

Salahaddin University College of Engineering Electrical Department

Chapter Three

Inverse Trigonometric Function

Prepared By: Khalid A.Hamed Khalid.abduljabbar@su.edu.krd

Outline Inverse Trigonometric Function

3.1 Properties of Inverse Trigonometric Function

3.2 Derivative of Inverse Trigonometric Function

3.3 Integration of Inverse Trigonometric Function

•Here, you can see that the sine function y = sin(x) is not one-to-one.

-Use the Horizontal Line Test.

INVERSE TRIGONOMETRIC FUNCTIONS

•However, here, you can see that

the function
$$f(x) = \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$,

is one-to-one.

INVERSE SINE FUNCTIONS

- As the definition of an inverse function states $f^{-1}(x) = y \iff f(y) = x$
- that
- we have:

•
$$\sin^{-1} x = y \iff \sin y = x$$
 and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

• Thus, if $-1 \le x \le 1$, $\sin^{-1}x$ is the number between $-\pi/2$ and $\pi/2$ whose sine is x.

- **INVERSE SINE FUNCTIONS** $\sin^{-1}\left(\frac{1}{-1}\right)$
- Evaluate:
- We have:

$$(2)$$
$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

-This is because $\sin(\pi/6) = 1/2$, and $\pi/6$ lies between $-\pi/2$ and $\pi/2$.

INVERSE SINE FUNCTIONS

- Evaluate: $\tan(\arcsin\frac{1}{3})$ Let $\theta = \arcsin\frac{1}{3}$, so $\sin\theta = \frac{1}{3}$.

-Then, we can draw a right triangle with angle θ .

-So, we deduce from the Pythagorean Theorem that the third side has length $\sqrt{9-1} = 2\sqrt{2}$.

θ

 $2\sqrt{2}$

 This enables us to read from the triangle that: $\tan(\arcsin\frac{1}{3}) = \tan\theta = \frac{1}{2\sqrt{2}}$

INVERSE SINE FUNCTIONS

• In this case, the cancellation equations for inverse functions become:

$$\sin^{-1}(\sin x) = x \qquad \text{for} \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$\sin(\sin^{-1} x) = x \qquad \text{for} \quad -1 \le x \le 1$$

3.1 Properties of Inverse Trigonometric Function INVERSE SINE FUNCTIONS

• The graph is obtained from that of the restricted sine function by reflection about the line y = x.

INVERSE COSINE FUNCTIONS

- •The inverse cosine function is handled similarly. $\cos^{-1} x = y \iff \cos y = x$ and $0 \le y \le \pi$
- -The restricted cosine function $f(x) = \cos x, 0 \le x \le \pi$, is one-to-one.
- So, it has an inverse function denoted by cos⁻¹ or arccos.

INVERSE COSINE FUNCTIONS

• The cancellation equations are:

$$\cos^{-1}(\cos x) = x \quad \text{for } 0 \le x \le \pi$$
$$\cos(\cos^{-1} x) = x \quad \text{for } -1 \le x \le 1$$

3.1 Properties of Inverse Trigonometric Function INVERSE COSINE FUNCTIONS

- •The inverse cosine function, cos⁻¹,
- has domain [-1, 1] and range $[0, \pi]$, and is a continuous function.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS

- •The inverse tangent function,
- $tan^{-1} = arctan$, has domain R and

range $(-\pi/2, \pi/2)$.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS

•We know that:

 $\lim_{x \to (\pi/2)^-} \tan x = \infty \quad \text{and} \quad \lim_{x \to -(\pi/2)^+} \tan x = -\infty$

-So, the lines $x = \pm \pi/2$

are vertical asymptotes of the graph of tan.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS

•The graph of tan⁻¹ is obtained by reflecting the graph of the restricted tangent function about the line y = x.

-It follows that the lines $y = \pi/2$ and $y = -\pi/2$ are horizontal asymptotes of the graph of tan⁻

3.1 Properties of Inverse Trigonometric Function Graph of Trigonometric FUNCTIONS

16

The Inverse Trigonometric Functions

Graphs of sin & cos inverse trigonometric function:

The Inverse Trigonometric Functions

Graphs of **tan & cot** inverse trigonometric function:

The Inverse Trigonometric Functions

Graphs of sec & csc inverse trigonometric function:

Inverse Properties

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$

Remember that the trig. functions have inverses only in restricted domains.

DERIVATIVES

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = \frac{1}{1+x^2}$$
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}} \qquad \frac{d}{dx}(\csc^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

INVERSE SINE FUNCTIONS

•We know that:

-The sine function *f* is continuous, so the inverse sine function is also continuous.

-The sine function is differentiable, so the inverse sine function is also differentiable.

