

University of Salahaddin, Erbil, College of Agricultural Engineering Sciences, Department of Soil and Water

Subject: Experimental Design and Analysis

Course Book - For ($\mathbf{3}^{\text {rd }}$ year students)

Lecturer's name: Proof. Dr. Akram Othman Esmail

B.Sc. 1980 University of Sulaimani

MSc. 1986 University of Salahaddin
PhD. 1992 University of Baghdad
Academic Year: (2022-2023), Fall semester.
Course Book

1. Course name	Fall semester 2022-2023
2. Lecturer in charge	Prof. Dr. Akram Othman Esmail
3. Departmen t/ College	Soil and Water, Agricultural Engineering Sciences
4. Contact	e-mail: akram.esmail@ su.edu.krd Tel: 07504672975

5. Time (in hours) per week	Theory: 2 hours per week Practical: 2 hours per week	
6. Office hours	6 hours/week	
7. Course code		
8. Teacher's academic profile	The main points 1- Teaching 2- Doing scie 3- Member of departmen 4- Supervisin 5- Contributi either as a 6-Evalution Iraqi and othe 8- Supervisin students, Soil 9-Doing statis	my acad Sc. MSc tific rese some sci (15) Ph. g in 170 nember or numerou countries students nd Water ical analy
$9 .$ Keywords	Experimental designs, Principles of experimental design, Randomization, relative efficiency ,Multiple range tests.	
1. Course name		Practica
2. Lecturer in charge		Lect. Kh
3. Department/ College		Soil and Sciences
4. Contact		e-mail: Tel: (07
5. Time (in hours) per week		Practica
6. Office hours		$6 \mathrm{hr} /$ we
7. Course code		
8. Teacher's academic profile		BSc.

9. Keywords	Experimental units, Designs, Multiple comparison tests.

10. Course overview:

Experimental design and Analysis regard as applied statistics, which includes different design and tests. Selecting the suitable design and test in investigations leads to increase in accuracy of data. The experimental design uses in different field and specializations like agricultural sciences, biological sciences, medical sciences economical sciences...etc. During this course we must refer to the main designs, types of experiments and multiple comparison tests. It is necessary to explain basic terms and steps in experimental design and analysis. Selecting the suitable multiple range test is necessary depending of the type or nature of the research. comparison between designs depending on their efficiency and uses in agricultural experiments and researches.

The application of the studied experimental design in research projects of $4^{\text {th }}$ year students and then conducting statistical analysis for their results using statistical programs like SPSS, SAS and Stat graph.......etc.

Explaining the importance of this subject and its application in different fields especially in agricultural sciences and biological sciences.

Finally, it is necessary to throw light on the role of experimental design and analysis for the staff of agriculture research centers in Kurdistan rejoin.

11. Course objective:

Goals of the course or Goals of studying Experimental Design and Analysis:
The main goals of studying the above subject can be summarize as follow:
1-Studding the basic terms in experimental design and analysis.
2-Studding the basic principles of experimental design then explaining the role of them in decreasing experimental error.

3-To learn the steps for construction complete randomized design (CRD).

4-Studding the steps for construction complete randomized block design (RCBD).
5-To explain the role of blocking and direction on blocks in decreasing experimental error. 6-Comparison between CRD and RCBD, and why RCBD called agricultural design.

7-To study the steps for construction Latin square design, and then why this design is not widely uses in agricultural experiments and researches.

8-Comparison between the mean of treatments in the laboratory and field experiments using different multiple comparison tests.

9-Comparison between simple experiments and factorial experiments.
10- Steps for construction of CRD, RCBD and Latin square design LSD in case of factorial experiments.

11-To compare between factorial experiments and Split Plot Design.
12-Comparison between systematic and Randomized designs.

12. Student's obligation:

The student must have an important role:
1- The students must contribute in the scientific discussions in the class or teaching hall.

