University of Salahaddin College of Agricultural Engineering Sciences Dept. of Soil and Water

Academic year 2023-2024 3rd year Students Fall Semester

Experimental Design and Analysis L4

Lect. Dr.Kazhin Sarbaz Rajab

Latin Square Design (LSD)

Properties:

1- LSD can be use if the difference among experiment units is in two directions.

2- The number of treatments equal to number of blocks, (number of replication) and equal to number of columns

3- The number of treatments must be (4 or more) must donates as (4*4), (5*5) and the maximum number (8 or 12).

4- The dfe must be (six or more) at least, since decrease in dfe causes increase in Mse value then decrease in accuracy.

5- This design not widely use in the field because the increase in the number of treatments two times causes the increase in experimental units four times.

6- The relative efficiency of (LSD) is more than (CRD and RCBD).

Construction of LSD

Suppose we have 4 treatments and the experimental units are differ in two direction, in this case we must be using LSD design for construction

	C1	C2	C3	C4
R1	A (T1)	B (T2)	C (T3)	D (T4)
R2	B (T2)	C (T3)	D (T4)	A (T1)
R3	C (T3)	D (T4)	A (T1)	B (T 2)
R4	D (T4)	A (T1)	B (T2)	C (T3)

The treatments are located on experiment units by using special tables or by using alphabetic (A, B, C,) method, the treatments must be repeat once in Row and Column.

ANOVA table for Latin square design.

S.O.V	df	SS	MS	Cal. F
Treat		Same as RCBD		
Row		Same as RCBD		
Column	C – 1	$SSC = \frac{\Sigma C1^2 + \Sigma C2^2 + \Sigma C3^2 + \dots \Sigma Cn^2}{t} - C.F$	= SSC / dfc	= MSc / MSe
Error	(t – 1) (t – 2)	SST - SSt - SSc - SSr	Same as RCBD	
total	t ² - 1	Same as RCBD		

Missing value in LSD

Use this equation for finding missing value in LSD design Where:

$$Xij = \frac{r(R + C + T) - 2G}{(t - 1)(t - 2)}$$

r = number of replications

R = sum of Row which contain missing value

- C= sum of Column which contain missing value
- T = sum of treatment which contain missing value
- G = sum of data before calculating missing value
- The other steps are similar to the steps used in RCBD.

Example1:-

The following tables represent the results of Latin square design experiment if the data belong to $(T_1 C_1 R_2)$ was lost, calculate missing value, if G = 8371

T2 (400)	T3 (672)	T4 (440)	T1(451)
T1	T2 (600)	T3 (625)	T4 (550)
T3 (529)	T4 (600)	T1 (596)	T2 (500)
T4 (589)	T1 (632)	T2 (587)	T3 (600)

	1	2	3	4
ΣC	1518	2504	2248	2101
ΣR	1963	1775	2225	2408
ΣΤ	1679	2087	2426	2179

Latin Square Design (LSD):

Exp.1/ From the following data complete ANOVA Table and compare between the insecticides under $_{0.05}$ if the Statistical Model is:

 $\begin{aligned} x_{ijk} &= \mu + \tau_i + R_j + C_k + \varepsilon_{ijk} \\ i &= 1, 2, 3, 4 \\ i &= j = k \end{aligned}$

	Col.1	Col.2	2	Col.	3	Col.4	4	∑rows	∑treats
Row1	A ₁ 14	B ₁	<u>11</u>	<i>C</i> ₁	12	D ₁	11	48	∑A=60
Row2	B ₂ <u>12</u>	<i>C</i> ₂	13	D ₂	18	A ₂	15	58	∑B=46
Row3	<i>C</i> ₃ 15	D_3	15	A ₃	14	B ₃	<u>11</u>	55	∑C=57
row4	D ₄ 10	A ₄	17	B ₄	<u>12</u>	<i>C</i> ₄	17	56	∑D=54
∑columns	51	56		56		54			G=217

C.F.= $(217)^2/16=2943.0625$ $\sum x^2_{ijk}=(14)^2+\ldots+(17)^2=3033$ SST=3033-2943.0625=89.94

