Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

Lec-8-		Insertior	IS		and		delet	ions
Extra base	e pairs may be	e added or	deleted f	rom the	DNA of a g	gene. Th	ne numb	er of
bases can i	range from a f	ew to thou	sands. Ins	sertions	and deletion	s of one	or two b	bases
or multiple	es of one or t	wo cause f	frameshif	ets (shift	the reading	frame).	. These	can
have deva	stating effect	s because 1	the mRN	A is tra	nslated in n	ew gro	oups of	three
nucleotide	s and	the	protein	being	produced	may	be use	eless.
	Rea Codon 1	ding fram	ne in mR Coc	NA ^{Frar}	ne-shift Mu Codon 4	itations		
Normal	A C A	C G	C A	c U	сс	с		
[Amino acid 1	Amino acid	2 <mark>Ami</mark>	no acid 3	Amino acid	4		
	Codon 1	Codon	2 Co	don 3		_		
Mutant	A C A	C G	CA	C U	сс	С		

Reading frame is shift one base infront

3	Original DNA code for an amino acid sequence.
DNA -	-CATCATCATCATCATCATCAT
bases	
	His H His H His H His H His H His
	T
	Amino acid
	Deletion of a
	A single nucleotide.
	ċ Ă † ċ Ă † ċ Ă † ċ Ă † ċ Ă † ċ Ă † ċ
	- His His His Lou Ile Ile Ile
	Incorrect amino acid sequence which
	may produce a malfunctioning protein.
	Extensive misserise

Amino acid 1 Amino acid 2 Amino acid 3

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

Insertion mutation	
Original DNA code	e for an amino acid sequence.
	tcatcatcatcat
His - Hi	IS HIS HIS HIS HIS HIS HIS
Amino acid	Insertion of a single nucleotide.
CATCA	ATCATACATCATCATCA
	Incorrect amino acid sequence, which may produce a malfunctioning protein.
	Extensive missense

2-Induced mutation

Induced mutations on the molecular level can be caused by:

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

Physical agent				
Physical agent	Effect			
Ionizing radiation	 -breaks in one or both strands (can lead to rearrangements, deletions, chromosome loss, death if unrepaired; this is from stimulation of recombination) -damage to/loss of bases (mutations) -crosslinking of DNA to itself or proteins 			
UV radiation	pyrimidine dimers in DNA			

Radiation •

Ultraviolet radiation (nonionizing radiation). Two nucleotide bases in DNA – cytosine and thymine – are most vulnerable to radiation that can change their properties. UV light can induce adjacent pyrimidine bases in a DNA strand to become covalently joined as a pyrimidine dimer

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

chromosomal aberrations or chromosomal mutations

Definition:

 Abnormalities ~ in chromosomal structure (chromosome aberration) & changes in chromosome number (aneuploidy / euploidy)

The changes in the genome involving a chromosome or part of a chromosome are called as **chromosomal aberrations** or **chromosomal mutations**. Mutation are observed in all organisms from bacteria to man and arise all of a sudden. They may be dominant or recessive, sex-linked or

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

autosomal, germinal or somatic, lethal or non-lethal possibly because they disturb the genic balance

Chromosome	Alterations in
aberration	chromosome
Structural change	number
Inversion	(Polyploidy)
Duplication	Aneuploidy
Translocation	

They are heritable changes and are of following types-

A. Changes in structure of chromosomes

1-Change in number of genes (Addition or Deletion)

2- Rearrangement of genes (Inversion or Translocation)

B-Changes in number of chromosomes

1-Change in number of part of chromosome set (Aneuploidy)

2-Change in number of entire chromosome set (Haploidy or

Polyploidy)

STRUCTURAL CHANGES IN CHROMOSOMES

The structural changes in chromosomes which appear phenotypically are known as chromosomal mutations or aberrations.

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

1. Deficiency or Deletion.

It involves the loss or absence of a part of chromosome involving one more genes. Genic or balance is usually disturbed affects this and the If phenotype. deletion occurs in the chromosome of gametes, it will be

transmitted to the next generation.

Deletion can be terminal or intercalary.

Terminal deletion involves loss of chromosome segment from its one end. Due to this, one of the paired chromosome appears to be longer than the other.

Intercalary deletion involves loss of intermediate chromosome segment. Due to this, the normal chromosome forms a loop near the deleted region of its homologue as only identical regions pair with each other. An interesting example of deletion in humans is *Cri du chat syndrome*, where the short arm of chromosome 5, i.e. 5p (p means short arm; q is long arm) is deleted. Individuals having this syndrome have a distinctive cat-like cry, are mentally retarded, moon face, low set ears and small head (*microcephally*).

Biology Dept.3rd stage

Asst. Professor. Dr. Kazhal M. Sulaiman

Deficiencies (al	ka Deletions)
 A chromosomal deficient chromosome breaks and 	ncy occurs when a d a fragment is lost
$\begin{array}{c} 4 & 3 & 2 & 1 & 1 & 2 & 3 \\ & & & & & & & & & & & & & & & & & & &$	4 3 2 1 1 2 3 Two breaks and of outer pieces (Lost and degraded) 4 1 1 2 3 (Lost and degraded) 4 1 1 2 3 (Lost and degraded)
(a) Terminal deficiency	(b) Interstitial deficiency
Figure 8.3	

- Deletion generally produce striking genetic and physiological effects.
- When homozygous, most deletions are lethal, because most genes are necessary for life and a homozygous deletion would have zero copies of some genes.
- When heterozygous, the genes on the normal homologue are hemizygous: there is only 1 copy of those genes.

