Salahaddin University

College of Engineering

 Electrical Department
Chapter Three

Inverse Trigonometric

 FunctionPrepared By: Khalid A.Hamed
Khalid.abduljabbar@su.edu.krd

Subject: Math II Class: $1^{\text {st }}$ Year $2^{\text {nd }}$ Sem.

Outline Inverse Trigonometric Function

3.1 Properties of Inverse Trigonometric Function
3.2 Derivative of Inverse Trigonometric Function
3.3 Integration of Inverse Trigonometric Function

3.1 Properties of Inverse Trigonometric Function

-Here, you can see that the sine function $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})$ is not one-to-one.
-Use the Horizontal Line Test.

3.1 Properties of Inverse Trigonometric Function

INVERSE TRIGONOMETRIC FUNCTIONS

-However, here, you can see that
the function $f(x)=\sin x,-\pi / 2 \leq x \leq \pi / 2$,
is one-to-one.

3.1 Properties of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- As the definition of an inverse function states

$$
f^{-1}(x)=y \Leftrightarrow f(y)=x
$$

- that
- we have:

$$
\sin ^{-1} x=y \Leftrightarrow \sin y=x \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

- Thus, if $-1 \leq x \leq 1, \sin ^{-1} x$ is the number between $-\pi / 2$ and $\pi / 2$ whose sine is x.

3.1 Properties of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- Evaluate:

$$
\sin ^{-1}\left(\frac{1}{2}\right)
$$

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

-This is because $\sin (\pi / 6)=1 / 2$, and $\pi / 6$ lies between $-\pi / 2$ and $\pi / 2$.

3.1 Properties of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- Evaluate: $\tan \left(\arcsin \frac{1}{3}\right)$
- Let $\theta=\arcsin \frac{1}{3}$, so $\sin \theta=\frac{1}{3}$.
-Then, we can draw a right triangle with angle θ.
-So, we deduce from the Pythagorean Theorem that the third side has length $\sqrt{9-1}=2 \sqrt{2}$.
- This enables us to read from the triangle that:

$$
\tan \left(\arcsin \frac{1}{3}\right)=\tan \theta=\frac{1}{2 \sqrt{2}}
$$

3.1 Properties of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- In this case, the cancellation equations for inverse functions become:

$$
\begin{array}{lll}
\sin ^{-1}(\sin x)=x & \text { for }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\sin \left(\sin ^{-1} x\right)=x & \text { for } & -1 \leq x \leq 1
\end{array}
$$

3.1 Properties of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- The graph is obtained from that of the restricted sine function by reflection about the line $y=x$.

3.1 Properties of Inverse Trigonometric Function

INVERSE COSINE FUNCTIONS

-The inverse cosine function is handled similarly.

$$
\cos ^{-1} x=y \quad \Leftrightarrow \cos y=x \text { and } 0 \leq y \leq \pi
$$

-The restricted cosine function $f(x)=\cos x, 0 \leq x \leq \pi$, is one-to-one.
-So, it has an inverse function denoted by $\cos ^{-1}$ or arccos.

3.1 Properties of Inverse Trigonometric Function

INVERSE COSINE FUNCTIONS

- The cancellation equations are:

$$
\begin{array}{ll}
\cos ^{-1}(\cos x)=x & \text { for } 0 \leq x \leq \pi \\
\cos \left(\cos ^{-1} x\right)=x & \text { for }-1 \leq x \leq 1
\end{array}
$$

3.1 Properties of Inverse Trigonometric Function

INVERSE COSINE FUNCTIONS

-The inverse cosine function, $\cos ^{-1}$, has domain $[-1,1]$ and range $[0, \pi]$, and is a continuous function.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS
-The inverse tangent function, $\tan ^{-1}=\arctan$, has domain R and range $(-\pi / 2, \pi / 2)$.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS
-We know that:
$\lim \tan x=\infty$ and $\lim \tan x=-\infty$ $x \rightarrow(\pi / 2)^{-}$
-So, the lines

$$
x= \pm \pi / 2
$$

are vertical asymptotes of
the graph of tan.

3.1 Properties of Inverse Trigonometric Function INVERSE TANGENT FUNCTIONS
-The graph of $\tan ^{-1}$ is obtained by reflecting the graph of the restricted tangent function about the line $y=x$.
-It follows that the lines $y=\pi / 2$ and $y=-\pi / 2$ are horizontal asymptotes of the graph of $\tan ^{-1}$

3.1 Properties of Inverse Trigonometric Function Graph of Trigonometric FUNCTIONS

3.1 Properties of Inverse Trigonometric Function

The Inverse Trigonometric Functions

Graphs of $\sin \& \cos$ inverse trigonometric function:

Domain
$-1 \leq x \leq 1$

Range
$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

Domain
$-1 \leq x \leq 1$
Range
$\mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{\pi}$

