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•Here, you can see that the sine function 

y = sin (x) is not one-to-one.

–Use the Horizontal Line Test.

3.1 Properties of Inverse Trigonometric Function
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•However, here, you can see that 

the function f(x) = sin x,                      , 

is one-to-one.
2 2

x −  

INVERSE TRIGONOMETRIC FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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• As the definition of an inverse function 

states 

• that 

• we have:

•

• Thus, if -1 ≤ x ≤ 1, sin-1x is the number 

between        and          whose sine is x.

1( ) ( )f x y f y x− =  =

1sin sin and
2 2

x y y x y
 − =  = −  

2− 2

INVERSE SINE FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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• Evaluate:

INVERSE SINE FUNCTIONS

1 1
sin

2

−  
 
 

• We have:

–This is because                       , 

and          lies between            and         .

1 1
sin

2 6

−  
= 

 

( )sin / 6 1/ 2 =

/ 2− / 2/ 6

3.1 Properties of Inverse Trigonometric Function
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• Let                       , so               . 

–Then, we can draw a right triangle with angle θ.

–So, we deduce from the Pythagorean Theorem 

that the third side has length                   .

1
arcsin

3
 =

1
sin

3
 =

9 1 2 2− =

– This enables us to read from 

the triangle that:
1 1

tan(arcsin ) tan
3 2 2

= =

• Evaluate:

INVERSE SINE FUNCTIONS
1

tan(arcsin )
3

3.1 Properties of Inverse Trigonometric Function

7



• In this case, the cancellation equations 

for inverse functions become:

1

1

sin (sin ) for
2 2

sin(sin ) for 1 1

x x x

x x x

 −

−

= −  

= −  

INVERSE SINE FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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• The graph is obtained from that of 

the restricted sine function by reflection 

about the line y = x.

INVERSE SINE FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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•The inverse cosine function is handled 

similarly. 

•

–The restricted cosine function 

f(x) = cos x, 0 ≤ x ≤ π,

is one-to-one.

–So, it has an inverse function 

denoted by cos-1 or arccos.

1cos cos and 0x y y x y − =  =  

INVERSE COSINE FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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• The cancellation equations are:

INVERSE COSINE FUNCTIONS

1cos (cos ) for 0x x x − =  

1cos(cos ) for 1 1x x x− = −  

3.1 Properties of Inverse Trigonometric Function
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•The inverse cosine function,cos-1, 

has domain [-1, 1] and range           ,          

and is a continuous function.

[0, ]

INVERSE COSINE FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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•The inverse tangent function, 

tan-1 = arctan, has domain  R  and 

range                     .( / 2, / 2) −

INVERSE TANGENT FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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•We know that: 

–So, the lines 

are vertical 

asymptotes of 

the graph of tan.

/ 2x = 

INVERSE TANGENT FUNCTIONS

( / 2) ( / 2)
lim tan lim tanand
 − +→ →−

=  = −
x x

x x

3.1 Properties of Inverse Trigonometric Function
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•The graph of tan-1 is obtained by reflecting 

the graph of the restricted tangent function 

about the line y = x.

–It follows that 

the lines y = π/2

and y = -π/2

are horizontal 

asymptotes of 

the graph of tan-1.

INVERSE TANGENT FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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Graph of Trigonometric FUNCTIONS

3.1 Properties of Inverse Trigonometric Function
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The Inverse Trigonometric Functions

Graphs of sin & cos inverse trigonometric function:

−𝟏 ≤ 𝒙 ≤ 𝟏 −
𝝅

𝟐
≤ 𝒚 ≤

𝝅

𝟐
−𝟏 ≤ 𝒙 ≤ 𝟏 𝟎 ≤ 𝒚 ≤ 𝝅

3.1 Properties of Inverse Trigonometric Function
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The Inverse Trigonometric Functions

Graphs of tan & cot inverse trigonometric function:

−∞ < 𝒙 < ∞ −
𝝅

𝟐
< 𝒚 <

𝝅

𝟐
−𝟏 ≤ 𝒙 ≤ 𝟏 𝟎 < 𝒚 < 𝝅

3.1 Properties of Inverse Trigonometric Function
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𝒙 ≥ 𝟏 𝟎 < 𝒚 ≤ 𝝅/𝟐
𝒐𝒓 𝐨𝐫