INVERSE SINE FUNCTIONS

•since we know that is sin⁻¹ differentiable, we can

just as easily calculate it by implicit differentiation as

follows:

- •Let $y = \sin^{-1} x$.
 - Then, sin y = x and $-\pi/2 \le y \le \pi/2$.
 - Differentiating we obtain:

sin y = x implicitly with respect to x, $\cos y \cdot \frac{dy}{dx} = 1$ and $\frac{dy}{dx} = \frac{1}{\cos y}$ 23

INVERSE SINE FUNCTIONS

• Now, $\cos y \ge 0$ since $-\pi/2 \le y \le \pi/2$, so $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$ $\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$ Therefore $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad -1 < x < 1$

24

INVERSE SINE FUNCTIONS

• If
$$f(x) = \sin^{-1}(x^2 - 1)$$
, find: $f'(x)$.

• Differentiate: $y = \frac{1}{\sin^{-1} x}$

$$\frac{dy}{dx} = \frac{d}{dx} (\sin^{-1} x)^{-1}$$
$$= -(\sin^{-1} x)^{-2} \frac{d}{dx} (\sin^{-1} x)$$
$$= -\frac{1}{(\sin^{-1} x)^2 \sqrt{1 - x^2}}$$

• Differentiate: $f(x) = x \arctan \sqrt{x}$

$$f'(x) = x \frac{1}{1 + (\sqrt{x})^2} \left(\frac{1}{2} x^{-1/2}\right) + \arctan\sqrt{x}$$
$$= \frac{\sqrt{x}}{2(1+x)} + \arctan\sqrt{x}$$

Example 1

Differentiate $\arcsin(2x)$

$$\operatorname{arcsin}(2x)' = \frac{1}{\sqrt{1 - (2x)^2}} 2$$
$$= \frac{2}{\sqrt{1 - 4x^2}}$$

Example 3

Differentiate xarccosx

$$(x \arccos x)'$$

= $\arccos x + x \frac{-1}{\sqrt{1-x^2}}$
= $\arccos x - \frac{x}{\sqrt{1-x^2}}$

Find the derivative of: $f(x) = \arctan \sqrt{x} = \arctan (x)^{\frac{1}{2}}$ Let u = $x^{\frac{1}{2}}$ $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ $f'(x) = \frac{2\sqrt{x}}{1 + (\sqrt{x})^2} = \frac{1}{2\sqrt{x}(1+x)}$

Solve:
$$\frac{d}{dx} \sec^{-1}(x^2 - x)$$

Solution:
$$u = x^2 - x \qquad \frac{du}{dx} = 2x - 1$$
$$= \frac{1}{|u|\sqrt{u^2 - 1}} \cdot \frac{du}{dx}$$
$$= \frac{2x - 1}{|x^2 - x|\sqrt{(x^2 - x)^2 - 1}}$$

Solve:
$$\frac{d}{dx} \tan^{-1}(\sin x)$$

Solution:
 $u = \sin x$ $\frac{du}{dx} = \cos x$
 $= \frac{1}{1+u^2} \cdot \frac{du}{dx}$
 $= \frac{\cos x}{1+\sin^2 x}$

30

3.2 Derivative of Inverse Trigonometric Function Example Find the following derivatives.

a. $\tan^{-1}(x^3)$ Set $u = x^3$, so $[\tan^{-1}(x^3)]' = \frac{(x^3)'}{1 + (x^3)^2} = \frac{3x^2}{1 + x^6}$

b.
$$\cos^{-1}(e^{x^2})$$

Set $u = e^x$, so $[\cos^{-1}(e^{x^2})]' = \frac{-(e^{x^2})'}{\sqrt{1 - (e^{x^2})^2}} = \frac{-2xe^{x^2}}{\sqrt{1 - e^{2x^2}}}$

c. sec⁻¹(ln(x))
Set u = ln(x), so [sec⁻¹(ln(x)]'
=
$$\frac{1/x}{|ln(x)|\sqrt{ln^2(x)} - 1}$$

3.2 Derivative of Inverse Trigonometric Function Find an equation for the line tangent to the graph of $y = \cot^{-1} x$ at x = -1 $\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+r^2}$ Slope of tangent line When x = -1, y = $\frac{3\pi}{4}$ At x = -1 -1-1-12

$$y - \frac{3\pi}{4} = \frac{-1}{2}(x+1)$$
 32

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$$

2.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

3.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{u}{a} + C$$

Proof

Let $y = \sin^{-1} \frac{x}{a}$. Then $a \sin y = x$. Now let's use implicit differentiation. We obtain $\frac{d}{dx}(a \sin y) = \frac{d}{dx}(x) \implies a \cos y \frac{dy}{dx} = 1 \implies \frac{dy}{dx} = \frac{1}{a \cos y}$. For $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $\cos y \ge 0$. Thus, applying the Pythagorean identity $\sin^2 y + \cos^2 y = 1$, we have $\cos y = \sqrt{1 = \sin^2 y}$. This gives

$$\frac{1}{a\cos y} = \frac{1}{a\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{a^2 - a^2\sin^2 y}} = \frac{1}{\sqrt{a^2 - x^2}}.$$

Then for $-a \le x \le a$, we have

$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}\left(\frac{u}{a}\right) + C.$$

