitel., " Java How to Program ", 10th Edition, ISBN 978-

0132575669. 

➢ Ralph Morelli, Ralph Walde, “Java, Java, Java : Object Oriented Problem 

Solving”, 3rd Edition, June 25, 2017

➢ Herbert Schildt , “Java : The Complete Reference”, 7th Edition, ISBN: 978-0-

07-163177-8, 2007.

➢ B. Eckel , “Thinking in Java”, 4th ed., Prentice Hall, 2006



Object Oriented Programming

5

❑Object-oriented programming is a new way of programming.

❑Since its early days, programming has been practiced using a

number of various methodologies.

❑At each new stage, a new approach was created to make

programming easier and help the programmer handle more complex

programs.

❑ Java is a pure object-oriented programming language.

❑Structured programming relies on control structures, code blocks,

procedures or functions and facilitates recursion.



Object Oriented Programming

6

❑But after a certain point even structured programming becomes very

hard to follow.

❑To write larger and more complex programs, a new programming

approach was invented: object-oriented programming or OOP for

short.

❑Object-oriented programming combines the best features of

structured programming with some new powerful concepts that

allows writing more complex and more organized programs.



Object Oriented Programming 2

7

❑All OOP languages provide mechanisms that help you implement

the object-oriented model. They are encapsulation, inheritance,

polymorphism and reusability.

❑Any programming language that supports these three concepts is

said to be an OO programming language like C++, Java, Smalltalk,

c#….

❑Object-oriented programming encourages programmers to break

problems into related subgroups.



Object Oriented Programming 3

8

❑Each subgroup becomes a self-contained object with its own

instructions and data.

❑An object is similar to an ordinary variable but with its own member

methods.

❑Each object is a self-contained entity, it is an autonomous entity that

can be used and reused in other programs.

❑This also allows for composition of objects to create more complex

programs.



Object Oriented Programming 4

9

❑ In procedural programming languages, programming tends to be

action-oriented, whereas in OO programming languages such as

Java and Smalltalk, programming object-oriented.

❑ In action-oriented programming, the focus is on actions or functions;

in OO programming, the focus is on objects.



Object Oriented Programming 6

10

❑Suppose ob is an object:

print(ob);//focus is function/action

ob.print(); //focus is object



Difference between Procedural Programming and OOP

11

Procedural Oriented ProgrammingOOP

- On other hand Procedural

Oriented Programming is a

programming language that

follows a step-by-step approach to

break down a task into a collection

of variables and routines (or

subroutines) through a sequence of

instructions

- Object-oriented Programming is a

programming language that uses

classes and objects to create

models based on the real world

environment. In OOPs it makes it

easy to maintain and modify

existing code as new objects are

created inheriting characteristics

from existing ones.



Difference between Procedural Programming and OOP

12

Procedural Oriented ProgrammingOOP

Modifying the code is difficult as

compared to OOPs, there’s no

simple process to add data in POP

at least not without revising the

whole program.

Modifying and updating the code

is easier. due to modularity in its

programs is less complex and

hence new data objects can be

created easily from existing

objects making object-oriented

programs easy to modify



Difference between Procedural Programming and OOP

13

Procedural Oriented ProgrammingOOP

3- On other hand POP is less

secure as compare to OOPs.

3- Due to abstraction in OOPs data

hiding is possible and hence it is

more secure than POP.



What is Object Oriented Programming 
(OOPs)?

14

 Object Oriented Programming (OOP) is a programming

paradigm where the complete software operates as a bunch of

objects talking to each other.



What is a Class?

15

 A class is a building block of Object Oriented Programs. It is a

user-defined data type that contains the data members and member

methods that operate on the data members.

❑Most things in the world are classified: a class of students, a class

of fish, a class of birds, a class of objects.

❑A class is a collection of data (stored in named fields) and code

(organized into named methods that operate on that data).



What is an Object

16

 An object is an instance of a class. Data members and

methods of a class are used an object (or instance) of

the class that have a state and behavior.

 Q1/ The code below shows is an example of how an

object of a class is created.



What are the main features of OOPs?

17

 The main feature of the OOPs are as follows:

1. Encapsulation

2. Polymorphism

3. Data Abstraction

4. Inheritance



What is Encapsulation?

18

 Encapsulation is the binding of data and methods that

the sensitive data is hidden from the users. It is

implemented as:

1. Data hiding: A language feature to restrict access to

members of an object. For example, private and

protected members.

2.Bundling of data and methods together: Data and

methods that operate on that data are bundled together

they are wrapped into a single unit known as a class.



What is Encapsulation?

19

Q2/ The code below shows is an example demonstration of 

encapsulation, It has a private data member and getter and 

setter methods.



What is Abstraction?

20

 Abstraction is similar to data encapsulation and is very

important in OOP.

 It means showing only the necessary information and

hiding the other irrelevant information from the user.

 Abstraction is implemented using classes and

interfaces.



What is Abstraction?

21



What are the main features of OOPs?

22

Q3/ What is an abstract class and implement

abstraction through abstract class.



What is Polymorphism?

23

 The word “Polymorphism” means having many forms. It is

the property of some code to behave differently for

different contexts.

 Polymorphism can be classified into two types based on

the time when the call to the object or function is resolved.

✓Compile Time Polymorphism

✓B. Runtime Polymorphism



What is Polymorphism?

24

Q4/ Write a program to display method overload.

Q5/ Write a program to display method overriding.



What is Inheritance? What is its purpose?

25

 The idea of inheritance is simple, a class is derived

from another class and uses data and

implementation of that other class.

 The main purpose of Inheritance is to increase code

reusability.

 It is also used to achieve Runtime Polymorphism



What are the main features of OOPs?

26

Q6/ create classes to demonstrate

inheritance.



What are access specifiers in OOPs?

27

 Access specifiers (Private, Public, and Protected ) are

special types of keywords that are used to specify or

control the accessibility of entities like classes,

methods, members, and so on.

 The key components of OOP are largely achieved

because of these access specifiers



What are the advantages and disadvantages of OOPs?

28



Encapsulation?

29

 Encapsulation is the binding of data and methods that the

sensitive data is hidden from the users.

 Encapsulation is the binding together of code and data and

keeping both safe from outside interference and misuse.

❑When code and data are bound together like this an object

is created.

❑Inside an object, code and data may be private or public

to that object.



Encapsulation?

30

❑Private data or code is known and accessible to other parts

of the object only.

❑The object dictates or determines how its private data and

methods (code) should be accessed and used.

❑Better control of class attributes and method, Increased

security of data.



What is Encapsulation?

31

 It is implemented as:

1. Data hiding: A language feature to restrict access to

members of an object. For example, private and protected

members.

2. Bundling of data and methods together: Data and methods

that operate on that data are bundled together they are wrapped

into a single unit known as a class.



What is Encapsulation?

32



Polymorphism

33

❑Polymorphism is the mechanism which allows one name to be used

for two or more related but technically different purposes.

❑Earlier on we saw overloading of methods which is an example of

polymorphism. The general concept of polymorphism is “one

interface, multiple methods”.

❑ In other words, you use the same method or mechanism to perform a

group of related tasks, it’s helps reduce complexity.



Polymorphism

34

❑Another type of polymorphism is achieved using inheritance, this is

the more interesting type and we will look at it a bit later.



Inheritance

35

❑ Inheritance is another important feature of OOP, that allows an

object inherit the properties of another object.

❑The object that inherits another object acquires all the properties of

the parent object and can add its own extra features specific only to

itself.