𝒙 ≤ −𝟏 − 𝝅/𝟐 ≤ 𝒚 < 𝝅

The Inverse Trigonometric Functions

Graphs of sec & csc inverse trigonometric function:

𝒙 ≥ 𝟏 𝟎 ≤ 𝒚 < 𝝅/𝟐
𝒐𝒓 𝐨𝐫
𝒙 ≤ −𝟏 − 𝝅 ≤ 𝒚 < 𝝅/𝟐

3.1 Properties of Inverse Trigonometric Function
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Inverse Properties

f (f –1(x)) = x and   f –1(f (x)) = x

Remember that the trig. 

functions have inverses only in 

restricted domains.

3.1 Properties of Inverse Trigonometric Function
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DERIVATIVES

3.2 Derivative of Inverse Trigonometric Function
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•We know that:

–The sine function f is continuous, 

so the inverse sine function is also 

continuous. 

–The sine function is differentiable, 

so the inverse sine function is also 

differentiable.

INVERSE SINE FUNCTIONS

3.2 Derivative of Inverse Trigonometric Function
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•since we know that is sin-1 differentiable, we can 

just as easily calculate it by implicit differentiation as 

follows:

INVERSE SINE FUNCTIONS

•Let y = sin-1x.

– Then, sin y = x and –π/2 ≤ y ≤ π/2. 

– Differentiating sin y = x implicitly with respect to x,   

we obtain:
cos 𝑦 .

𝑑𝑦

𝑑𝑥
= 1

and
𝑑𝑦

𝑑𝑥
=

1

cos 𝑦

3.2 Derivative of Inverse Trigonometric Function
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• Now, cos y ≥ 0 since –π/2 ≤ y ≤ π/2, so

INVERSE SINE FUNCTIONS

2 2

2

cos 1 sin 1

1 1

cos 1

y y x

dy

dx y x

= − = −

= =
−

Therefore

1

2

1
(sin ) 1 1

1

d
x x

dx x

− = −  
−

3.2 Derivative of Inverse Trigonometric Function
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•we have:
2

2 2

4 2

2 4

1
'( ) ( 1)

1 ( 1)

1
2

1 ( 2 1)

2

2

= −
− −

=
− − +

=
−

d
f x x

dxx

x
x x

x

x x

• If f(x) = sin-1(x2 – 1), find:     f ’(x). 

INVERSE SINE FUNCTIONS

3.2 Derivative of Inverse Trigonometric Function
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• Differentiate:

1 1

1 2 1

1 2 2

(sin )

(sin ) (sin )

1

(sin ) 1

dy d
x

dx dx

d
x x

dx

x x

− −

− − −

−

=

= −

= −
−

1

1

sin
y

x−
=

3.2 Derivative of Inverse Trigonometric Function
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• Differentiate: =( ) arctanf x x x

1/ 21
22

1
'( ) ( ) arctan

1 ( )

arctan
2(1 )

f x x x x
x

x
x

x

−= +
+

= +
+

3.2 Derivative of Inverse Trigonometric Function
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3.2 Derivative of Inverse Trigonometric Function
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3.2 Derivative of Inverse Trigonometric Function
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3.2 Derivative of Inverse Trigonometric Function
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3.2 Derivative of Inverse Trigonometric Function
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Find an equation for the line 

tangent to the graph of                 at 

x = -1

xy 1cot−=

21

1

x+

−
=x

dx

d 1cot−

2

1

)1(1

1
2

−
=

−+

−At x = -1

Slope of 

tangent line

When x = -1, y =
4

3

( )1
2

1

4

3
+

−
=− xy



3.2 Derivative of Inverse Trigonometric Function
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3.3 Integration of Inverse Trigonometric Function

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

33



3.3 Integration of Inverse Trigonometric Function
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3.3 Integration of Inverse Trigonometric Function
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3.3 Integration of Inverse Trigonometric Function
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3.3 Integration of Inverse Trigonometric Function
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3.3 Integration of Inverse Trigonometric Function

Example: 

Evaluate

Solution:
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3.3 Integration of Inverse Trigonometric Function

Example: 

Evaluate

Solution:
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3.3 Integration of Inverse Trigonometric Function

Example: 

Evaluate

Solution:
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