$SS_{treat.} = \frac{(60)^2 + \dots + (54)^2}{4} - 2$	2943.0625 = 2970.25 - 2943.0625 = 27.2
$SS_{Block} = \frac{(48)^2 + \dots + (56)^2}{4} - $	2943.0625=2957.25-2943.0625=14.2
$SS_{Column} = \frac{(51)^2 + \dots + (54)^2}{4} - \frac{(51)^2 + \dots + (54)^2}{4}$	-2943.0625 = 2947.25 - 2943.0625 = 4.2
$SS_{Error} = 89.94 - 27.2 - 14.2 - $	-4.2 = 44.34
$MS_t = 27.2/3 = 9.07$	$MS_{Row} = 14.2/3 = 4.7$
$MS_{Col.} = 4.2/3 = 1.4$	$MS_E = 44.34/6 = 7.4$

S.O.V.	df	55	MS	Cal.F
Treats	3	27.2	9.07	1.22 ^{n.s.}
Block	3	14.2	4.7	
Column	3	4.2	1.4	
Error	6	44.34	7.4	
Total	15	89.94		

Since cal.F less than Tab.F, it means that there are no sig. differences between the treatments.

Exp.2/ An experiment conducted to study the effect of (6) types of chemical fertilizers on yield of sugar cane (ton/ acer) .Complete ANOVA then compare between treatments and control (A treatment)using the suitable design at level of significant 0.05.

	C1	C2	C 3	C 4	C 5	C 6	∑rows	<u>∑treat</u>
R1	C 29.6	D 26.4	E 33.2	F 30.5	A 31.8	B 33.0	184.5	176.8
2	D 28.8	E 29.4	F 29.9	A 25.9	B 27.4	C 30.	1 171.5	176.9
3	E 30.6	F 30.8	A 28.3	B 30.4	C 32.0	D 21.7	173.8	184.0
4	F 26.7	A 29.0	B 29.2	C 32.0	D 26.6	E 28.9	172.4	155.1
5	A 31.4	B 28.5	C 30.8	D 23.9	E 31.3	F 33.2	179.1	183.0
<u>R6</u>	B 28.4	C 29.5	D 27.7	E 29.6	F 32.1	A 30.4	177.7	183.2
∑col.	175.5	173.6	179.1	172.3	181.2	177.3	G=1059	

$$\begin{split} C.F. &= 3115225 \qquad SS_{Total} = 31374.3 - 31152.25 = 222.05 \\ SS_{treat.} &= 3125252 - 31152.25 = 100.27 \\ SS_{Row} &= 311725 - 31152.25 = 20.25 \\ SS_{Column} &= 31161.67 - 31152.25 = 9.42 \\ SS_{Error} &= 92.11 \end{split}$$

ANOVA Table

<u>S.O.V</u>	df	SS	MS	Cal	.F	Tab-F
Treat.	5	100.27	20.054	4.35*	2.71	
Row	5	20.25	4.05			
Column	5	9.42	1.884			
Error	20	92.11	4.605			
Total	35	222.05				

$$\bar{t}_{2} - \bar{t}_{1} = 29.5 - 29.5 = 0.0$$

$$\bar{t}_{3} - \bar{t}_{1} = 30.7 - 29.5 = 1.2$$

$$\bar{t}_{4} - \bar{t}_{1} = 25.85 - 29.5 = -3.65^{*}$$

$$\bar{t}_{5} - \bar{t}_{1} = 30.5 - 29.5 = 1.0$$

$$\bar{t}_{6} - \bar{t}_{1} = 30.53 - 29.5 = 1.03$$

$$D_{t} = tabt_{D(\alpha,df_{t},df_{E})}\sqrt{2MS_{E}/r} = tabt_{D(0.05,5,20)}\sqrt{2(4.605)/6}$$
$$D_{t} = 2.81(1.24) = 3.5$$

• *Example 4:*

• An experiment was conducted for comparing between the effects of (P) Fertilizer on the cotton yield by LSD the following information was obtained.

