Some eqestoriosinsubjector ofinear Algebra With Application
Q_{1} / If we have these systems of the linear equation

$$
\begin{aligned}
& 3 x-y=4 \\
& -4 x+2 y=-6
\end{aligned}
$$

Find all: 1) Solve the systems by used Substitution method
2) Rank of A by used normal form transformation way.
$\mathbf{Q}_{2} /$ Solve this system of the linear equation by using gramer method.

$$
\begin{aligned}
& x_{1}-2 x_{2}+3 x_{3}=-2 \\
& x_{2}-2 x_{3}=3 \\
& -x_{1}+2 x_{2}-2 x_{3}=1
\end{aligned}
$$

$\mathbf{Q}_{3} /$ In \mathbf{Q}_{3} find $\mathbf{A}^{-\mathbf{1}}$ by used elementary transformation
$\mathbf{Q}_{4} /$ Solve these systems of the linear equation by using gramer method.

$$
\begin{array}{ll}
& 2 x_{1}+x_{3}=2 \\
\text { if } & x_{1}-x_{2}-2 x_{3}=3 \\
& 2 x_{2}-3 x_{3}=1
\end{array}
$$

$\mathbf{Q}_{5} /$ In \mathbf{Q}_{1} find A^{-1} by used elementary transformation.
Q_{6} / If we have these systems of the linear equation:

$$
\begin{aligned}
& 3 x+2 y=9 \\
& 2 x-y=3
\end{aligned}
$$

Find all: 1) Solve the systems by used elimination method.
2) Rank of A by used canonical form transformation way.
$Q_{7} /$ If we have these systems of the linear equation

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=2 \\
& 3 x_{1}-3 x_{2}=6
\end{aligned}
$$

Find all: 1) Solve the systems by used Substitution method
2) A^{-1} by used elementary transformation
$\mathbf{Q}_{8} /$ Solve this system of the linear equation by using inverse method.

$$
\begin{aligned}
& 2 x_{1}+x_{2}-3 x_{3}=3 \\
& -x_{1}+2 x_{2}=2 \\
& x_{1}+3 x_{2}-x_{3}=1
\end{aligned}
$$

$\mathbf{Q}_{9} /$ In $\mathbf{Q}_{\mathbf{2}}$ find Rank of \mathbf{A} by used normal form transformation way.
$\mathbf{Q}_{10} /$ If $\lambda_{1}=-2, \lambda_{2}=-3$ and $C=\left[\begin{array}{ll}a & -4 \\ b & -6\end{array}\right]$ find all:
The value of (a and b)
1- Eigenvector of \mathbf{C}.
$\mathbf{Q}_{11} /$ Let $K=\left[\begin{array}{lll}3 & 2 & 4 \\ 1 & 1 & 1 \\ 4 & 3 & 3\end{array}\right]$, Find K^{-1} by using elementary transformation.
$\mathbf{Q}_{12} /$ If $F=\frac{1}{5}\left[\begin{array}{cc}4 & 3 \\ -3 & 4\end{array}\right]$ is (\mathbf{F}) orthogonal matrix or not?
$\mathbf{Q}_{13} /$ Solve this system of the liner equations by using Gramar method.

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{3}=4 \\
& x_{1}+4 x_{2}+4 x_{3}=-1 \\
& 2 x_{1}+6 x_{2}+7 x_{3}=1
\end{aligned}
$$

$\mathbf{Q}_{14} /$ If the system of the liner equations has $\begin{aligned} & x_{1}-x_{2}+2 x_{3}=-1 \\ & x_{1}+x_{2}+x_{3}=3\end{aligned}$ find all:

1) Solve this system by using elimination method.
2) Find rank of (A) by using normal form transformations.

Q $_{15} /$ In this information of (10) observations:

$$
\sum_{i=1}^{10} x_{i}=34 \quad, \sum_{i=1}^{10} x_{i}^{2}=142 \quad, \sum_{i=1}^{10} y_{i}=41 \quad, \quad \sum_{i=1}^{10} x_{i} y_{i}=136
$$

Find the estimated equation of the simple linear regression.
$Q_{16} /$ If A and B are two orthogonal matrix show that $(A B)$ is orthogonal.
$\mathbf{Q}_{17} /$ Find the eigenvalue $\boldsymbol{\&}$ eigenvector of \mathbf{A} if $A=\left[\begin{array}{cc}6 & 2 \\ 10 & 5\end{array}\right]$
$\mathbf{Q}_{18} /$ Is matrix B is orthogonal matrix or not? If $B=\left[\begin{array}{cc}5 / 13 & -12 / 13 \\ 12 / 13 & 5 / 13\end{array}\right]$
$Q_{19} /$ From the following data:

X	2	4	6	8	10	7
Y	3	1	7	5	9	8

Find the estimated equation of the regression line.