❑ Inheritance provides for hierarchical classification which is very

important in making information manageable.



Inheritance

36

❑For example, a square is a kind of rectangle; in turn, a rectangle is a

kind of closed geometric shape; in turn, a closed geometric shape is

a kind of geometric shape.

❑ In each case, the child object inherits all the properties of the parent

object and adds some extra features specific to itself.



Reusability

37

❑Once a class has been written, created and debugged, it can be

distributed to other programmers for use in their own program.

❑This is called reusability, In OOP, however, inheritance provides an

important extension to the idea of reusability.

❑A programmer can use an existing class and without modifying it,

add additional features to it.



Objects & Classes

38

❑ A class is like a factory for creating objects.

❑ The fields and methods of a class are called members of the class, can be of two

types: static or class members associated with the class itself, that there is only a

single copy of it. While instance members associated with individual instances of

the class (i.e., with objects):

❑ The static modifier says that the field is a class field.

❑ The final modifier says that this field does not change.

❑ The public modifier says that this field can be used by any code; it’s a visibility

modifier which we will cover in more detail later.



Objects & Classes 2

39

public class Circle

{//a class/static field and method

public static final double PI=3.14159;

public static double radiansToDegrees(double rads)

{ return rads * 180 / PI; }

private double r; //an instance field

//two instance methods

public double area()

{ return PI * r * r; }

public double circumference()

{ return 2 * PI * r; }

}



Objects & Classes 3

40

❑ Class methods and fields are declared with the static modifier, they can be

accessed inside the class by writing its name only PI, and to access it from

outside the class you must write Circle.PI.

❑ A class filed is similar to a global variable; it is accessible from all parts and

methods of that class.

❑ Any field declared without the static modifier is an instance field:

public double r;



Objects & Classes 4

41

❑ Instance fields are associated with instances or objects of the class; each instance 

of the class has its own copy of an instance field.

❑ Any method not declared with the static modifier is an instance, it’s operate on

instances of the class, not on the class itself, they have access to both class fields

and class methods also.

❑ They know which object they operate on because they are passed an implicit

reference to the object they operate on; this reference is called this.



Constructor

42

❑ A constructor is a special method that is automatically called every time you create

a new object, it’s used to initialize objects.

❑ A constructor method has the same name as the class name and returns no values.

❑ To create and initialize an object: Circle c=new Circle();

❑ The operator new creates a new object of type Circle.

❑ In the class Circle defined earlier, no constructors were written; Java provided a

default constructor that takes no parameters and performs no initialization.

❑ It is always better to specify a constructor for every new class you define to

specify how a new object of that class would be initialized:

public Circle(double r) {this.r=r;}



Constructor 2

43

❑ To create an instance/object of type Circle:

Circle c=new Circle(5.0);//object creation & initialization on one line

❑ Constructor syntactic and operations:

✓ The constructor name is always the same as the class name

✓ The constructor has no return values but may take parameters

✓ The constructor should perform initialization of the new object immediately

upon creation.

❑ To provide flexibility in initializing a new object, often multiple constructors are

defined:

public Circle() { r=1.0;}  public Circle(double r) { this.r=r;}

The two constructors must have different parameter lists or signatures (method 

overloading).



Constructor 3

44

❑ One important thing about having multiple constructors, if you need a constructor,

make sure you have defined a default constructor.

❑ One of the uses of the this keyword is to invoke a constructor from within another

constructor:

public Circle(double r) { this.r=r;}

public Circle() { this(1.0);}

❑ Instance fields and class fields are initialized by default: Variables of types byte,

short, int, long, float, and double are initialized to 0, variables of type boolean are

initialized to false , variables of type char are intialized to space( ), and reference-

type variables are initialized to null. But local variables (declared inside methods)

are not initialized by default. You should initialize them before use.



Set and Get Methods

45

❑ As you know, the class’s private fields can be manipulated only by methods of that

class.

❑ Set and Get methods vs. public data

❑ It would seem that providing set and get capabilities is essentially the same as making

the variables public. This is subtlety of Java that makes the language so desirable for

software engineering.

❑ A public instance variable can be read or written by any method that has a reference to

an object that contains the instance variable.

❑ If a variable is declared private, a public get method certainly allows other methods to

access the variable, but the get method can control how other methods can access the

variable.

❑ A public set method can- and should- carefully scrutinize attempts to modify the

variable’s value to ensure that the new value is appropriate for that data item.



Garbage Collection

46

❑ In Java, memory occupied by an object is automatically reclaimed when the object

is no longer needed. This is achieved by a process called Garbage Collection.

❑ The programmer does not have to worry about releasing or reclaiming memory

used by object, this greatly reduces bugs and helps programmers be more

productive.

❑ The Java interpreter knows which objects it has allocated, so the interpreter can

determine which objects are no longer referenced by any variable and it then

destroys them.

❑ The Java garbage collector runs as a low-priority thread, so it does most of its

work when nothing else is going on.

❑ The only time that it must run even when some high-priority thread is going on is

when available memory is dangerously low, but this doesn’t happen often because

the low-priority thread is running in the background and cleans unused objects.



Finalizers

47

❑ Constructors are used to create objects: obtain memory, obtain resources, initialize

object data… Finalizers are used to return allocated resources back to the system

such as file, print and network connections.

❑ A class’s finalizer is called just before the garbage collector destroys the object. It

always has the name finalize, returns no values, has return type void and

takes no parameters.

❑ If you don’t define a finalize method for your class, a default one is created that

does nothing.

❑ Finalizers are a bit similar to C++’s destructor functions which are used to return

resources to the system.

❑ Finalizers are not as useful and necessary as C++’s destrcutors and are not often

used in normal Java programming.



Finalizers 2

48

E.x3/ The following is an example demonstrating how finalizers are used:

import javax.swing.*;

public class EmployeeTest

{

public static void main(String[] args)

{

Employee e= new Employee(“X", “YZ");

e=null; //mark for garbage collection

System.gc(); //suggest that GC be called

}

}



Finalizers 3

49

class Employee

{

private String fName, lName; 

public Employee(String fName, String lName)

{

this.fName=fName; this.lName=lName;

System.out.println("Constuctor:" + fName+ " “+lName);

}

protected void finalize()

{ System.out.println("Finalizer Called"); }

}

❑ Finalizer methods are usually declared as protected so that subclasses can directly

access and run them.

❑ The output of this program is the message: Constructor: xyz

❑ Finalizer Called“”.



Inheritance

50

❑ Inheritance allows new classes to be created by reusing existing classes, thus

saving time in software development.

❑ New classes acquire proven and debugged properties of existing classes.

❑ In Java, the keyword extends is used to inherit a new class from an existing class:

class Child extends Parent {….}

❑ The new class Child is the subclass and the Parent is the superclass.

❑ Unlike C++, Java does not support multiple inheritance,

but it supports interfaces which allow Java achieve

many of the advantages of multiple inheritance

without the associated problems.



Inheritance 2

51

❑ Every object of the subclass is also an object of the super-class but not the other

way round.

❑ Subclass methods and methods of other classes in the same package as the

superclass can directly access protected superclass members.

❑ Every class in Java must inherit from a superclass; if a new class does not

explicitly extend another class, Java implicitly uses the Object class as the

superclass for the new class Class Object provides a set of methods that can be

used with any object of any class.