2- The students must know the importance of quizzes, homework's, reports and exams.
3- It is necessary to contribute the student in presentation a scientific subject.
13. Forms of teaching:

There are different forms of teaching:
1-Datashow and power point.
2- White board.
3-Lectures.

14. Assessment scheme

Breakdown of overall assessment and examination:
1-Monthly exam 10marks.
2-Quizzes 3 marks.
3-Present and contributing in scientific discussions 1 marks.

4-Seminar 1 marks.

15. Student learning outcome:

Explaining and training on selecting the suitable design and application it at summer training and research project. Doing statistical analysis using hand method or or statistical programs.
The practical part includes the application on different designs and multiple comparison tests: $1^{\text {st }}$ week introduction and symbols. $2^{\text {nd }}$ week construction on CRD practically and solving some examples of CRD . $3^{\text {rd }}$ and $4^{\text {th }}$ week solving examples about multiple Comparison tests. $5^{\text {th }}$ and $6^{\text {th }}$ week examples about RCBD and calculating missing value. $7^{\text {th }}, 8^{\text {th }}$ and $9^{\text {th }}$ week applications and examples about Latin Square Design, calculating Missing value and relative efficiency between designs. $10^{\text {th }}, 11^{\text {th }}$ and $12^{\text {th }}$ weeks applications and examples about factorial experiment. $13^{\text {th }}$ and $14^{\text {th }}$ weeks solving examples about split plot design.
16. Course Reading List and References:

* Brown, R.B. (1990). Experimental Design and Analysis. USA.

Clark, G.M. (1980). Statistical and Experimental Design, 2nd ed., UK.
Clewer, A. G. and D. H. Scarisbrick. (2001). Practical Statistics and Experimental Design for plant and crop science.

* Cochran, W. G. and Cox, D. R. (1957). Experimental Design, 2nd ed., Johan Wiley and Sone, Inc., New York, USA.
* Journal of the American Statistical Association No. 411, 442 and 443., (1998).

Kassab, J. Y., (1982). Experimental Design and Statistical Analysis Course. North Waley University.

* Kuehl, R. O. (2000). Design of Experiments .2nd ed.

Locioru, E. L., Warren, H. L. and A. G. Clark (1962). Field plot
Technique. USA.

* Li. C.C. (1964). Introduction to Experimental Statistics. New York.
* Milton, J. S. and Arnold, J. C. (1995). Introduction to Probability and Statistics, 3rd ed.,

Mc Graw-Hill Book company. Singapore.

* Miller, R. G. (1998). Beyond ANOVA Basics of Applied Statistics .CRD press LIC, USA.
* Montgomery D.C. (1976). Design and Analysis of Experiments.
*Oehlert G.W. (2014) A first course in design and analysis of experiment.USA. $2^{\text {nd }}$ ed.
* Rossello, J. M. and de Gorostiza M. F. (1993). Technical Guidelines for field variety Trials.
*Seltman H.J. (2014) Experimental design and analysis.USA. $2^{\text {nd }}$ ed.
احمد, ليلى عزيز.(2002) مقارنة طر ائق تققير القيم المفقودة في تصميم قطاعات العشو ائية الكاملة. رسالة الماجستير / قسم الاحصاء/ جامعة صلاح الدين.

الحقني ، مسعد زكي (1982) تصميم وتحليل التجارب الحقلية. جامعة صلاح الدين.
الدحمداوي، فاضل مصلح و مؤيد اليونس .(2000). التجارب الزراعية التصميم والتحليل. جامعة بغادد، العراق.

الراوي، خاشع محمود الراوي (1980) تصميم وتحليل التجارب الزراعية. مطابع جامعة موصل.
الِساهوكي، مدحت و كريم محمد و هيب (1990) تطبيقات في تصميم وتحليل التجارب.
الشواني، أميد صابر عبداله (2002) دراسة توفر شروط تحليل التباين لبعض التجارب التطبيقية ذات النموذج الثبت. رسالة الماجستير في الاحصاء، كلية الادارة و الاقتصـاد، جامعة صلاح الدين-أربيل (بأنشراف د. أكرم عثمان إسماعيل).

