Salahaddin University
College of Engineering Electrical Department

Chapter One

Transcendental functions

Natural Logarithmic function

Prepared By: Khalid A.Hamed
Khalid.abduljabbar@su.edu.krd

Subject: Math II Class: $1^{\text {st }}$ Year $\mathbf{2 ~}^{\text {nd }}$ Sem.

Outline
 Transcendental functions Natural Logarithmic function

1.1 Graph of Logarithmic ($y=\ln$)
1.2 Prosperities of Logarithmic (In)
1.3 Derivative of Logarithmic (In)
1.4 Integration of Logarithmic (In)

1.1 Graph of Logarithmic ($\mathrm{y}=\mathrm{In}$)

Definition of the Natural Logarithm Function:

The natural logarithm of a positive number x, written as $\ln x$, is the value of an integral.

DEFINITION The Natural Logarithm Function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

If $x>1$, then $\ln x$ is the area under the curve $y=1 / t$ from $t=1$ to $t=x$ For $0<x<1, \ln x$ gives the negative of the area under the curve from x to 1 .
The function is not defined for $x \leq 0$. From the Zero Width Interval Rule for definite integrals, we also have

$$
\ln 1=\int_{1}^{1} \frac{1}{t} d t=0 .
$$

1.1 Graph of Logarithmic ($\mathrm{y}=\mathrm{In}$)

\boldsymbol{x}	$\ln \boldsymbol{x}$
0	undefined
0.05	-3.00
0.5	-0.69
1	0
2	0.69
3	1.10
4	1.39
10	2.30

The graph of the logarithm rises above the x-axis as x moves from 1 to the right, and it falls below the axis as x moves from

1 to the left.

1.1 Graph of Logarithmic (y=In)

Graph of $y=\ln x$

- Domain: $(0, \infty)$
- Range: $(-\infty, \infty)$
- Intercept: $(1,0)$ Increasing

1.2 Prosperities of Logarithmic

Properties of Logarithms

1. $\log _{a} 1=0$
2. $\log _{a} a=1$
3. $\log _{a} a^{x}=x$
4. $a^{\log ^{a} x}=x$

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

$$
\log x=\log _{10} x
$$

The logarithm with base e is called the natural logarithm and is denoted by $\mathbf{l n}$:

$$
\ln x=\log _{e} x
$$

Properties of Natural Logarithms

1. $\ln 1=0$
2. $\ln e=1$
3. $\ln e^{x}=x$
4. $e^{\ln x}=x$

1.2 Prosperities of Logarithmic

Writing Equivalent Expressions

Write an equivalent logarithmic equation.

$$
\begin{aligned}
e^{x}=23 & \log _{e} 23=x \\
& \ln 23=x
\end{aligned}
$$

Write an equivalent logarithmic equation.

$$
\ln 6=x
$$

1.2 Prosperities of Logarithmic

THEOREM Properties of Logarithms

For any numbers $a>0$ and $x>0$, the natural logarithm satisfies the following rules:

1. Product Rule: $\quad \ln a x=\ln a+\ln x$
2. Quotient Rule:
$\ln \frac{a}{x}=\ln a-\ln x$
3. Reciprocal Rule:
$\ln \frac{1}{x}=-\ln x$ Rule 2 with $a=1$
4. Power Rule:
$\ln x^{r}=r \ln x$
r rational

Inverse Equations for e^{x} and $\ln x$

$$
\begin{aligned}
e^{\ln x} & =x & & (\text { all } x>0) \\
\ln \left(e^{x}\right) & =x & & (\text { all } x)
\end{aligned}
$$

DEFINITION The Number e

The number e is that number in the domain of the natural logarithm satisfying

$$
\ln (e)=1
$$

1.2 Prosperities of Logarithmic

Example Expand

$$
\ln \left(\frac{e^{2} \sqrt{a^{2}+1}}{b^{3}}\right)
$$

using the rules of logarithms.

Solution

$$
\begin{gathered}
\ln \left(\frac{e^{2} \sqrt{a^{2}+1}}{b^{3}}\right)=\ln \left(e^{2} \sqrt{a^{2}+1}\right)-\ln \left(b^{3}\right)=\ln \left(e^{2}\right)+\ln \left(\sqrt{a^{2}+1}\right)-3 \ln b \\
=2 \ln e+\frac{1}{2} \ln \left(a^{2}+1\right)-3 \ln b=2+\frac{1}{2} \ln \left(a^{2}+1\right)-3 \ln b .
\end{gathered}
$$

1.2 Prosperities of Logarithmic

EXAMPLE Interpreting the Properties of Logarithms
(a) $\ln 6=\ln (2 \cdot 3)=\ln 2+\ln 3 \quad$ Product
(b) $\ln 4-\ln 5=\ln \frac{4}{5}=\ln 0.8$