❑ Consider the following example which is taken from the textbook:



Inheritance 3

52

class Point{

private int x, y;

public Point() { setPoint(0, 0); }

public Point(int a, int b) {setPoint(a, b);}

public void setPoint(int a, int b) 

{ x=a; y=b; }

public int getX() { return x;}

public int getY() { return y;}

public String toString()

{ return “[“ + x + “, “ + y + “]”;}

}//end class point



Inheritance 4

53

public class Circle extends Point

{

protected double radius;

public Circle() { setRadius(0);}

public Circle(double r, int a, int b)

{ super(a, b);setRadius(r); }

public void setRadius(double r) 

{radius= (r >=0.0 ? r : 0.0); }//see slide note

public double getRadius() { return radius;}

public double area()

{return Math.PI * radius * radius; }

public String toString()

{

return “Center= “ + “[“+ getX() + “, “ +

getY() +“; Radius= “ + radius; }

}



Inheritance 5 (Note)

54

if (a > b)

max = a;

else

max = b;

❑ You can rewrite the above example in a single line like this:

max = (a > b ? a : b);

❑ Is an expression which returns one of two values, a or b.

❑ The condition, (a > b) is tested, if it is true the first value a is returned, if it is false,

the second value b is returned.



Inheritance 6

55

import java.text.DecimalFormat;

import javax.swing.JOptionPane;

public class InheritanceTest

{

public static void main(String[] args) 

{

Point pointRef, p; Circle circleRef, c;

String output;

p=new Point(30, 50);

c=new Circle(2.7, 120, 89);



Inheritance 7

56

output=“Point p: “ + p.toString() +

“\nCircle c: “ +c.toString();

pointRef=c;//since a circle is-a point

output+=“\nCircle c (via pointRef): “ +

pointRef.toString();

circleRef=(Circle) pointRef; //downcast

output+=“\nCircle c (via circleref): “ +

circleRef.toString();

DecimalFormat precision2=new DecimalFormat(“0.00”);

output+=“\nArea of c (via circleRef): “ +

precision2.format(circleRef.area());



Inheritance 8

57

if(p instanceof Circle) 

{

circleRef=(Circle) p;

output+=“\nCast Successful”;

}

else

output+=“\np does not refer to a Circle”;

JOptionPane.showMessageDialog(null, output, 

“Demonstarting the \”is-a \” relationship”,

JOptionPane.INFORMATION_MESSAGE);

System.exit(0);

}}



Inheritance 9

58

❑ In this example, class Circle inherits from class Point and adds members specific

to itself:

✓ Circle overrides Point’s toString method (polymorphism)

✓ Point and Circle both have a default constructor as well as a parameterized constructor

✓ Subclass Circle needs to call superclass Point’s parameterized constructor using

super along with any required arguments, and this statement must come before

any other statements

✓ Default constructors are invoked automatically.

✓ Superclass objects or references can be used to refer to subclass objects because

of the is-a relationship, hence the statement pointRef=c;



Inheritance 10

59

✓ Explicit casting is needed to make a subclass (Circle) object to refer to a

superclass (Point) object, hence the statement: circleRef= (Circle) pointRef;

✓ Attempting to cast a Point object to a Circle object is an error, so the statement:

circleRef=(Circle) p; is illegal because p refers to a point object.

✓ The operator instanceof is used to check whether the object to which it

refers is a Circle.

✓ Superclass constructors are not inherited; subclass constructors can call

superclass constructors using the super reference.



Inheritance 11

60

✓ If a class defines a finalize method, any subclass finalize method should call

the superclass finalize method as its last action.

E.X5/ The following simplified example illustrates the order in which constructor

and finalize methods are called:

class Point {

private int x, y;

public Point()

{ System.out.println(“Point Cons: “ + this);

}



Inheritance 12

61

public Point(int a, int b)

{ x=a;  y=b;

System.out.println(“Point Cons” “ + this);

}

protected void finalize()

{ System.out.println(“Point finalize: “+this); }

public String toString()

{ return “[“ + x+ “, ” + y + “]”; }

}

}



Inheritance 13

62

class Circle extends Point

{

protected double radius;

public Circle() 

{

System.out.println(“Circle Cons: “ + this);

}

public Circle(double r, int a, int b)

{

super(a, b);radius=r;

System.out.println(“Circle Cons: “ + this);

}



Inheritance 14

63

public String toString()

{

return “Center= “+super.toString()+ “; 

Radius= “ + radius;  

}

protected void finalize()

{

System.out.println(“Circle finalize:“+this);

super.finalize();

}

}}



Inheritance 15

64

❑ The keyword super can be used to access parent class members

public class TestI

{

public static void main(String[] args)

{

Circle c1;

c1=new Circle(4.5,72,29);

c1=null;

System.gc();

}

}



Inheritance 16

65

❑ The output is:

Point Cons Center=[72, 29]; Radius=0.0

Circle Cons: Center=[72, 29]; Radius=4.5

Circle finalize: Center=[72, 29]; Radius=4.5

Point finalize: Center=[72, 29]; Radius=4.5

❑ The class Object has a number of methods which are inherited by any created

class. The method toString() is one such method which returns a textual

representation of the object.



Inheritance 17

66

❑ You should always try to override this method as in this example.

❑ Outputting the this reference of an object, invokes the toString() method.

❑ In is example, after we finish with c1 object, we set them to null to indicate that

they are no longer needed and then ask that the system’s garbage collector be

called with the call System.gc().

❑ Java guarantees that before the garbage collector runs to reclaim the space for each

object, the finalize method for each object is called.



Polymorphism

67

❑ You can have an inheritance hierarchy where a number of classes extend from a

parent class:

Person ---> Students ---> Undergraduate ---> …

❑ This is called an inheritance hierarchy.

❑ In OOP, when you invoke a method on an object, you send that object a message.

❑ When a method is applied to an object of class in an inheritance hierarchy the

following occurs:

✓ The class (subclass) checks whether or not it has a method with that name and with

exactly the same parameters. If so, it uses it. If not:



Polymorphism 2

68

✓ The parent class becomes responsible for handling the message and looks for a

method with that signature. If so, it uses it. This process continues until a match

is found. If not match is found, a compile-time error is reported.

✓ Remember that inheritance defines the is-a relationship.

✓ The is-a relationship allows subclass objects to be treated as superclass objects,

because a subclass object IS A superclass object, because a student IS A

person.

✓ Method-overriding refers to the idea of having a subclass contain a method

with the same signature as that of a method in its parent class.

✓ An objects ability to decide what method to apply to itself, depending on where

it is in the inheritance hierarchy, is called polymorphism.



Polymorphism 3

69

✓ What makes polymorphism work is late-binding, which means that the

compiler does not generate the code to call a method at compile-time; instead

the compiler generates code to calculate which method to call, using type

information from the object.

✓ (In C++, you had to declare functions as virtual for dynamic binding but in Java

this is the default behavior).

E.x6/ In the following example, we see how polymorphism is achieved in java:

public class ManagerTest

{ public static void main(String[] args)

{ Manager boss = new Manager("Razawa",5);

boss.setSecretaryName("Lava");



Polymorphism 4

70

Employee[] staff = new Employee[3];

staff[0] = boss; //is-a relation

staff[1] = new Employee("Lava",5);

staff[2] = new Employee("Aza", 3);

for (int i = 0; i < 3; i++)

staff[i].raiseSalary(10);

for (int i = 0; i < 3; i++)

staff[i].print();

}

}



Polymorphism 5

71

class Employee

{

public Employee(String n, double s)

{  name = n;   salary = s;}

public void print()

{ System.out.println(name + " " + salary);  }

public void raiseSalary(double byPercent)

{ salary = salary + byPercent / 100; }

public String Name() { return name;}

private String name;  private double salary;

}



Polymorphism 6

72

class Manager extends Employee

{

public Manager(String n, double s)

{  super(n, s);  secretaryName = ""; }

public void raiseSalary(double byPercent)

{  super.raiseSalary(byPercent + 10); }

public void setSecretaryName(String n)

{  secretaryName = n;   }

public String getSecretaryName()

{  return secretaryName;   }

private String secretaryName;

}



Polymorphism 9

73

❑ Class Manager extends class Employee.

