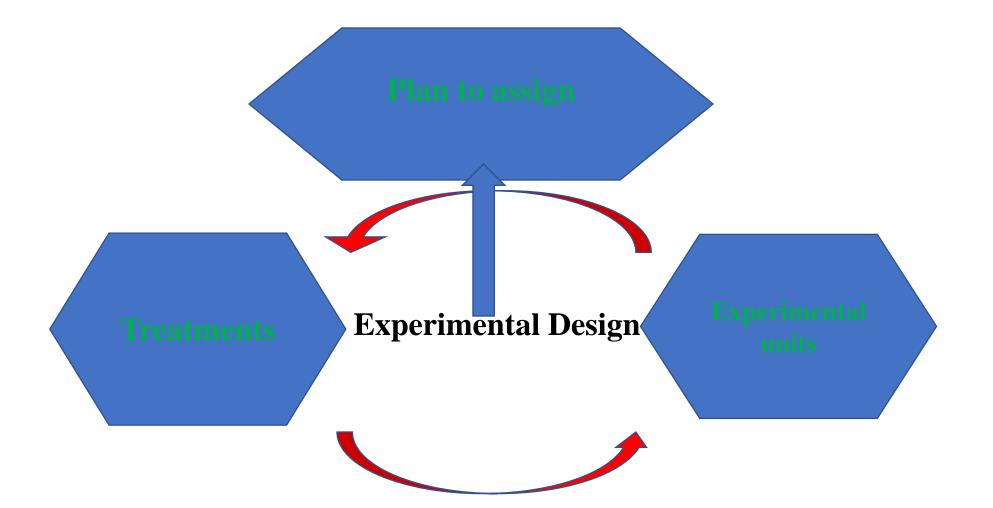
University of Salahaddin College of Agricultural Engineering Sciences Dept. of Soil and Water


Academic year 2023-2024 3rd year Students Fall Semester

Experimental Design and Analysis

Lect. Dr.Kazhin Sarbaz Rajab

Definition of experimental design:

It a part of biostatistics which refers to a plan for assigning subjects (treatment) to experimental condition and the statistical analysis associated with the plan.

The experimental design involves the following steps :

- 1- Formulation of a statistical hypothesis
- 2- Determination of independent variable (X) experimental conditions) to be used, the measuring or recording dependent variable (y).
- 3- limiting the requirements.
- 4- Selecting the suitable design for conducting the experiment.
- 5- Statistical analysis using suitable test

Basic terms in experimental design:

- 1- **Treatment** it is a condition under the control of the researcher like temp., moisture, amount of growth media...etc
- 2- Experimental unit: it is a smallest part in experiment which receives a treatment. Experimental unit may be human, small animal, large animal, pots, plant, Petri dish, tree......etc.
- 3- **Simple experiment**: it is an experiment which includes one factor like studying four levels of temp. on the number of bacteria the factor is temp.
- 4- Factorial experiment: it is an experiment which includes two factors or more.
- 5- **Replicate**: Each experiment unit per treatment is a replicate
- 6- Observation: the experiment unit may be includes one observation or more for example one experiment unit may be includes two or more observations.

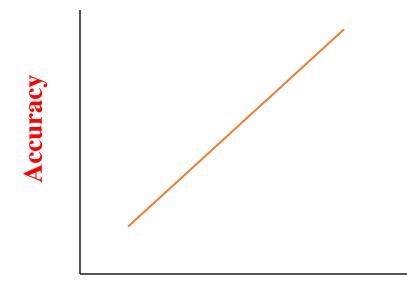
Principles of experimental design:

The Principles of experimental design includes: 1- Randomization. 2- Replication. 3-Local control

Functions of randomization:

The most important functions of randomization are:

1- To eliminate the effect of bias.

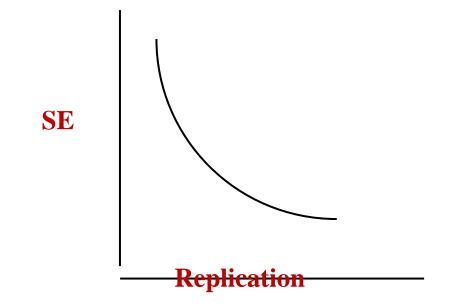

2-Protection from unusual events.