Quotient

(c) $\ln \frac{1}{8}=-\ln 8$

Reciprocal

$$
=-\ln 2^{3}=-3 \ln 2
$$

Power

1.2 Prosperities of Logarithmic

EXAMPLE Applying the Properties to Function Formulas

(a) $\ln 4+\ln \sin x=\ln (4 \sin x)$
(b) $\ln \frac{x+1}{2 x-3}=\ln (x+1)-\ln (2 x-3)$
(c) $\ln \sec x=\ln \frac{1}{\cos x}=-\ln \cos x$

Quotient
(d) $\ln \sqrt[3]{x+1}=\ln (x+1)^{1 / 3}=\frac{1}{3} \ln (x+1) \quad$ Power

1.3 Derivative of Logarithmic (In)

Derivative of e^{x}

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

If u is a differentiable function of x, then we have

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

THEOREM Laws of Exponents for e^{x}
For all numbers x, x_{1}, and x_{2}, the natural exponential e^{x} obeys the following laws:

1. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$
2. $\frac{e^{x_{1}}}{e^{x_{2}}}=e^{x_{1}-x_{2}}$
3. $e^{-x}=\frac{1}{e^{x}}$
4. $\left(e^{x_{1}}\right)^{x_{2}}=e^{x_{1} x_{2}}=\left(e^{x_{2}}\right)^{x_{1}}$

1.3 Derivative of Logarithmic (In)

$>$ EXAMPLE Using the Formula
Find $d y / d x$ if $y=e^{\left(x+x^{2}\right)}$.

SOLUTION

Let $u=x+x^{2}$ then $y=e^{u}$. Then

$$
\frac{d y}{d x}=e^{u} \frac{d u}{d x}, \quad \text { and } \quad \frac{d u}{d x}=1+2 x .
$$

Thus, $\frac{d y}{d x}=e^{u} \frac{d u}{d x}=e^{\left(x+x^{2}\right)}(1+2 x)$.

1.3 Derivative of Logarithmic (In)

Derivative of $\ln \boldsymbol{x}$

Now that we know the derivative of e^{x}, it is relatively easy to find the derivative of its inverse function, $\ln x$.

$$
\begin{array}{rlrl}
y & =\ln x & & \\
e^{y} & =x & & \text { Inverse function relationship } \\
\frac{d}{d x}\left(e^{y}\right) & =\frac{d}{d x}(x) & & \text { Differentiate implicitly. } \\
e^{y} \frac{d y}{d x} & =1 & & \\
\frac{d y}{d x} & =\frac{1}{e^{y}}=\frac{1}{x} &
\end{array}
$$

If u is a differentiable function of x and $u>0$,

$$
\frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

1.3 Derivative of Logarithmic (In)

EXAMPLE Derivatives of Natural Logarithms

(a) $\frac{d}{d x} \ln 2 x$

$$
=\frac{1}{2 x} \frac{d}{d x}(2 x)=\frac{1}{2 x}(2)=\frac{1}{x}
$$

(b) $\frac{d}{d x} \ln \left(x^{2}+3\right)$

$$
=\frac{1}{x^{2}+3} \cdot \frac{d}{d x}\left(x^{2}+3\right)=\frac{1}{x^{2}+3} \cdot 2 x=\frac{2 x}{x^{2}+3} .
$$

1.3 Derivative of Logarithmic (In)

EXAMPLE Derivatives of Natural Logarithms
Find $\frac{d}{d x} \ln (\sin x)$.
Solution: $\frac{d}{d x} \ln (\sin x)=\frac{1}{\sin x} \frac{d}{d x}(\sin x)$

$$
=\frac{1}{\sin x} \cos x=\cot x
$$

EXAMPLE

$$
f(x)=\sqrt{\ln x} \quad \text { find } f^{\prime}(x)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\sqrt{\ln (x)}]
$$

$$
=\frac{1}{2} \ln ^{\frac{1}{2}-1}(x) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}[\ln (x)]
$$

Apply the power rule:

$$
\left[u(x)^{n}\right]^{\prime}=n \cdot u(x)^{n-1} \cdot u^{\prime}(x)
$$

Note: The chain rule has been applied here:
Multiply by the inner function's derivative $\boldsymbol{u}^{\prime}(\boldsymbol{x})$.

$$
=\frac{\frac{1}{x}}{2 \sqrt{\ln (x)}}=\frac{1}{2 x \sqrt{\ln (x)}}
$$

1.3 Derivative of Logarithmic (In)

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, and powers can often be found more quickly if we take the natural logarithm of both sides before differentiating. This enables us to use the laws of logarithms to simplify the formulas before differentiating. The process, called logarithmic differentiation, is illustrated in the next example.