❑ In the test class we create 3 objects, 2 of type employee and one of type Manager.

❑ Method raiseSalary() is overridden in subclass Manager.

❑ Then we create an array of type Employee and store the 3 objects in the array,

even the object boss of type Manager, After that we invoke the method

raiseSalary() on all the array elements.

❑ Since this method is overridden, its correct version is applied to each individual

element.

❑ If you don’t want a class to be inherited or a method overridden, declare them as

final, you may do this for efficiency and safety.



Packages

74

❑ To make classes easier to find and to use, to avoid naming conflicts, and to control

access, programmers bundle groups of related classes and interfaces into packages.

❑ A package is a collection of related classes and interfaces providing access

protection and namespace management.

❑ The classes and interfaces that are part of the Java platform are members of

various packages that bundle classes by method.

❑ Fundamental classes are in java.lang, classes for reading and writing (input and

output) are in java.io, and so on.

❑ In few slides we learn to put our classes and interfaces in packages, too.



Packages 2

75

❑ To create a new package, first create a folder; the name of this folder will also be

the name of the package.

❑ Create your classes and interfaces and save them in this new folder.

❑ Include a package statement at the top of every source file that defines a class or

an interface that is to be a member of that package.

❑ If you put multiple classes in a single source file, only one may be public, and it

must share the name of the source files base name.

❑ Only public package members are accessible from outside the package.

❑ To create a package within another package, just create a subfolder in the original

folder and give the subfolder the same name as your sub-package or nested

package.



Packages 3

76

❑ To use package members:

✓ Refer to the member by its long (qualified) name

(package.myClass ob;)

✓ Import the package member

(import package.myClass;)

✓ Import the members entire package

(import package.*;)



Packages 4

77

E.x25/ A demo program importing a user-defined sub-package:

import myPackage.subPackage.*;

public class TestPackage

{

public static void main(String[] a)

{ MySubClass ob=new MySubClass(); ob.myMethod(); } 

}

❑ And the class in the package:

package myPackage.subPackage;

public class MySubClass

{

public void myMethod()

{ System.out.println("This is in a subpackage");}

}



Packages 5

78

❑ Note that this class is saved in a folder called subPackage and in turn it is saved in

another folder called myPackage.

❑ Ex26/ In this exercise you will create a package called MyPackage and create a

few classes and save them in the package. Remember that all classes in the

package should have as their first line “ package MyPackage” . Also make your

classes public, otherwise they would not be accessible outside the package.



Exception Handling

79

❑ A program often encounters problems as it executes.

❑ It may have trouble reading data, there might be illegal characters in the data, or an

array index might go out of bounds.

❑ Java Exceptions enable the programmer deal with such problems.

❑ You can write a program that recovers from errors and keeps on running, this is

important.

❑ A word processor program should not crash when the user makes an error!



Exception Handling 2

80

❑ Typical problems: User input errors: specifying a syntactically wrong URL;

typing errors; Device errors: printer may be off; printer out of paper; connection

may be down;

❑ Physical Limitations: disks fill up; run out of memory;

❑ Code errors: computing an invalid array index;

❑ Traditional error handling mechanisms involved functions returning special error

codes which the calling method analyzed.

❑ Further, the flow of program is cluttered with error-checking code.

❑ Finally, this approach is not very Object-oriented; it would be far better to have

more information about the error than a simple code value.



Exception Handling 3

81

❑ An exception is a problem that occurs when a program is running. Often the

problem is caused by circumstances outside the control of the program, for

example, bad user input or a bad sector in a disk file.

❑ A Java program may have statements that catch exceptions.

❑ When an exception occurs, the Java virtual machine creates an object of class

Exception (big 'E') which holds information about the problem. The Exception

object is used to recover from the problem.

❑ Using Exceptions has several advantages:

1- Error handling is separated from regular program flow



Exception Handling 4

82

2- errors are encapsulated in objects and provide more information about the error.

This approach is more object-oriented.

3- You can either use standard Java exceptions or create your own exception classes

to define new error situations.

❑ There is a class called Exception which describes general error situations. This

class has two subclasses: IOException and RuntimeException.

❑ Runtime exceptions occur when you have made a programming error: bad cast,

out-of-bounds array access, or a null pointer.



Exception Handling 5

83

❑ Any other exception occurs because something bad has happened to your

otherwise good program: I/O problems, malformed URL, disk failure.

❑ The general rule is that if it is RuntimeException, it was your fault.

❑ For methods which threaten to throw I/O exceptions, you should advertise this in

the method declaration. For Runtime exceptions you should not do this.

E.x27/ import java.io.* ; 

public class Square

{ 

public static void main ( String[] a ) throws IOException



Exception Handling 6

84

BufferedReader stdin = new BufferedReader ( new 

InputStreamReader( System.in ) ); 

String inData; int num ; 

System.out.println("Enter an integer:"); 

inData = stdin.readLine(); 

num = Integer.parseInt( inData );       

System.out.println("The square of " + inData + " is 

" + num*num ); 

}

}

❑ Here if the user enters bad input, the program will throw some type of IOException.



Exception Handling 7

85

❑ In the main method we advertise that this method might throw an exception, but

we don’t specify any handlers for the exception; instead we say that the called

(Java Virtual Machine) should handle the exception which will stop the program

and print a trace of what went wrong.

Ex.28/ Now the same example with try and catch blocks:

import java.io.* ;

public class SquareUser

{

public static void main ( String[] a ) throws IOException

{



Exception Handling 8

86

BufferedReader stdin = new BufferedReader ( new

InputStreamReader( System.in ) );

String inData = null;

int num = 0; boolean goodData = false;

while ( !goodData )

{

System.out.println("Enter an integer:"); 

inData = stdin.readLine(); 

try {

num = Integer.parseInt( inData ); 

goodData = true; 



Exception Handling 9

87

} catch (NumberFormatException ex ) 

{System.out.println(“Bad data, try again.\n" );}

}

System.out.print("The square of"+ inData+"is"+ 

num*num ); 

}

}

❑ In this program, the user is prompted again if the input is bad. Note that after the

catch {} block is executed, execution continues with the statement that follows the

catch{} block. (Execution does not return to the try{} block.) What is this the

case?



Exception Handling 10

88

❑ You may want to catch more than one type of exception in a method.

❑ To do this you need to define more than one catch statement for each type of

exception you want to handle.