3- Error associate with adjacent experimental units are removed by randomization

Functions of replication:

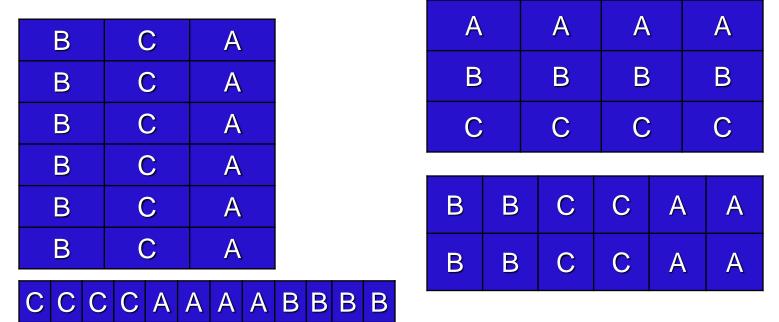
The function of replication is to reduce standard error (SE) or increasing accuracy of data or experiments.

Increase in replication causes increase in accuracy.



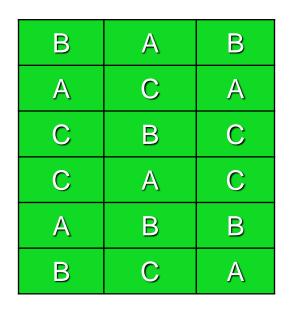
Replication

Why?


Because increase in replication causes decrease in standard error (SX⁻)

$$S \mathcal{X}^{-} = \sqrt{\frac{S^2}{n}} = \frac{S}{\sqrt{n}}$$

Classification of experimental designs:


In general the experimental designs can be divided in to two classes: 1- systematic nature designs as shown from the schemes below:

A,B,C= Treatments

2- Modern experimental design or (Random nature designs)

nature design: the following schemes represent some random design:

А	В	С	А
В	В	А	В
С	А	С	С

В	А	В	С	А	С
А	В	С	В	С	А

A,B,C= Treatments

Completely randomized design (CRD)

CRD: This Design can be use if environmental conditions are fairly uniform or experimental units are homogenous ,for this reason CRD can be use in :

- 1- Laboratory experiments.
 - 2-Green house experiments.
 - 3-Glass house experiments.
 - 4-Pot experiments.

Advantages of CRD:-

1- It is very simple design

2- It is a flexible design or there are no any restriction on the number of treatments or replication.

3- Statistical analysis is very easy.

- 4- It is used in case of equal or unequal replication
- 5- The missing value does not affect on the statistical analysis.

Disadvantages:

The disadvantage of CRD can be summarized as follows:

1- The experimental units must be homogenous.

- 2- It is used in laboratory experiment green house experiments and pot experiments.
- 3- It can not be used in field experiments.
- 4- It is less accurate than other designs.

Construction or layout of CRD:

The following steps are including for layout CRD

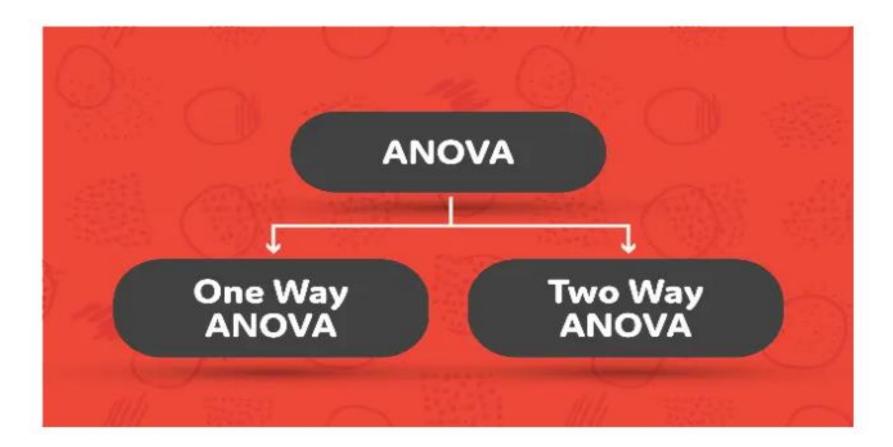
1- Preparing the requirements of the experiment like treatments and experimental units..... etc.

For example for studying the effect of 5 different temperatures (5, 10, 15, 20 and 25 C-) on growth radiuses (cm) of fungi using (4) replication. N= 5*4=20 (Petri dishes), because N= t*r, while

N= Number of experimental units , t = Number of treatments.

2- Number the experimental units from (1 to N) in a zigzag from.

3- Random assigning of experimental unit to treatments or assigning treatments randomly to experimental units as follow:


Statistical model: $X_{ij}=\mu + T_i + E_{iJ}$ $X_{ij}=$ value of any experimental unit. $\mu =$ General mean . $T_i =$ Treatment effect i = from 1 to I th treatment) $X_{ij}=$ the replications belong to a certain treatment.