• $1 - \Sigma t_1 = 32$	$\Sigma t_2 = 24$	$\Sigma t_3 = 20$				
• 2- C.F = 625	3- Cal.F _t	= 9.5	4- df	$\Gamma = 15$		
• 5- SSC = 12	6- SSR =	- 8				
• dfT = n − 1 16		n = c	lfT + 1			n = 15 + 1 =
n = t * r	in LSD $t = r$		SO	n = t * t		$n = t^2$
$t = \sqrt{n}$	t =	$=\sqrt{16}=4$			t = r = c =	4
$C.F = (G)^2 / n$		625 =	$(G)^2/16 =$		$G^2 = 625$	* 16
$G^2 = 10000$	G	$=\sqrt{10000}$		G = 100		
$G = \Sigma t 1 + \Sigma t 2 +$	$\Sigma t3 + \Sigma t4$	$\Sigma t4 = 0$	$G-(\Sigma t1+\Sigma t)$	$\Sigma t2 + \Sigma t3$)		
$\Sigma t4 = 100 - (32)$	2 + 24 + 20) = 24					

$$SSt = \frac{\sum t 1^{2} + \dots + \sum t n^{2}}{r} - C.F$$

$$SSt = \frac{(32)^{2} + (24)^{2} + (20)^{2} + (24)^{2}}{4} - 625$$

$$SSt = 19$$

$$MSt = SSt / dft = 19 / 3 = 6.33$$

$$Cal. Ft = MSt / MSe = 9.5 = 6.33 / MSe$$

$$SSt = 0.66$$

$$MSe = SSe / dfe$$

$$SSe = MSe * dfe = 0.66 * 6 = 3.96$$

$$SST = SSt + SSc + SSr + SSe$$

$$SST = 19 + 8 + 12 + 3.96$$

$$= 42.96$$

$$MSC = SSC / dfc = 12 / 3 = 4$$

$$MSR = SSR / dfr = 8 / 3 = 5$$

$$Cal. FC = MSC / MSe = 4 / 0.66 = 9.92$$

$$Cal. Ft = MSt / MSe = 2.66 / 0.66 = 4.03$$

MSE

S.O.V	df	SS	Ms	CalF
treat	3	19	6.33	9.5
row	3	8	2.66	4.03
column	3	12	4	6.06
error	6	3.96	0.66	
Total	15	42.96		

• <u>Example 2:</u>

• An experiment was conducted in the field, if the data belong to (T3 C1 R2) was lost, calculate it if you know that:

• 1- C.F = 100

- 2- dfC = 3
- 3- Mean $t_1 = 2$ Mean $t_2 = 3$ Mean $t_4 = 1$
- $4 \Sigma R1 = 11$ $\Sigma R3 = 9$ $\Sigma R4 = 8$ $5 \Sigma C2 = 13$

• $\Sigma C3 = 9$ $\Sigma C4 = 9$

• Relative Efficiency (RE):

Q/ From the following ANOVA calculate the RE: 1) Approximately

RCBD ANOVA Table					CRD A	CRD ANOVA Table		
<u>S.O.V.</u>	df	SS	MS		<u>S.O.V.</u>	df	SS	MS
Treat.	3	135.2	45.1	\rightarrow	Treat.	3	135.2	45.1
Block	4	21.5	5.4	\rightarrow				
Error	12	26.3	2.2	\rightarrow	Error	16	47.8	<u>2.98</u>
Total	19	183			Total	19	183	
RE(RCBI	D:CRD)	= <u>MSE_{CRD}</u>	_* 100=(2.	98/2.2)*1	00=135.4%)		
		MSER	- CBD					
RCBD mo	ore effic	ciency than	n CRD ab	out 35.4%	b, using RC	BD incre	ease the effi	ciency of

experiment about 35.4%

• Rep. =5 in RCBD • 5*1.354 = 6.77 in CRD 2) $MSE_{CRD} = \frac{SSB+ (df_{t} + df_{E}) MSE}{df_{T}} = \frac{21.5 + (3+12)*2.2}{19} = 2.87$ RE(RCBD:CRD)=(2.87/2.2)*100=130.4% It means RCBD more efficient than CRD about 30.4%

Q/ from the following ANOVA table calculate the RE:

<u>S.O.V.</u>	df	SS	MS	_	<u>S.O.V.</u>	df	SS	MS
Block	4	2.04	0.51	\rightarrow	Treat	4	1.32	0.33
Treat	4	1.32	0.33	\rightarrow				
Error	<u>16</u>	1.005	0.063	\rightarrow	Error	20	3.045	0.152
Total	24	4.365			Total	24	4.365	

$$RE(RCBD:CRD) = \frac{MSE_{CRD}}{MSE_{RCBD}} * \frac{(n_1 + 1)(n_2 + 3)}{(n_1 + 3)(n_2 + 1)} * 100$$
$$= \frac{0.152}{0.063} * \frac{(16+1)(20+3)}{(16+3)(20+1)} * 100 = 236.5\% \qquad RCBD \text{ more efficient than CRD}$$
$$236.5/100 = 2.365 \Rightarrow 5 * 2.365 = 11.83 \text{ rep. in CRD}$$

Example 2:-

Calculate the relative efficiency of RCBD: CRD from the information below:

S.O.V	df	SS	MS
Block	2	44.67	22.33
Treat	3	518.25	172.75
Error	6	28.003	4.67
Total	11	590.923	

Answer:

dft = t - 1	3 = t - 1	t = 3 + 1 = 4

dfb = r - 1 2 = r - 1 r = 2 + 1 = 3

MSe CRD = [(dfb * MSb) + (dft + dfe) * MSe]/ df total

 $= \left[(2 * 22.33) + (3 + 6) * 4.67 \right] / 11 = 7.88$

dfe CRD = t (r - 1) = 4 (3 - 1) = 8

$$RE(RCBD:CRD) = \frac{MSe}{MSe} \frac{CRD}{RCBD} X \frac{(n1+1)(n2+3)}{(n1+3)(n2+1)} X100$$

Q/If you are given the following LSD ANOVA, calculate the RE (LSD:CRD) and RE (LSD: RCBD):

S.O.V df	SS	MS	_			
Column		4	2.18	0.54		
Block (Row)	4	2.4	0.6			
Treat	4	1.92	0.48			
Error	12	1.07	0.1			
Total	24	7.57				
RE(LSD:CRD)	$) = \frac{MS}{MS}$	r + MS	$\frac{c}{r} + (r - 1)MS_{\mu}$	$\frac{-1)MS_E}{E} =$	$=\frac{0.6+0.54+(4)(0.1)}{(6)(0.1)}*100$	
$=\frac{1.54}{0.6}*100=256.6\%$ LSD more efficient than CRD about 156.6%						
$RE(LSD: RCBD) = \frac{MS_c + (r-1)MS_E}{rMS_E} = \frac{0.54 + (4)(0.1)}{(5)(0.1)} *100$						
=188% LSD more efficient than RCBD when rows becomes Blocks.						
$RE(LSD: RCBD) = \frac{MS_r + (r-1)MS_E}{rMS_E} = \frac{0.6 + (4)(0.1)}{(5)(0.1)} *100$						
= 48% LSD less efficient than RCBD when columns becomes blocks.						

$$SS_{treat.} = \frac{(60)^2 + ... + (54)^2}{4} - 2943.0625 = 2970.25 - 2943.0625 = 27.2$$

$$SS_{Block} = \frac{(48)^2 + ... + (56)^2}{4} - 2943.0625 = 2957.25 - 2943.0625 = 14.2$$

$$SS_{Column} = \frac{(51)^2 + ... + (54)^2}{4} - 2943.0625 = 2947.25 - 2943.0625 = 4.2$$

$$SS_{Error} = 89.94 - 27.2 - 14.2 - 4.2 = 44.34$$

$$MS_t = 27.2/3 = 9.07$$

$$MS_{Row} = 14.2/3 = 4.7$$

$$MS_{Col.} = 4.2/3 = 1.4$$

$$MS_E = 44.34/6 = 7.4$$

S.O.V.	df	55	MS	Cal.F
Treats	3	27.2	9.07	1.22 ^{n.s.}
Block	3	14.2	4.7	
Column	3	4.2	1.4	
Error	6	44.34	7.4	
Total	15	89.94		

Since cal.F less than Tab.F, it means that there are no sig. differences between the treatments.