3.1 Properties of Inverse Trigonometric Function

The Inverse Trigonometric Functions

Graphs of $\boldsymbol{t a n} \& \cot$ inverse trigonometric function:

Domain

$-\infty<x<\infty$

Range
$-\frac{\pi}{2}<y<\frac{\pi}{2}$

Domain
$-1 \leq x \leq 1$
$\mathbf{0}<\boldsymbol{y}<_{18} \boldsymbol{\pi}$

3.1 Properties of Inverse Trigonometric Function

The Inverse Trigonometric Functions

Graphs of sec \& csc inverse trigonometric function:

Domain
$x \geq 1$ or
$x \leq-1$

Range
$0 \leq y<\pi / 2$
or
$-\pi \leq y<\pi / 2$

Domain

$$
\begin{gathered}
x \geq 1 \\
o r \\
x \leq-1
\end{gathered}
$$

Range
$0<y \leq \pi / 2$
or
$-\pi / 2 \leq \boldsymbol{y}<\pi$

3.1 Properties of Inverse Trigonometric Function

Inverse Properties

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x
$$

Remember that the trig. functions have inverses only in restricted domains.

3.2 Derivative of Inverse Trigonometric Function

DERIVATIVES

$$
\begin{array}{c|c}
\hline \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}} \\
\hline
\end{array}
$$

3.2 Derivative of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS
 -We know that:

-The sine function f is continuous, so the inverse sine function is also continuous.
-The sine function is differentiable, so the inverse sine function is also differentiable.

3.2 Derivative of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- since we know that is $\sin ^{-1}$ differentiable, we can
just as easily calculate it by implicit differentiation as follows:
-Let $y=\sin ^{-1} x$.
- Then, $\sin y=x$ and $-\pi / 2 \leq y \leq \pi / 2$.
- Differentiating $\quad \sin y=x \quad$ implicitly with respect to x, we obtain:

$$
\begin{aligned}
& \cos y \cdot \frac{d y}{d x}=1 \\
& \text { and } \frac{d y}{d x}=\frac{1}{\cos y}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- Now, cos $y \geq 0$ since $-\pi / 2 \leq y \leq \pi / 2$, so

$$
\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}}
$$

Therefore

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
-1<x<1
$$

3.2 Derivative of Inverse Trigonometric Function

INVERSE SINE FUNCTIONS

- If $f(x)=\sin ^{-1}\left(x^{2}-1\right)$, find: $\quad f^{\prime}(x)$.
-we have:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\sqrt{1-\left(x^{2}-1\right)^{2}}} \frac{d}{d x}\left(x^{2}-1\right) \\
& =\frac{1}{\sqrt{1-\left(x^{4}-2 x^{2}+1\right)}} 2 x \\
& =\frac{2 x}{\sqrt{2 x^{2}-x^{4}}}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

- Differentiate: $\quad y=\frac{1}{\sin ^{-1} x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\sin ^{-1} x\right)^{-1} \\
& =-\left(\sin ^{-1} x\right)^{-2} \frac{d}{d x}\left(\sin ^{-1} x\right) \\
& =-\frac{1}{\left(\sin ^{-1} x\right)^{2} \sqrt{1-x^{2}}}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

- Differentiate: $f(x)=x \arctan \sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =x \frac{1}{1+(\sqrt{x})^{2}}\left(\frac{1}{2} x^{-1 / 2}\right)+\arctan \sqrt{x} \\
& =\frac{\sqrt{x}}{2(1+x)}+\arctan \sqrt{x}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

Example 1

Differentiate $\arcsin (2 x)$

$$
\begin{aligned}
\arcsin (2 x)^{\prime} & =\frac{1}{\sqrt{1-(2 x)^{2}}} 2 \\
& =\frac{2}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

Example 3

Differentiate $x \arccos x$

$$
\begin{aligned}
& (x \arccos x)^{\prime} \\
& =\arccos x+x \frac{-1}{\sqrt{1-x^{2}}} \\
& =\arccos x-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Example 2

Differentiate $\arctan \left(\frac{x}{2}\right)$

$$
\begin{aligned}
& \arctan \left(\frac{x}{2}\right) \\
& =\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \frac{1}{2} \\
& =\frac{1}{2\left(1+\frac{x^{2}}{4}\right)} \\
& =\frac{2}{4+x^{2}}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

Find the derivative of:
$f(x)=\arctan \sqrt{x}=\arctan (x)^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { Let } \mathrm{u}=x^{\frac{1}{2}} \\
& \qquad \frac{d u}{d x}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{\frac{1}{2 \sqrt{x}}}{1+(\sqrt{x})^{2}}=\frac{1}{2 \sqrt{x}(1+x)}
$$