In general the mathematical models can be divided in to two **models or types**: 1- Fixed effects model (Model I) 2- Random effects model (Model II)

Types of CRD:

- 1- CRD with equal replication.
- 2- CRD with unequal replication.
- 3- CRD with more than one observation.
- 4- Factorial CRD

Statistical analysis (ANOVA)Using SPSS program:

Equations

 $\frac{df = Degree \ of \ freedom}{df \ t = t - 1}$ $df \ t = t - 1 \quad , \quad df \ error = t \ (r - 1)$ $df \ total = n - 1 \ or \ [(t * r) - 1]$

 $\frac{SS = Sum \text{ of square}}{\text{Total SS} = \Sigma y_{ij}^2 - \text{C.F}}$

 $\underline{C.F} = \underline{Correlation \ factor}$

 $C.F = (G)^2 / t^*r$ Where:-G = summation of all values n = number of experimental units

$$SSt = \frac{\sum t 1^{2} + \sum t 2^{2} + \sum t 3^{2} + \sum t n^{2}}{r} - C.F$$

Equations

SS error = SS total - SS t

<u>Ms = mean square</u>

Mst = SSt / dft

Mse = SSe / dfe

Calculate F

Cal. F = Mst / Mse

We compare Cal. F with tab. F, if cal. F is equal or greater than tab. F, it means that there was a significant difference between them, and vice versa.

Exp./ A green house experiment was conducted at <u>*Plymouth university*</u>, <u>*Faculty of Science and Environment*</u> to test the effect of number of earthworm (0, 2, 4 and 8) earth worm/pot on nitrogen content (mg/g)of *Brassica rapi using* 3 replicates ,if you are given the following information , complete ANOVA table .

treats	r1	r2	r3	∑ treats
t1	2	3	4	9
t2	3	3	4	10
t3	4	3	4	11
t4	4	6	5	15

Total SS = $\Sigma y_{ij}^2 - C.F$ $\sum x_{ij}^2 = 2^2 + 3^2 + 4^2 + ... + 4^2 + 5^2 - (45)2/3 + 4 = 181 - 168.75 = 12.25$ $\sum t 1^2 + \sum t 2^2 + \sum t 3^2 + \sum t 4^2$

$$SSt = \frac{\sum t1^{2} + \sum t2^{2} + \sum t3^{2} + \sum t4^{2}}{r} - C.F$$

$$SS_{treat.} = \frac{9^2 + \dots + 15^2}{3} - 168.75 = 6.91$$

 SS_{Error} = Total SS – Treat.SS =12.25-6.91=5.34 Mst = SSt / dft = 6.91/3 = 2.30 $MSE = SSe / d_{fE} = 5.34/8 = 0.67$ Cal.F=2.34/0.67=3.43 From special statistical tables we obtain: Tab.F_(0.01,3,8)=7.59

S.O.V.	df	55	MS	Cal.F	Tab.F _{0.01}
Treatment	3	6.91	2.30	3.43 n.s	7.59
Error	8	5.34	0.67		
Total	11	12.25			

Since calculated F is less than Tab.F it means that there are no significance differences between treatments, or the earth worm not affected significantly on nitrogen content

Exp./ A green house experiment was conducted at <u>*Plymouth university*</u>, <u>*Faculty of Science and Environment*</u> to test the effect of 4 species of earthworm on Nitrogen % of *Brassica rapi using* 3 replicates ,if you are given the following information, complete ANOVA table, then test the significance of treatments.

treats	r1	r2	r3	∑ treats
t1	2	3	4	9
t2	3	3	4	10
t3	4	2	5	11
t4	7	6	7	20

Total SS = $\Sigma y_{ij}^2 - C.F$ $\sum x_{ij}^2 = 2^2 + 3^2 + 4^2 + \dots + 5^2 + 7^2 - (50)2/3 * 4 = 242 - 208.33 = 33.67$ = 242-(2500/12) = 242-208.33 = 33.67

$$SSt = \frac{\sum t1^2 + \sum t2^2 + \sum t3^2 + \sum t4^2}{r} - C.F$$

SS_{treat.} = $\frac{9^2 + \dots + 20^2}{3} - 208.33 = (702/3) - 208.33 = 25.67$

```
\begin{split} &SS_{Error} = Total \, SS - Treat. SS \; = 33.67-25.67 = 8.00 \\ &Mst = SSt / \, dft \\ &= 25.67/3 = 8.56 \\ &MSE = SSe / \, d_{f\,E} \\ &= 8/8 = 1 \\ &Cal.F = 8/1 = 8 \\ &From \; special \; statistical \; tables \; we \; obtain: \\ &Tab.F_{(0.01,3,8)} = 7.59 \end{split}
```