Example

Find
$$\int \frac{1}{25+16x^2} \,\mathrm{d}x.$$

Here, we take the 16 outside the integral, so that we get

$$\int \frac{1}{25 + 16x^2} \, \mathrm{d}x = \frac{1}{16} \int \frac{1}{\frac{25}{16} + x^2} \, \mathrm{d}x \,.$$

Now we can see that $a = \sqrt{\frac{25}{16}} = \frac{5}{4}$, so that

$$\int \frac{1}{25 + 16x^2} \, \mathrm{d}x = \frac{1}{16} \times \frac{1}{\left(\frac{5}{4}\right)} \tan^{-1} \left(\frac{x}{\left(\frac{5}{4}\right)}\right) + c$$
$$= \frac{1}{16} \times \frac{4}{5} \tan^{-1} \left(\frac{4x}{5}\right) + c$$
$$= \frac{1}{20} \tan^{-1} \left(\frac{4x}{5}\right) + c.$$

Example Find the integral $\int \frac{dx}{9+4x^2}$

Match the form of the integral to the one for $\tan^{-1}(u)$. Write 9 + 4x² = 9 (1 + $\frac{4}{9}x^2$) = 9 [1 + ($\frac{2}{3}x$)²]

Hence
$$\int \frac{dx}{9+4x^2} = \frac{1}{9} \int \frac{dx}{1+(\frac{2}{3}x)^2}$$

$$\frac{\frac{1}{9}}{\int \frac{dx}{1 + (\frac{2}{3}x)^2}} = \frac{\frac{1}{9}}{\int \frac{1}{1 + u^2}} \frac{\frac{3}{2}}{2} du$$

Set
$$u = \frac{2}{3}x \rightarrow \frac{du}{dx} = \frac{2}{3}$$

So $dx = \frac{3}{2}du$

substitution method

$$=\frac{1}{6}\int\frac{1}{1+u^2}\,du$$

$$=\frac{1}{6}$$
tan⁻¹(u) + C

$$=\frac{1}{6}$$
tan⁻¹($\frac{2}{3}$ x) + C

Example Find the definite integral

$$\int_{\ln(1/2)}^{0} \frac{e^{x}}{\sqrt{1-e^{2x}}} dx$$

$$\int_{\ln(1/2)} \frac{\frac{e^x}{\sqrt{1-e^{2x}}} dx$$

$$= \int_{1/2}^{1} \frac{\frac{e^x}{\sqrt{1-u^2}}}{\sqrt{1-u^2}} \frac{du}{e^x}$$

$$= \int_{1/2}^{1} \frac{du}{\sqrt{1-u^2}}$$

$$= \sin^{-1}(u) \Big|_{1/2}^{1}$$

0

Set
$$u = e^x \rightarrow \frac{du}{dx} = e^x$$

So $dx = du/e^x$
for $x = ln(1/2) \rightarrow u = 1/2$
 $x = 0 \rightarrow u = 1$

substitution method

 $= \sin^{-1}(1) - \sin^{-1}(1/2) = \pi/2 - \pi/6 = \pi/3$

Example:

Evaluate

$$\int \frac{\sin^{-1} t dt}{\sqrt{1 - t^2}}$$

Solution:

Substitute $u = \arcsin(t) \longrightarrow \frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{\sqrt{1-t^2}} \xrightarrow{(\mathrm{steps})} \longrightarrow \mathrm{d}t = \sqrt{1-t^2} \,\mathrm{d}u$: $= \int u \, \mathrm{d} u$ Apply power rule: $\int u^{\mathbf{n}} du = \frac{u^{\mathbf{n}+1}}{\mathbf{n}+1} \text{ with } \mathbf{n} = 1:$ $=\frac{u^2}{2}$ Undo substitution $u = \arcsin(t)$: $\arcsin^2(t)$ 38 2

Example:

Evaluate
$$\int \frac{\tan^{-1}(2t)}{1+4t^2} dt$$

Solution:
Substitute
$$u = \arctan(2t) \longrightarrow \frac{du}{dt} = \frac{2}{4t^2 + 1} (\underline{\text{steps}}) \longrightarrow dt = \frac{4t^2 + 1}{2} du$$
:

$$= \frac{1}{2} \int u \, du$$

$$= \frac{u^2}{4}$$
Undo substitution $u = \arctan(2t)$:

$$= \frac{\arctan^2(2t)}{4}$$
39

Example:

Evaluate

$$\int \frac{e^t \cos^{-1}(e^t)}{\sqrt{1 - e^{2t}}} dt$$

Solution:

Substitute
$$u = \arccos(e^t) \longrightarrow \frac{du}{dt} = -\frac{e^t}{\sqrt{1 - e^{2t}}} (\underline{\text{steps}}) \longrightarrow dt = -e^{-t}\sqrt{1 - e^{2t}} du$$
:

$$= -\int u \, du$$

$$= -\frac{u^2}{2}$$
Undo substitution $u = \arccos(e^t)$:

$$= -\frac{\arccos^2(e^t)}{2}$$
40