❑ E.x29/ Here is a program that asks the user for an integer and for an array index

where it is to be placed. Only indexes 0 through 9 are allowed, any other index

causes an IndexOutOfBoundsException:

import java.io.* ; 

public class IndexPractice

{ 

public static void main(String[]a)throws IOException



Exception Handling 11

89

{

BufferedReader stdin = new BufferedReader ( new 

InputStreamReader( System.in ) );        

String inData; 

int data=0, slot=0 ; 

int[] value = new int[10];

try 

{ 

System.out.println("Enter the data:"); 

inData = stdin.readLine(); 

data = Integer.parseInt( inData ); 

System.out.println("Enter the array index:");



Exception Handling 12

90

inData = stdin.readLine(); 

slot = Integer.parseInt( inData ); 

value[slot] = data; 

} catch (NumberFormatException ex ) 

{ System.out.println(“The problem: " + 

ex.getMessage() + “At”); ex.printStackTrace(); } 

catch (IndexOutOfBoundsException ex ) 

{System.out.println(“The problem: " + 

ex.getMessage() + “At”); ex.printStackTrace(); }

} 

} 



Exception Handling 13

91

❑ Some typical exceptions to catch:

✓ IOException: Signals that an I/O exception of some sort has occurred. This

class is the general class of exceptions produced by failed or interrupted I/O

operations .

✓ EOFException: Signals that an end of file or end of stream has been reached

unexpectedly during input.

✓ MalformedURLException: indicate that a malformed URL has occurred.

Either no legal protocol could be found in a specification string or the string

could not be parsed.

✓ UnknownHostException: Thrown to indicate that the IP address of a host

could not be determined.



OO programming (Abstract Classes)

92

❑ Abstract classes are classes that cannot be instantiated, but you can have abstract

class variables that refer to some extended class object.

❑ Abstract classes are used to factor out common behavior into a general class.

❑ Abstract classes may contain abstract methods: methods that have no definition in

the original class and must be defined in non-abstract subclasses (pure virtual

classes in C++).

abstract class Message

{

public abstract void play();//must be overridden

}

class TextMessage extends Message

{

public void play()

{ System.out.println(“Text Message”);}

}



OO programming (Abstract Classes) 2

93

❑ Rules about abstract classes/methods:

✓ Any class with an abstract method is automatically abstract and must be declared as

such. Also, an abstract class cannot be instantiated.

✓ A subclass of an abstract class can be instantiated only if it overrides each of the

abstract methods of its superclass and provides an implementation for all of them.

(Concrete class, as opposed to abstract)

✓ If a subclass of an abstract class does not implement all the abstract methods it

inherits, that subclass is itself abstract, and must be declared as such.

✓ static, private and final methods cannot be abstract, since they cannot be overridden by

a subclass.

✓ A class can be declared abstract even though it does not have any abstract methods.



Generic Programming and Methods

94

❑ As mentioned before, the Object class is the; every class in Java extends this class.

ultimate ancestor

❑ You can use a variable or object of type Object to refer to any type:

Object obj=new Employee(“H. Hacker”, 10000);



Generic Programming and Methods 2

95

For example, for the Employee class:

public boolean equals(Object obj){

if(!(obj instanceof Employee))

return false;

Empoyee e= (Employee) obj;

❑ Note that the equals method for the String class is overridden by Java.

❑ Since objects of any type or class can be held in variables of type Object, we can

use this for generic programming.

❑ For example, suppose we need a method that takes an array and a value as

parameters and we want the method to return the index of that value in the array:



Generic Programming and Methods 3

96

static int find(Object[] ob, Object value)

{

for (int i=0; i<ob.length; i++)

if(ob[i].equals(value)) return i;

return -1;//not found

}

return name.equals(e.name) && ...}

Employee[] staff=new Employee[10];

Employee e=new Employee(“Hacker”, 10000);

//...

int n=find(staff, e); //works on any object array



OO programming (Interfaces)

97

❑ Java does not support multiple inheritance, it’s class can extend only one class.

❑ When need classes that inherit behavior from more than one parent class. the

solution to this is using Java interfaces.

❑ Many believe that multiple inheritance, in C++, introduces more complexity and

work on the part of the programmer than solve problems.

❑ An interface: is a class but a class which can only contain abstract methods and

constants (finals).

❑ It cannot contain any implementation for its methods nor can have any instance

fields because an interface is a specification and has no implementation detail.

Its methods are implicitly abstract.



OO programming (Interfaces) 2

98

❑ Any class that implements an interface must define the interface methods or must

itself be an abstract class, it can implement as many interfaces as it needs.

❑ E.x31/ The following example is taken from the textbook:

interface Shape {

public abstract double area();

public abstract double volume();

public abstract String getName();   }



OO programming (Interfaces) 3

99

class Point implements Shape 

{

private int x, y; // coordinates of the Point

public Point() { setPoint( 0, 0 ); }

public Point( int a, int b ) { setPoint( a, b );}

public void setPoint( int a, int b ){x = a; y = b; }

public int getX() { return x; }

public int getY() { return y; }

public String toString() 

{    return "[" + x + ", " + y + "]";    }



OO programming (Interfaces) 3

100

public double area() { return 0.0; }

public double volume() { return 0.0; }

public String getName() { return "Point"; }

}

public class Circle extends Point {

private double radius;

public Circle() { setRadius( 0 );   }

public Circle( double r, int a, int b )

{     super( a, b );      setRadius( r );  }



OO programming (Interfaces) 4

101

public void setRadius( double r )

{ radius = ( r >= 0 ? r : 0 );  }

public double getRadius()

{ return radius; }

public double area() 

{ return Math.PI * radius * radius;  }

public String toString()

{

return "Center = " + super.toString() + "; Radius = 

" + radius; }

public String getName() { return "Circle"; }

}



OO programming (Interfaces) 5

102

public class Cylinder extends Circle

{

private double height;// height of Cylinder

public Cylinder() { setHeight( 0 ); }

public Cylinder( double h, double r, int a, int b) 

{ super( r, a, b );  setHeight( h );}

public void setHeight( double h )

{ height = ( h >= 0 ? h : 0 ); }

public double getHeight() { return height; }

public double area()

{ return 2 * super.area() +2 * Math.PI * radius 

* height;  }



OO programming (Interfaces) 6

103

public double volume() 

{ return super.area() * height;   }

public String toString()

{ return super.toString() + "; Height = " + height;  }

public String getName() { return "Cylinder"; }

}

import javax.swing.JOptionPane;

import java.text.DecimalFormat;

public class Interfacee

{

public static void main( String args[] )

{



OO programming (Interfaces) 7

104

Point  point = new Point( 7, 11 );          

Circle circle = new Circle( 2, 22, 8 );  

Cylinder cylinder = new Cylinder( 10, 3, 10, 10 ); 

Shape arrayOfShapes[]= new Shape[ 3 ];

arrayOfShapes[ 0 ] = point;

arrayOfShapes[ 1 ] = circle;

arrayOfShapes[ 2 ] = cylinder;

String output =point.getName() + ": " + 

point.toString() + "\n" +circle.getName() + ": " + 

circle.toString() + "\n" +cylinder.getName() + ": " 

+ cylinder.toString();



OO programming (Interfaces) 8

105

DecimalFormat precision2 = new DecimalFormat( "0.00" );

for ( int i = 0; i < arrayOfShapes.length; i++ ) 

{

output += "\n\n" + arrayOfShapes[ 

i].getName() + ": “+ arrayOfShapes[ i

].toString() + "\nArea = “+precision2.format( 

arrayOfShapes[ i ].area() ) +”\nVolume = " 

+precision2.format( arrayOfShapes[ i

].volume() );

}

JOptionPane.showMessageDialog( null,output,"Demonstrating

Polymorphism“,JOptionPane.INFORMATION_MESSAGE );

System.exit( 0 );  

}}



OO programming (Interfaces) 9

106

❑ Abstract classes or interfaces: Interfaces are used in place of abstract classes

when there is no default implementation.