منهم وتحليل البيانات الاحصائية. SPSS الز عبي، محمد بلال و عباس الطلافي.(2004) النظام الاحصائي جامعة الدول العربية .(1993). دليل مشاكل تصميم وتحليل التجارب في البحوث الزر اعية. المنظمة العربية للتنتية الزرراعية.

إسماعيل، أ. ع.، عبدالرحيه، ع. م. و قاسم، ع. ع. (2003) تصميم التجارب وتحليلها. الجزء الاول. احمد, ليلى عزيز (2002) مقارنة طر ائق تقبير القيم المفقودة في تصميم قطاعات العشو ائية الكاملة. رسالة الماجستير / قسم الاحصاء/ جامعة صلاح الدين.

حمد، أختر صابر (2000)در اسة مقارنة الطريقة المعلمية واللامعلمية لتحليل التغاير بأستخدام المحاكاةز رسالة

التجارب. جامعة المستتصرية. طرق الأحصاء وتصميم التجارب. جامعة الإسكندرية	الماجستير / قسم الاحصاء/ جامعة صلاح الاين. خمس، فيس سبع (1984) المفاهيم الأساسية في تص بشير، محمد علي ومحمد ممدوح (1983). مقـمة في
17. The Topics:	Lecturer's name
1-Introduction (definition of experimental design, Basic terms in experimental design,.).In this week the students will learn definition and steps of experimental design in additional to some scientific terms.	Dr. Akram Othman Esmail (2) h. 7/9/2022
1-Example about symbols in experimental design	Khazin S. Rajab (2) h. 8,9,2022
2-Basic principles of experimental design, Classification of experimental design in to two types systematic and random design. The goals of these topics to study the role of principles of experimental design in accuracy of data and comparison between systematic and random designs.	Dr. Akram Othman Esmail (2) hrs $14 / 9 / 2022$
2- Testing accuracy of data and comparison between systematic and random design practically.	Khazin S. Rajab (2) h. 15,9,2022
3-Complete randomized design (CRD), Multiple comparison tests. The goals are:1-to learn the construction of this design.2-When and where this design can be use?	Dr. Akram Othman Esmail (4) h. $22 / 9 / 2022$
3- Examples on CRD in case of equal and unequal replicates	Khazin S. Rajab (2) h. 23,9,2022
4-Comparison between different tests then	Dr. Akram Othman Esmail (4) h.

selecting the suitable one for statistical analysis.	28/9/2022 and 5,10,2022
4-Practical examples about multiple comparison tests.	Khazin S. Rajab (2) h. 29,9,2022 and 6,10,2022
5-Randomized block design. The goals are: 1-Blocking the uniform experimental units in a same block. 2-Limiting the direction of blocks.	Dr. Akram Othman Esmail (2) h 12/10/2018
5-Solving examples related to field experiments	Khazin S. Rajab (2) h. 13,10,2022
6--Comparison between CRD and RCBD.	Dr. Akram Othman Esmail (2) h. 19/10/2022
6-Comparison between CRD and RCBD practically in the field and lab.	Khazin S. Rajab (2) h. 20,10,2022
7-Missing value in CRD, causes of missing value and its effect on statistical analysis.	Dr. Akram Othman Esmail (2) h. 26/10/2022
7-Solving some examples which are having missing value.	Khazin S. Rajab (2) h. 27,10,2022
8-Missing value in RCBD, causes of missing value and its effect on AANOVA table statistical analysis.	Dr. Akram Othman Esmail (2) h. $2 / 11 / 2022$