S.O.V.	df	55	MS	Cal.F	Tab.F _{0.01}
Treatment	3	25.67	8.56	8.56**	7.59
Error	8	8	1.00		
Total	11	33.67			

Since calculated F is more than Tab.F it means that there are significance differences between treatments, or the earth worm affected significantly on nitrogen content

Home work :

Example: A green house experiment was conducted at <u>*Plymouth*</u> <u>*university*, *Faculty of Science and Environment*</u> to test the effect of number of earthworm (0, 2, 4 and 8) earth worm/pot on leaf area (cm²)of *Brassica rapi using* 5 replicates ,if you are given the following information , complete ANOVA table ,then test the significance effect of earthworm on leaf area value.

Earthworm density	r ₁	r ₂	r ₃	r4	r ₅
t ₁ =0	60	65	70	75	80
t ₂ =2	80	90	70	85	75
t ₃ =4	90	100	100	112	96
t ₄ =8	110	112	120	121	114

Homework :

Example: A green house experiment was conducted at <u>*Plymouth*</u> <u>*university*, *Faculty of Science and Environment*</u> to test the effect of 4 species of earthworm (*Aporrecodea spp.*) on number of leaves /plant (*Brassica rapi*)using 5 replicates ,if you are given the following information , complete ANOVA table ,then test the significance effect of earthworm species on number of leaves at L.S =0.01.

Earthworm density	r ₁	r ₂	r ₃	r4	r ₅
t ₁ = control	3	4	5	5	3
t ₂ = <i>A. rosea</i>	5	5	6	5	7
t ₃ = <i>A.chlorotica</i>	7	8	7	8	9
t ₄ = <i>A. caliginosa</i>	15	15	13	15	14

Example ./ The Green house experiment was done at Plymouth university to study the effect of 5 species of earth worm on nitrogen concentration (mg/g dry matter of plant , Complete ANOVA table .

<i>Treatments</i>	<u> </u>	<u>r</u> 2	<u> </u>	<u> </u>	$\sum of t$
t ₁	12.3	13.1	12.9	13.2	51.5
t_2	14.6	15.5	13.5	14.2	57.8
$\bar{t_3}$	13.5	14.6	13.8		31.9
t_4	12.9	13.0	14.0	14.0	53.9
t	13.9	12.8	13.7		40.4
<u> </u>					G=235.5

No. of exp. Units (n) =
$$\Sigma ri$$
 =4+4+3+4+3=18
df_t= t-1=4 and df_t = Σri -1=18-1=17
C.F. =(235.5)²/18=3081.125
SST=[(12.3)²+(13.1)²+...+(13.7)²- **3081.125 =**10.50

$$SSt = \frac{\sum t1^2}{r_1} + \frac{\sum t2^2}{r_2} + \frac{\sum t3^2}{r_3} + \dots + \frac{\sum t5^2}{r_5} - C.F$$

$$SS_{t} = \frac{(51.5)^{2}}{4} + \frac{(57.8)^{2}}{4} + \frac{(31.9)^{2}}{3} + \frac{(53.9)^{2}}{4} + \frac{(40.4)^{2}}{3} - 3081.125$$

= 5.48

$$SS_E = SSTotal - SStreat = 10.5 - 5.48 = 5.02$$

ANOVA Table

S.O.V.	df	SS	MS	Cal.F	Tab.F
Treatment	4	5.48	1.37	3. 51 ^{n.s}	5.205 _(0.01)
Error	13	5.02	0.39		
Total	17	10. 5			

Home work: The study was conducted to test the effect of [5]levels of iron on number of active nodules/plant ,complete ANOVA table if you are given the following information ,then compare between treatments using $LSD_{0.01}$ and DMRT :

Treatments	r1	r2	r3	r4
t ₁ =0 mg/pot	4	5	4	6
t ₂ =2 mg/pot	5	7	7	8
t ₃ = 4mg/pot	6	7	9	9
t ₄ =6 mg/pot	10	12	14	14
t ₅ =8 mg/pot	7	8	8	9

A study was conducted to study the effect of 6 specie of Rhizobium ,on weight of active nodules/plant using 4 replicates. Complete .ANOVA table then compare between treatments using different tests

treats	r ₁	r ₂	r ₃	r ₄
t ₁	7	8	7	6
t ₂	6	5	6	5
t ₃	4	4	3	4
t ₄	3	3	3	2
t ₅	2	1	1	1
t ₆	1	2	2	1