❑ In addition to providing support for multiple inheritance, interfaces are

commonly used in GUI programming as will soon see.

❑ Usually interfaces are defined in classes of their own with the same name as the

interface name and in a .java file.

❑ Since they both may contain abstract methods it is not possible to instantiate

objects from them and they may not define constructor methods.

❑ Interfaces can only contain abstract instance methods and constants whereas

abstract classes can contain instance fields and a mixture of abstract and

instance methods.



OO programming (Interfaces) 10

107

❑ If you add a new method to an interface which has already been implemented by

some class, you break that subclass. This is not a problem with abstract classes.

❑ All methods of an interface are implicitly public, even if the public modifier is

omitted. also it is an error to define protected or private methods in an interface.

E.x32/ Here is another example using interfaces:

import java.util.*;

public class ArrayAlg

{

public static void main(String[] l)

{



OO programming (Interfaces) 11

108

Employee[] staff=new Employee[3];

staff[0]=new Employee("Harry", 35000);

staff[1]=new Employee("Barry", 32000);

staff[2]=new Employee("Jerry", 29000);

ArrayM.Sort(staff); 

for(int i=0; i<staff.length;i++)

System.out.println(staff[i]);

}

}



OO programming (Interfaces) 12

109

interface Sortable

{ public int compareTo(Sortable b);}

class Employee implements Sortable

{

public Employee(String n, double s)

{ name=n; salary=s;}

public void raiseSalary(double byPercent)

{ salary*=1+byPercent/100;}

public String getName(){return name;}

public double getSalary(){return salary;}

public String toString()

{return name + " " + salary}



OO programming (Interfaces) 13

110

public int compareTo(Sortable b)

{ Employee eb=(Employee) b;

if(salary<eb.salary) return -1;

if (salary>eb.salary) return 1;

return 0; }

private String name;

private double salary;

}



OO programming (Interfaces) 14

111

class ArrayM{

public static void Sort(Sortable[] a){

for(int i=0; i<a.length; i++)

{

for(int j=0; j<a.length-1; j++)

{

if(a[j].compareTo (a[j+1])==1)

{

sortable temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

}

}

}

}

}



OO programming (Interfaces) 16

112

❑ In the example, the employee class implements the Sortable interface which has

only one method, the compareTo method.

❑ The class ArrayAlg contains a static method Sort which takes an array of objects

of any class which implements the Sortable interface and sorts the elements of

the array in descending order.

❑ This example used an interface; you could have used an abstract class to achieve

the same effect, but if the employee class had already inherited (extended) another

class, say a class Person, then you wouldn’t have been able to use abstract classes.

Why is this?



Data base Programming

113

❑ A database system is a repository or store of data, it’s systems organize data in an

orderly way making the data easily accessible and updatable.

❑ Instead of using a database, you could use an ordinary text file to store your data.

❑ But we all know how a database management system makes updating, organizing

and accessing data more efficient and user-friendly.

❑ Being able to access a database through programming is also important and allows

the programmer to write custom applications.

❑ Software users (companies, universities, governments, stores…) prefer customized

software, software that is designed to need their requirements and that is easy to

use.



Data base Programming 2

114

❑ With JDBC you can access almost all current database systems (MS SQL Server,

MS Access, Oracle, DB2, Informix…).

❑ JDBC works like this: database vendors provide drivers for their particular

database system to work with JDBC driver manager.

❑ JDBC provides an abstraction layer on top of these drivers.

❑ Programs written according to JDBC API would talk to the JDBC driver manager,

which in turn, would use the drivers that it has to talk to the actual database.

❑ Using JDBC, Java programmers can write applications to access any database,

using standard SQL statements.



Data base Programming 3

115

❑ Java Database Connectivity or JDBC is designed to provide Java programmers

with a uniform way of accessing database systems.

❑ JDBC is an interface to SQL which is an interface to all modern relational

databases.

❑ So basically, JDBC let’s you pass and execute SQL statements to databases.

❑ You can think of a database as a group of named tables with rows and columns.

❑ Each column has a column name. The rows contain the actual data (records).



Data base Programming 4

116

❑ We assume we have a small MS Access database with a single table.

❑ The program which follow will use this database for testing, the table Students has

the following design:

❑ In SQL, to select all the records from the above table you would use:

SELECT * FROM Students



Data base Programming 5

117

❑ The FROM clause tells database which table to access.  Or you can restrict the 

columns:

SELECT Name, CourseMark FROM Students

❑ To restrict the rows or records, you use the WHERE clause:

SELECT * FROM Students WHERE CourseMark >40

❑ You can also use SQL to update the data in a table:

UPDATE Students SET CourseMark=CourseMark + 2

❑ To insert values into a table, use the INSERT statement:

INSERT INTO Students Values(‘Lava’,‘Lava Burhan’,21,’10-

Oct-1993’,21.5)



Data base Programming 6

118

❑ To create a new table:

CREATE TABLE Departments ( Dept_Name CHAR(20) , Head

CHAR(20), No_Of_Students INT)

❑ You also need to create a Data Source Name (DSN) for your Access database, to

use it when you connect to the database (This will be demonstrated in the lab).

❑ E.x33/ Write a simple Java program that will access the above database .

import java.sql.*;

public class CreateMarks

{

public static void main(String args[])

{



Data base Programming 7

119

String url = "jdbc:odbc:JavaDSN1";

Connection con;String createString; Statement stmt;

createString = "select * from Students";    

try { //load odbc-jdbc bridge driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}catch(Exception e){System.out.println(e.getMessage());}

try {

con = DriverManager.getConnection(url, "", "");

stmt = con.createStatement();

ResultSet rs=stmt.executeQuery(createString);



Data base Programming 8

120

while(rs.next())

System.out.println(rs.getString(2) + " | " 

+rs.getString(3) + " | " + rs.getString(4) + 

" |" + rs.getString(5));

rs.close();   stmt.close();       con.close();

}catch(SQLException ex)

{System.err.println("SQLExc.:" + ex.getMessage());}

}

}



Data base Programming 9

121

❑ The string url is used to represent a protocol, here jdbc:odbc: means that JDBC

interfaces Microsoft's ODBC which then connects to the database server - whose

Internet address is denoted by the DSN Data Source Name StudentsDSN.

❑ A driver is needed which bridges between the Java JDBC and Microsoft's ODBC.

❑ Then the connection to the database, specified by URL, user name and password,

is established.

❑ Finally, a statement object is created, which will allow us to pass SQL statements

to the database.



Data base Programming 10

122

❑ You create an SQL statement and pass this statement to the executeQuery method

of the statement object.

❑ The result of this method is a Resultset object ( a set of tuples/records).

❑ Then we use a loop to iterate through the elements of the resultset object.

❑ A resultset object is a table of data representing a database result set, which is

usually generated by executing a statement that queries the database, it’s maintains

a cursor pointing to its current row of data, initially the cursor is positioned before

the first row.



Data base Programming 11

123

❑ The next method moves the cursor to the next row, and because it returns false

when there are no more rows in the ResultSet object, it can be used in a while loop

to iterate through the result set.

❑ Note that the method getString is given a number; this number represents the

column number. They start with 1. You could use column names (in double

quotes) instead:

rs.getString(“Name”) Or rs.getInteger(“Year”);

❑ To make updates to a database you can use the executeUpdate method of the

Statement object. For example, to add a new record to the Students table:

stmt.executeUpdate(“INSERT INTO Students values(‘username’,‘User Name’,3,’2-

Apr-03’,45)”



Data base Programming 12

124

❑ This statement would add the record to the table. Note that it is customary to use

uppercase letters for SQL keywords words. SQL is case insensitive.