8-Solving some examples which are having missing value then adjusting ANOVA table and SS treatment.	Khazin S. Rajab (2) h. 3,11,2022
9-Latin Square Design .In this topic the students will learn the reasons of rarely use of this design in the field experiments.	Dr. Akram Othman Esmail (2) h. 9/11/2022
9-Examples about LSD	Khazin S. Rajab (2) h. 10,11,2022
10-Relative efficiency between designs	Dr. Akram Othman Esmail (2) h. 16/11/2022
10- Solving Practical examples about relative efficiency.	Khazin S. Rajab (2) h. 17,11,2022
11-Theoritical exam	23,11,2022
Practical exam	24,11,2022
12-Factorial experiments, Basic terms, Factorial experiment using CRD, RCBD and LS. The goals include: 1- Explaining the interaction effects of treatments. 2-Construction factorial experiments using different designs.	Dr. Akram Othman Esmail (2) hrs $30 / 11 / 2022$
13-Practical examples	Khazin S. Rajab (2) h. 1,12,2022
14-Split plot design. The goals are:	Dr. Akram Othman Esmail (2) h. 7,12,2022

Means	$\mathrm{t}_{1}=3$	$\mathrm{t}_{2}=3.5$	$\mathrm{t}_{3}=4$	$\mathrm{t}_{5}=4.5$	$\mathrm{t}_{4}=10$	
$\mathrm{t}_{4}=10$	$10-3=7^{*}$	$10-$ $3.5=6.5^{*}$	$10-4=6^{*}$	$10-$ $4.5=5.5^{*}$	$10-10=0$	
$\mathrm{t}_{5}=4.5$	$1.5 \mathrm{n} . \mathrm{s}$	$1.0 \mathrm{n} . \mathrm{s}$	$0.5 \mathrm{n} . \mathrm{s}$	0		
$\mathrm{t}_{3}=4$	$1.0 \mathrm{n} . \mathrm{s}$	$0.5 \mathrm{n} . \mathrm{s}$	0			
$\mathrm{t}_{2}=3.5$	0.5	0				
$\mathrm{t}_{1}=3$	0					

2-Type two: Give the reasons for the following:
1 - RLSD is more accurate than $\operatorname{LSD} \propto$. 2-LSD (3*3) is not allowed.
Typical answer:
1-Because RLSD ∞ depends on four parameters (df error, df treat. Calc.F ,level of significance) while, $\mathrm{LSD} \infty$ depends on two parameters(df error and level of significance).

2-In Latin square design the df error must be $=6$ or more, but in the $\operatorname{LSD}(3 \times 3)$ the df error $=2$.

3-Type three: Differences or comparison type:
a-Compare between CRD and RCBD.
b-Compare between Duncan's test and Dunnett's test.
Typical answer:
a-

CRD	RCBD
1-It uses in laboratory ,pot ,green house experiments.	1-It uses widely in field experiments.

| 2-The experimental units are uniform. | 2- The experimental units are not
 uniform. |
| :--- | :--- | :--- |
| 3-Includes randomization and replicates. | 3- Includes randomization and replicates
 and local control. |
| 4-ANOVA table includes treats and error. | 4-ANOVA table includes treats and error
 and blocks. |
| 5-It uses in case of equal and unequal
 replicates. | 5-It uses in case of equal replicates only. |
| 6-Missing value not causes difficulty in
 statistical analysis. | 6-Missing value causes difficulty in
 statistical analysis. |

b-

Duncan's test .	Dunnett's test.
1-There are more than one table values.	1-Thereis only one table value.
2-All possible comparisons could be done.	2-The comparison between treatments and control could be done.
3-Letters are using in comparison.	3-Letters are not use in comparison.
4-LSR $=\mathrm{SSR}^{*} \mathrm{Sx}^{-}$	4- DTvalue=tab.Dt $\alpha \sqrt{ } 2 \mathrm{MSE} / \mathrm{r}$

4-Type four: Schemes:
From the following schemes mention the types of designs:
$=\mathrm{LSD}$