3.2 Derivative of Inverse Trigonometric Function

Solve: $\frac{d}{d x} \sec ^{-1}\left(x^{2}-x\right)$
Solution:

$$
\begin{aligned}
u & =x^{2}-x \quad \frac{d u}{d x}=2 x-1 \\
& =\frac{1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x} \\
& =\frac{2 x-1}{\left|x^{2}-x\right| \sqrt{\left(x^{2}-x\right)^{2}-1}}
\end{aligned}
$$

Solve: $\frac{d}{d x} \tan ^{-1}(\sin x)$
$\stackrel{\text { Solution: }}{u}=\sin x \quad \frac{d u}{d x}=\cos x$

$$
\begin{aligned}
& =\frac{1}{1+u^{2}} \cdot \frac{d u}{d x} \\
& =\frac{\cos x}{1+\sin ^{2} x}
\end{aligned}
$$

3.2 Derivative of Inverse Trigonometric Function

Example Find the following derivatives.
a. $\tan ^{-1}\left(x^{3}\right)$

Set $u=x^{3}$, so $\left[\tan ^{-1}\left(x^{3}\right)\right]^{\prime}=\frac{\left(x^{3}\right)^{\prime}}{1+\left(x^{3}\right)^{2}}=\frac{3 x^{2}}{1+x^{6}}$
b. $\cos ^{-1}\left(e^{x^{2}}\right)$

Set $u=e^{x}$, so $\left[\cos ^{-1}\left(e^{x^{2}}\right)\right]^{\prime}=\frac{-\left(e^{x^{2}}\right)^{\prime}}{\sqrt{1-\left(e^{x^{2}}\right)^{2}}}=\frac{-2 x e^{x^{2}}}{\sqrt{1-e^{2 x^{2}}}}$
c. $\sec ^{-1}(\ln (x))$

Set $u=\ln (x)$, so $\left[\sec ^{-1}(\ln (x)]^{\prime}\right.$
$=\frac{1 / x}{|\ln (x)| \sqrt{\ln ^{2}(x)-1}}$
3.2 Derivative of Inverse Trigonometric Function Find an equation for the line tangent to the graph of $y=\cot ^{-1} x$ at

$$
x=-1
$$

$$
\frac{d}{d x} \cot ^{-1} x=\frac{-1}{1+x^{2}} \underbrace{\begin{array}{c}
\text { a }
\end{array}}_{\begin{array}{c}
\text { Slope of } \\
\text { tangent line }
\end{array}}
$$

$$
\text { At } x=-1 \quad \frac{-1}{1+(-1)^{2}}=\frac{-1}{2}
$$

$$
\text { When } x=-1, y=\frac{3 \pi}{4}
$$

$$
y-\frac{3 \pi}{4}=\frac{-1}{2}(x+1)
$$

3.3 Integration of Inverse Trigonometric Function

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1} \frac{u}{a}+C$
2. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1} \frac{u}{a}+C$
3. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{u}{a}+C$

3.3 Integration of Inverse Trigonometric Function

Proof

Let $y=\sin ^{-1} \frac{x}{a}$. Then $a \sin y=x$. Now let's use implicit differentiation.
We obtain $\frac{d}{d x}(a \sin y)=\frac{d}{d x}(x) \Rightarrow a \cos y \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{a \cos y}$.
For $\quad-\frac{\pi}{7} \leq y \leq \frac{\pi}{7}, \cos y \geq 0$.
Thus, applying the Pythagorean identity $\sin ^{2} y+\cos ^{2} y=1$,
we have $\cos y=\sqrt{1=\sin ^{2} y}$. This gives

$$
\frac{1}{a \cos y}=\frac{1}{a \sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{a^{2}-a^{2} \sin ^{2} y}}=\frac{1}{\sqrt{a^{2}-x^{2}}} .
$$

Then for $-a \leq x \leq a$, we have

$$
\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\sin ^{-1}\left(\frac{u}{a}\right)+C .
$$

3.3 Integration of Inverse Trigonometric Function

Example

Find $\int \frac{1}{25+16 x^{2}} \mathrm{~d} x$.
Here, we take the 16 outside the integral, so that we get

$$
\int \frac{1}{25+16 x^{2}} \mathrm{~d} x=\frac{1}{16} \int \frac{1}{\frac{25}{16}+x^{2}} \mathrm{~d} x .
$$

Now we can see that $a=\sqrt{\frac{25}{16}}=\frac{5}{4}$, so that

$$
\begin{aligned}
\int \frac{1}{25+16 x^{2}} \mathrm{~d} x & =\frac{1}{16} \times \frac{1}{\left(\frac{5}{4}\right)} \tan ^{-1}\left(\frac{x}{\left(\frac{5}{4}\right)}\right)+c \\
& =\frac{1}{16} \times \frac{4}{5} \tan ^{-1}\left(\frac{4 x}{5}\right)+c \\
& =\frac{1}{20} \tan ^{-1}\left(\frac{4 x}{5}\right)+c
\end{aligned}
$$