❑ The executeUpdate method returns the number of records affected by the update

operation, for example the following SQL statement would return 3:

int n=stmt2.executeUpdate(“UPDATE Students SET [cousework mark]=40

where[cousework mark]<40");

System.out.println(n);

❑ You can create a new table as follows:

String createTable = “CREATE TABLE Department (Dept_ID INTEGER, 

Dept_NAME VARCHAR(40))“;



Data base Programming 13

125

❑ There is a lot more to JDBC than what we have looked at so far.

❑ You must know SQL to write more advanced database applications, especially

when you need to access databases with many tables and when there are

relationships between those tables.

❑ There are times when you don’t want a statement to be executed unless another

statement/statements are also executed. For example, consider the following two

tables:



Data base Programming 14

126



Data base Programming 15

127

❑ Now suppose you would like to update the Students table by adding a new record

to it.

❑ If this update operation is successful, you would also like the second table,

Departments, to be updated too, otherwise your database would be in an

inconsistent state.

❑ You would want to update the value of the third column in the Departments table.

❑ A transaction is a set of one or more statements that are executed together as a

unit, so either all of the statements are executed, or none of the statements is

executed.

❑ When a connection is created, it is in auto-commit mode. This means that each

individual SQL statement is treated as a transaction and will be automatically

committed right after it is executed.



Data base Programming 16

128

❑ This is the default behavior, the way to allow two or more statements to be

grouped into a transaction is to disable auto-commit mode.

❑ This is demonstrated in the following line of code, where con is an active

connection: con.setAutoCommit(false);

❑ Once auto-commit mode is disabled, no SQL statements will be committed until

you call the method commit explicitly.

try {

con = DriverManager.getConnection(url, "", "");

con.setAutoCommit(false);

stmt1 = con.createStatement();

stmt2 = con.createStatement();



Data base Programming 17

129

stmt1.executeUpdate("INSERT INTO Students

values('username9','User Name 9',1, 4,'2-Apr-

80',45)");

stmt2.executeUpdate("Update Department SET 

No_of_Student=No_of_Student+1 where 

Dept_ID=1");

con.commit();

con.setAutoCommit(true);

con.close();

}catch(SQLException

e){System.out.println("SQLException:”);}



Data base Programming 19

130

❑The steps involved for making a connection with a database

 Loading the driver : To load the driver, Class. forName() method is used.

Class. forName(”sun. jdbc. odbc. JdbcOdbcDriver”);

 Making a connection with database: To open a connection to a given

database, DriverManager. getConnection() method is used.

Connection con = DriverManager. getConnection (”jdbc:odbc:somedb”, “user”,

“password”);

 Executing SQL statements : To execute a SQL query, java. sql. statements

class is used. Statement stmt = con. createStatement();



Data base Programming 20

131

 executeQuery() method of Statement executes the statement and returns a java.

sql. ResultSet that encapsulates the retrieved data: ResultSet rs = stmt.

executeQuery(”SELECT * FROM some table”);

Connecting to Database

✓ Either by giving database path in detail as follows:

Connection con = DriverManager.getConnection("jdbc:odbc:Driver={Microsoft 

Access Driver (*.mdb)};DBQ=d:\\Students.mdb","","");

✓ Or by creating DSN for the database as follows:

Connection con = DriverManager.getConnection(" jdbc:odbc:Students“,””,””);



To communicate over TCP, a client program and a server program

establish a connection to one another. Each program binds a

socket to its end of the connection. To communicate, the client

and the server each reads from and writes to the socket bound to

the connection. A socket is one end-point of a two-way

communication link between two programs running on the

network. The java.net package provides two classes: Socket

and ServerSocket that implement the client side of the

connection and the server side of the connection, respectively.
Lecturer: Kanar Shukr Muhamad132

Network Programming



Data transmitted over the Internet is accompanied by addressing

information that identifies the computer and the port for which it

is destined. The computer is identified by its 32-bit IP address. So

in order to establish communication between a client and a server,

we need a socket for the client and socket for the server. Then we

need to specify a port and bind the socket (client or server ) to this

port, depending on the application. Your applications can use any

ports not in the range of well-known ports.

Lecturer: Kanar Shukr Muhamad133

Network Programming2



In the following example, we will write a client and a server program. The client

will try to establish a connection with the server. After the connection is made

between the two, the client can send strings to the server and the server will return

or echo what the client sent it. We will make the server to listen on port 4444, so

the client will use this port number to connect to the server. Of course, the client

will also need the host name of the server. You can use this client/server

application on a network or on the same computer.

Lecturer: Kanar Shukr Muhamad134

Network Programming3



First the code for the client machine:

import java.io.*;import java.net.*;

public class EchoClient{

public static void main(String[] args) throws

IOException

{

Socket echoSocket = null; PrintWriter out = null;

BufferedReader in = null;

try{echoSocket = new Socket("localhost", 4444);

out = new PrintWriter(echoSocket.getOutputStream(), true);

Lecturer: Kanar Shukr Muhamad135

Network Programming4



in = new BufferedReader(new InputStreamReader(echoSocket.getInputStream()));

}catch (UnknownHostException e)

{System.err.println("Don't know host!"); System.exit(1);}

catch (IOException e) {

System.err.println("Couldn't get I/O for the connection to!");System.exit(1);}

BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

String userInput; System.out.println(in.readLine());

Lecturer: Kanar Shukr Muhamad136

Network Programming5



while ((userInput = stdIn.readLine()) != null)

{

out.println(userInput);

System.out.println("echo: " + in.readLine());

}

out.close(); in.close(); stdIn.close(); echoSocket.close();

}

}

Lecturer: Kanar Shukr Muhamad137

Network Programming6



The program first creates a socket which will be used to connect to a machine “loclahost”

on port 4444, then gets the socket's output stream and input stream. The last statement in

the while loop reads a line of information from the BufferedReader connected to the

socket. The readLine method waits until the server echoes the information back to

EchoClient. When readline returns, EchoClient prints the information to the standard

output. The while loop continues until the user types an end-of-input character. That is,

EchoClient reads input from the user, sends it to the Echo server, gets a response from the

server, and displays it, until it reaches the end-of- input. The while loop then terminates

and the program continues, executing the next four lines of code:

out.close(); in.close(); stdIn.close(); choSocket.close();

These statements close the readers and writers connected to the socket and to the

standard input stream, and close the socket connection to the server.

138

Network Programming7



The server program begins by creating a new ServerSocket object to listen on

a specific port. When writing a server, choose a port that is not already

dedicated to some other service. The constructor for ServerSocket throws

an exception if it can't listen on the specified port (for example, the port is

already being used). If the server successfully connects to its port, then the

ServerSocket object is successfully created and the server continues to the next

step - accepting a connection from a client: clientSocket =

serverSocket.accept();

The accept method waits until a client starts up and requests a connection on the

host and port of this server (in this example, the server is running on the

hypothetical machine taranis on port 4444).