A	B	C	D

(a) $=(\mathrm{RCBD})$	B	C	D	A
	C	D	A	B
	mb C 3	A	B	C

Type five :Mathematical type for factorial experiments:
Q^{I} : The laboratory experiment was conducted to test the effect of (3) levels of moisture (A factor) and (2) levels of temperature (B factor) on growth radius of fungi (cm) using (4) replicates and you are given the following information.
$1-\sum \mathrm{a}_{1} \mathrm{~b}_{1}=12 \quad \sum \mathrm{a}_{1} \mathrm{~b}_{2}=10 \quad \sum \mathrm{a}_{2} \mathrm{~b}_{1}=14 \quad \sum \mathrm{a}_{3} \mathrm{~b}_{1}=13 \quad \sum \mathrm{a}_{2} \mathrm{~b}_{2}=7$
2- \sum of A factor $=72 \quad 3$ - Total SS $=$ TCSS * $1.2 \quad 4-$ Tab. $t_{0.01}=2.88$
a - Complete ANOVA table $\quad b$ - Compare between $a_{2} b_{2}$ and $a_{1} b_{1}$ using $L S D_{0.01}$
c- From the following information:

	a_{1}	a_{2}
$\mathrm{~b}_{1}$	12	14
$\mathrm{~b}_{2}$	10	7

Calculate (Simple effects, main effects and interaction effect)
Steps for solving the example:

$$
\text { 1- } \sum \text { of } A \text { factor }=G=\sum a_{1} b_{1}+\sum a_{2} b_{1}+\sum a_{3} b_{1+} \sum a_{1} b_{2+} \sum a_{2} b_{2}+\sum a_{3} b_{2}
$$

2- $\quad 72=12+14+13+7+10+\sum a_{3} b_{2}$
3- $\sum a_{3} b_{2}=72-56=16$
preparing the table contains sum of treatment combinations ,levels of factors and factors.

Ministry of Higher Education and Scientific research

	a_{1}	a_{2}	a_{3}	
$\mathrm{~b}_{1}$	12	14	13	$\sum \mathrm{~b}_{1=39}$
$\mathrm{~b}_{2}$	10	7	16	$\sum \mathrm{~b}_{2}=33$
	$\sum \mathrm{a}_{1=22}$	$\sum \mathrm{a}_{2}=21$	$\sum \mathrm{a}_{3=29}$	

$\mathrm{CF}=(\mathrm{G})^{2} / \mathrm{abr}$
$\mathrm{CF}=(72)^{2} / 2 * 3 * 4=(5184) / 24=216$
$\mathrm{SSA}=\left[\left(\sum \mathrm{a} 1\right)^{2}+\left(\sum \mathrm{a} 2\right)^{2}+\left(\sum \mathrm{a} 3\right)^{2} \div \mathrm{br}\right]-\mathrm{CF}$
$\mathrm{SSA}=\left[\left(\sum 22\right)^{2}+\left(\sum 21\right)^{2}+\left(\sum 29\right)^{2} \div 2 * 4\right]-216$

SSA $=[(484+441+841) \div 8]-216=4.75$
$\mathrm{SSB}=\left[\left(\sum \mathrm{b} 1\right)^{2}+\left(\sum \mathrm{b} 2\right)^{2} \div \mathrm{ar}\right]-\mathrm{CF}$
$\mathrm{SSB}=\left[\left(\sum 39\right)^{2}+\left(\sum 33\right)^{2} \div 3 * 4\right]-216=217.5-216=1.5$
$\mathrm{SSAB}=\left\{\left[\left(\sum \mathrm{a} 1 \mathrm{~b} 1\right)^{2}+\ldots \ldots \ldots \ldots . .+\left(\sum \mathrm{a} 3 \mathrm{~b} 2\right)^{2} \div \mathrm{r}\right]-\mathrm{CF}\right\}-\mathrm{SSA}-\mathrm{SSB}$
$\mathrm{SSAB}=\left\{\left[(12)^{2}+\ldots \ldots \ldots \ldots+(16)^{2} \div 4\right]-216\right\}-4.75-1.5$
$\mathrm{SSAB}=6.25$
TCSS $=\mathrm{SSA}+\mathrm{SSB}+\mathrm{SSAB}=4.75+1.5+6.25=12.5$
TotalSS=TCSS* 1.2