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation $y=f(x)$ and use the properties of logarithms to simplify.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y^{\prime}.

1.3 Derivative of Logarithmic (In)

> EXAMPLE
Differentiate $y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$.
Solution:

$$
\begin{aligned}
& \ln y=\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{3}{4} \cdot \frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}+1}-5 \cdot \frac{3}{3 x+2} \\
& \frac{d y}{d x}=y\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right) \\
& \frac{d y}{d x}=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
\end{aligned}
$$

1.3 Derivative of Logarithmic (In)

> EXAMPLE Using Logarithmic Differentiation

Find $d y / d x$ if

$$
y=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}, \quad x>1 .
$$

Solution We take the natural logarithm of both sides and simplify the result with the properties of logarithms:

$$
\begin{array}{rlrl}
\ln y & =\ln \frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1} & \\
& =\ln \left(\left(x^{2}+1\right)(x+3)^{1 / 2}\right)-\ln (x-1) & & \text { Rule 2 } \\
& =\ln \left(x^{2}+1\right)+\ln (x+3)^{1 / 2}-\ln (x-1) & & \text { Rule 1 } \\
& =\ln \left(x^{2}+1\right)+\frac{1}{2} \ln (x+3)-\ln (x-1) . & & \text { Rule 3 }
\end{array}
$$

take derivatives of both sides with respect to $x, \quad \frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}+1} \cdot 2 x+\frac{1}{2} \cdot \frac{1}{x+3}-\frac{1}{x-1}$.
Next we solve for $d y / d x: \quad \frac{d y}{d x}=y\left(\frac{2 x}{x^{2}+1}+\frac{1}{2 x+6}-\frac{1}{x-1}\right)$.
Finally, we substitute for $y: \frac{d y}{d x}=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}\left(\frac{2 x}{x^{2}+1}+\frac{1}{2 x+6}-\frac{1}{x-1}\right)$.

1.3 Derivative of Logarithmic (In)

> Exercises
I. find the derivative of y with respect to x

$$
y=\frac{\ln x}{1+\ln x}
$$

II. use logarithmic differentiation to find the derivative of y with respect to θ

$$
y=\frac{\theta+5}{\theta \cos \theta}
$$

1.4 Integration of Logarithmic (In)

If u is a differentiable function that is never zero,

$$
\int \frac{1}{u} d u=\ln |u|+C
$$

EXAMPLE

(a) $\left.\int_{0}^{2} \frac{2 x}{x^{2}-5} d x=\int_{-5}^{-1} \frac{d u}{u}=\ln |u|\right]_{-5}^{-1}$

$$
\begin{array}{ll}
u=x^{2}-5, & d u=2 x d x, \\
u(0)=-5, & u(2)=-1
\end{array}
$$

$$
=\ln |-1|-\ln |-5|=\ln 1-\ln 5=-\ln 5
$$

(b) $\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos \theta}{3+2 \sin \theta} d \theta=\int_{1}^{5} \frac{2}{u} d u$

$$
\begin{aligned}
& u=3+2 \sin \theta, \quad d u=2 \cos \theta d \theta, \\
& u(-\pi / 2)=1, \quad u(\pi / 2)=5
\end{aligned}
$$

$$
\begin{aligned}
& =2 \ln |u|]_{1}^{5} \\
& =2 \ln |5|-2 \ln |1|=2 \ln 5
\end{aligned}
$$

Note that $u=3+2 \sin \theta$ is always positive on $[-\pi / 2, \pi / 2]$

1.4 Integration of Logarithmic (In)

$$
\begin{aligned}
& \int \tan u d u=-\ln |\cos u|+C=\ln |\sec u|+C \\
& \int \cot u d u=\ln |\sin u|+C=-\ln |\csc x|+C
\end{aligned}
$$

EXAMPLE

$$
\begin{array}{rlrl}
\int_{0}^{\pi / 6} \tan 2 x d x & =\int_{0}^{\pi / 3} \tan u \cdot \frac{d u}{2}=\frac{1}{2} \int_{0}^{\pi / 3} \tan u d u & \begin{array}{l}
\text { Substitute } u=2 x \\
d x=d u / 2 \\
u(0)=0
\end{array} \\
& \left.=\frac{1}{2} \ln |\sec u|\right]_{0}^{\pi / 3}=\frac{1}{2}(\ln 2-\ln 1)=\frac{1}{2} \ln 2 & u(\pi / 6)=\pi / 3
\end{array}
$$