Lecturer: Kanar Shukr Muhamad139

Network Programming8



Here is the server program:

import java.net.*; import java.io.*;

public class MultiServer {

public static void main(String[] args) throws IOException{

ServerSocket serverSocket = null; boolean listening = true;

try { serverSocket = new ServerSocket(4444);} catch (IOException e) {

System.err.println("Could not listen on port: 4444."); System.exit(-1);}

while (listening)

new MultiServerThread(serverSocket.accept()).start();

serverSocket.close(); }}

Lecturer: Kanar Shukr Muhamad140

Network Programming9



class MultiServerThread extends Thread { private Socket socket = null;

public MultiServerThread(Socket socket) {this.socket = socket;}

public void run() { try

{ PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

String inputLine, outputLine; out.println("Welcome to Echo Server");

while ((inputLine = in.readLine()) != null) {

outputLine = inputLine; out.println(outputLine);

if (outputLine.equals("Bye"))     break;}

out.close();    in.close();  socket.close();

} catch (IOException e) {  e.printStackTrace();}  }}

Lecturer: Kanar Shukr Muhamad141

Network Programming10



Every time a new socket connection is established (when method accept succeeds)

a new thread is created and started to take care of the new connection. Here a new

class is created which extends the Thread class. Any class that subclasses the

Thread class should provide override the run() method. You should not call

the run method. Instead call the object’s start() method which will call the

run method. You provide the desired functionality of the thread in the run

method.

Lecturer: Kanar Shukr Muhamad142

Network Programming11



You should realize the importance of protocols by now. Look at the last two

programs again and test them. If the client and the server do not understand each

other, the client/server application will not function. They cannot communicate.

For this simple client/server pair, it was not necessary to specify and document a

protocol but for more complicated applications, you will need to specify and

develop protocols before writing you client and server programs. Who should talk

first? Second? When should they disconnect?

For more information consult your reference books.

Lecturer: Kanar Shukr Muhamad143

Network Programming12



144

Good Luck


	Slide 1: Advanced Object Oriented Programming
	Slide 2: Objectives
	Slide 3: Syllabus
	Slide 4: References
	Slide 5: Object Oriented Programming
	Slide 6: Object Oriented Programming
	Slide 7: Object Oriented Programming 2
	Slide 8: Object Oriented Programming 3
	Slide 9: Object Oriented Programming 4
	Slide 10: Object Oriented Programming 6
	Slide 11: Difference between Procedural Programming and OOP
	Slide 12: Difference between Procedural Programming and OOP
	Slide 13: Difference between Procedural Programming and OOP
	Slide 14: What is Object Oriented Programming (OOPs)?
	Slide 15:  What is a Class?
	Slide 16: What is an Object
	Slide 17: What are the main features of OOPs?
	Slide 18: What is Encapsulation?
	Slide 19: What is Encapsulation?
	Slide 20: What is Abstraction?
	Slide 21: What is Abstraction?
	Slide 22: What are the main features of OOPs?
	Slide 23: What is Polymorphism?
	Slide 24: What is Polymorphism?
	Slide 25: What is Inheritance? What is its purpose?
	Slide 26: What are the main features of OOPs?
	Slide 27: What are access specifiers in OOPs?
	Slide 28:  What are the advantages and disadvantages of OOPs?
	Slide 29: Encapsulation?
	Slide 30: Encapsulation?
	Slide 31: What is Encapsulation?
	Slide 32: What is Encapsulation?
	Slide 33: Polymorphism
	Slide 34: Polymorphism
	Slide 35: Inheritance
	Slide 36: Inheritance
	Slide 37: Reusability
	Slide 38: Objects & Classes
	Slide 39: Objects & Classes 2
	Slide 40: Objects & Classes 3
	Slide 41: Objects & Classes 4
	Slide 42: Constructor
	Slide 43: Constructor  2
	Slide 44: Constructor  3
	Slide 45: Set and Get Methods
	Slide 46: Garbage Collection
	Slide 47: Finalizers
	Slide 48: Finalizers 2
	Slide 49: Finalizers 3
	Slide 50: Inheritance
	Slide 51: Inheritance 2
	Slide 52: Inheritance 3
	Slide 53: Inheritance 4
	Slide 54: Inheritance 5 (Note)
	Slide 55: Inheritance 6
	Slide 56: Inheritance 7
	Slide 57: Inheritance 8
	Slide 58: Inheritance 9
	Slide 59: Inheritance 10
	Slide 60: Inheritance 11
	Slide 61: Inheritance 12
	Slide 62: Inheritance 13
	Slide 63: Inheritance 14
	Slide 64: Inheritance 15
	Slide 65: Inheritance 16
	Slide 66: Inheritance 17
	Slide 67: Polymorphism
	Slide 68: Polymorphism 2
	Slide 69: Polymorphism 3
	Slide 70: Polymorphism 4
	Slide 71: Polymorphism 5
	Slide 72: Polymorphism 6
	Slide 73: Polymorphism 9
	Slide 74: Packages
	Slide 75: Packages 2
	Slide 76: Packages 3
	Slide 77: Packages 4
	Slide 78: Packages 5
	Slide 79: Exception Handling
	Slide 80: Exception Handling 2
	Slide 81: Exception Handling 3
	Slide 82: Exception Handling 4
	Slide 83: Exception Handling 5
	Slide 84: Exception Handling 6
	Slide 85: Exception Handling 7
	Slide 86: Exception Handling 8
	Slide 87: Exception Handling 9
	Slide 88: Exception Handling 10
	Slide 89: Exception Handling 11
	Slide 90: Exception Handling 12
	Slide 91: Exception Handling 13
	Slide 92: OO programming (Abstract Classes)
	Slide 93: OO programming (Abstract Classes) 2
	Slide 94: Generic Programming and Methods
	Slide 95: Generic Programming and Methods 2
	Slide 96: Generic Programming and Methods 3
	Slide 97: OO programming (Interfaces)
	Slide 98: OO programming (Interfaces) 2
	Slide 99: OO programming (Interfaces) 3
	Slide 100: OO programming (Interfaces) 3
	Slide 101: OO programming (Interfaces) 4
	Slide 102: OO programming (Interfaces) 5
	Slide 103: OO programming (Interfaces) 6
	Slide 104: OO programming (Interfaces) 7
	Slide 105: OO programming (Interfaces) 8
	Slide 106: OO programming (Interfaces) 9
	Slide 107: OO programming (Interfaces) 10
	Slide 108: OO programming (Interfaces) 11
	Slide 109: OO programming (Interfaces) 12
	Slide 110: OO programming (Interfaces) 13
	Slide 111: OO programming (Interfaces) 14
	Slide 112: OO programming (Interfaces) 16
	Slide 113: Data base Programming
	Slide 114: Data base Programming 2
	Slide 115: Data base Programming 3
	Slide 116: Data base Programming 4
	Slide 117: Data base Programming 5
	Slide 118: Data base Programming 6
	Slide 119: Data base Programming 7
	Slide 120: Data base Programming 8
	Slide 121: Data base Programming 9
	Slide 122: Data base Programming 10
	Slide 123: Data base Programming 11
	Slide 124: Data base Programming 12
	Slide 125: Data base Programming 13
	Slide 126: Data base Programming 14
	Slide 127: Data base Programming 15
	Slide 128: Data base Programming 16
	Slide 129: Data base Programming 17
	Slide 130: Data base Programming 19
	Slide 131: Data base Programming 20
	Slide 132: Network Programming
	Slide 133: Network Programming2
	Slide 134: Network Programming3
	Slide 135: Network Programming4
	Slide 136: Network Programming5
	Slide 137: Network Programming6
	Slide 138: Network Programming7
	Slide 139: Network Programming8
	Slide 140: Network Programming9
	Slide 141: Network Programming10
	Slide 142: Network Programming11
	Slide 143: Network Programming12
	Slide 144