3.3 Integration of Inverse Trigonometric Function

Example Find the integral $\int \frac{d x}{9+4 x^{2}}$
Match the form of the integral to the one for $\tan ^{-1}(u)$.
Write $9+4 x^{2}=9\left(1+\frac{4}{9} x^{2}\right)=9\left[1+\left(\frac{2}{3} x\right)^{2}\right]$
Hence $\int \frac{d x}{9+4 x^{2}}=\frac{1}{9} \int \frac{d x}{1+\left(\frac{2}{3} x\right)^{2}}$

$$
\begin{aligned}
& \frac{1}{9} \int \frac{d x}{1+\left(\frac{2}{3} x\right)^{2}} \\
= & \frac{1}{9} \int \frac{1}{1+u^{2}} \frac{3}{2} d u \\
= & \frac{1}{6} \int \frac{1}{1+u^{2}} d u \\
= & \frac{1}{6} \tan ^{-1}(u)+C \\
= & \frac{1}{6} \tan ^{-1}\left(\frac{2}{3} x\right)+C
\end{aligned}
$$

3.3 Integration of Inverse Trigonometric Function

Example Find the definite integral $\int_{\ln (1 / 2)}^{0} \frac{e^{x}}{\sqrt{1-\mathrm{e}^{2 x}}} d x$

$$
\begin{aligned}
& \int_{\ln (12)}^{0} \frac{\mathrm{e}^{\mathrm{x}}}{\sqrt{1-\mathrm{e}^{2 \mathrm{x}}}} \mathrm{dx} \\
&= \int_{1 / 2}^{1} \frac{\mathrm{e}^{\mathrm{x}}}{\sqrt{1-\mathrm{u}^{2}}} \frac{\mathrm{du}}{\mathrm{e}^{\mathrm{x}}} \\
&= \int_{1 / 2}^{1} \frac{\mathrm{du}}{\sqrt{1-\mathrm{u}^{2}}} \\
&=\left.\sin ^{-1}(\mathrm{u})\right|_{1 / 2} ^{1}
\end{aligned}
$$

$$
=\sin ^{-1}(1)-\sin ^{-1}(1 / 2)=\pi / 2-\pi / 6=\pi / 3
$$

3.3 Integration of Inverse Trigonometric Function

Example:
Evaluate

$$
\int \frac{\sin ^{-1} t d t}{\sqrt{1-t^{2}}}
$$

Solution:
Substitute $u=\arcsin (t) \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{1}{\sqrt{1-t^{2}}}$ (steps) $\longrightarrow \mathrm{d} t=\sqrt{1-t^{2}} \mathrm{~d} u$:
$=\int u \mathrm{~d} u$
Apply power rule:

$$
\begin{gathered}
\int u^{\mathrm{n}} \mathrm{~d} u=\frac{u^{\mathrm{n}+1}}{\mathrm{n}+1} \text { with } \mathrm{n}=1: \\
=\frac{u^{2}}{2}
\end{gathered}
$$

Undo substitution $u=\arcsin (t)$:

$$
=\frac{\arcsin ^{2}(t)}{2}
$$

3.3 Integration of Inverse Trigonometric Function

Example:
Evaluate $\int \frac{\tan ^{-1}(2 t)}{1+4 t^{2}} d t$
Solution:
Solution:
Substitute $u=\arctan (2 t) \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{2}{4 t^{2}+1}$ (steps) $\longrightarrow \mathrm{d} t=\frac{4 t^{2}+1}{2} \mathrm{~d} u$:

$$
\begin{gathered}
=\frac{1}{2} \int u \mathrm{~d} u \\
=\frac{u^{2}}{4}
\end{gathered}
$$

Undo substitution $u=\arctan (2 t)$:

$$
=\frac{\arctan ^{2}(2 t)}{4}
$$

3.3 Integration of Inverse Trigonometric Function

Example:

$$
\text { Evaluate } \quad \int \frac{e^{t} \cos ^{-1}\left(e^{t}\right)}{\sqrt{1-e^{2 t}}} d t
$$

Solution:
Substitute $u=\arccos \left(\mathrm{e}^{t}\right) \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} t}=-\frac{\mathrm{e}^{t}}{\sqrt{1-\mathrm{e}^{2 t}}}($ steps $) \longrightarrow \mathrm{d} t=-\mathrm{e}^{-t} \sqrt{1-\mathrm{e}^{2 t}} \mathrm{~d} u$:

$$
\begin{gathered}
=-\int u \mathrm{~d} u \\
=-\frac{u^{2}}{2}
\end{gathered}
$$

Undo substitution $u=\arccos \left(\mathrm{e}^{t}\right)$:

$$
=-\frac{\arccos ^{2}\left(\mathrm{e}^{t}\right)}{2}
$$