Total ss=12.5*1.2=15 Error SS=TotalSS-SSA-SSB-SSAB
Or Error SS=TotalSS-SSA-SSB-SSAB=Error SS=TotalSS-(SSA+SSB+SSAB)
Error SS=TotalSS-TCSS==15-12.5=2.5

S.O.V.	DF	SS	MS	Calc.F	Tab.F
TC		12.5			
A	$\mathrm{a}-1=3-1=2$	4.75	$(4.75 / 2)=2.38$	$(2.38 / 0.14)=17$	
B	$\mathrm{b}-1=2-1=1$	1.5	$(1.5 / 1)=1.5$	$(1.5 / 0.14)=10.7$	
AB	$(\mathrm{a}-1)(\mathrm{b}-1)=(3-$ $1)(2-1)=2$	6.25	$(6.25 / 2)=3.13$	$(3.13 / 0.14)=22.3$	
Error	$\mathrm{ab}(\mathrm{r}-1)=3 * 2(4-$ $1)=18$	2.5	$(2.5 / 18)=0.14$		
Total	abr-1=3*2*4-1=23	15			

$\mathrm{LSD}_{\mathrm{AB} .01}=$ tab.t. 01 $* \sqrt{ } 2 \mathrm{MSE} / \mathrm{r}==2.88 * \sqrt{ }(2 * 0.14) / 4==2.41$
Mean of $\left.\mathrm{a}_{1} \mathrm{~b}_{1}=\sum \mathrm{a}_{1} \mathrm{~b}_{1}\right) /{ }_{\mathrm{r}=12 / 4=3}$
Mean of $\mathrm{a}_{2} \mathrm{~b}_{2}=\left(\sum \mathrm{a}_{2} \mathrm{~b}_{2}\right) / \mathrm{r}$
$==7 / 4=1.75$

$3-1.75=1.7$

The difference between them is less than calculated $\operatorname{LSD}_{\mathrm{AB} .01}$ (2.41), it means there is no significance difference between them.

	a_{1}	a_{2}	Simple effects
b_{1}	12	14	$12-14=-2$
$\mathrm{~b}_{2}$	10	7	$10-7=3$
Simple effects	$12-10=2$	$14-7=7$	

From the following information calculate missing value:

$\mathrm{A}=4$	$\mathrm{~B}=5$	$\mathrm{D}=5$	$\mathrm{E}=6$	$\mathrm{C}=3$
$\mathrm{C}=6$	$\mathrm{D}=7$	$\cdots \cdots \cdots$	$\mathrm{~B}=8$	$\mathrm{E}=6$
$\mathrm{D}=6$	$\mathrm{~A}=7$	$\mathrm{C}=4$	$\mathrm{D}=5$	$\mathrm{~B}=3$

Steps to solve this example is as follow:
Sum of block which contains missing value $=6+7+8+6=27$
Sum of treatment (A)which contains missing value $=4+7=11$
$\mathrm{G}=4+5+5+6+3+6+7+8+6+6+7+4+5+3=75$

$$
\begin{aligned}
& \text { rR+tT-G } \\
& \mathrm{X}_{\mathrm{ij}}=------------------------------ \\
& \text { (t-1)(r-1) } \\
& 3 * 27+5 * 11-75 \\
& \text { Xij }_{\mathrm{ij}}=-------------------------------\quad=7.63
\end{aligned}
$$

5-1)(3-1)

1. Compositional: In this type of exam the questions usually starts with Explain how, What are the reasons for...?, Why...?, How....?
With their typical answers
Examples should be provided

18 Extra notes:
Nothing.
19- Peer review Prof. Dr. Esmail Mustafa Maulood. and
Approved by Prof. Akram Othman Esmail.

Ministry of Higher Education and Scientific research

