Salahaddin University
 College of Engineering
 Electrical Department

Chapter Two

Exponential function

Prepared By: Khalid A.Hamed
Khalid.abduljabbar@su.edu.krd

Subject: Math II Class: $\mathbf{1}^{\text {st }}$ Year $\mathbf{2}^{\text {nd }}$ Sem.

Outline

Exponential function

2.1 Graph of exponential
2.2 Properties of exponential
2.3 Derivative of exponential
2.4 Integration of exponential

2.1 Graph of exponential

The exponential function f with base b is defined by

$$
f(x)=\mathbf{a} b^{x}
$$

For instance,
where $b>0, b \neq 1$, and x is any real $f(x)=3^{x}$ and $g(x)=0.5^{x}$ number.
** when $\mathrm{b}>1 ; \mathrm{b}$ is considered a growth factor.

2.1 Graph of exponential

The value of $f(x)=3^{x}$ when $x=2$ is

$$
f(2)=3^{2}=9
$$

The value of $f(x)=3^{x}$ when $x=-2$ is

$$
f(-2)=3^{-2}=\frac{1}{9}
$$

The value of $g(x)=0.5^{x}$ when $x=4$ is

$$
g(4)=0.5^{4}=0.0625
$$

2.1 Graph of exponential

The graph of $f(x)=a b^{x}, b>1$

2.1 Graph of exponential

Since $\mathrm{a}<1$;
The graph of $f(x)=a b^{x}, 0<b<1 \quad$ a is decay factor.

2.1 Graph of exponential

Example: Sketch the graph of $f(x)=2^{x}$.

x	$\mathrm{f}(\mathrm{x})$
-2	$2^{-2}=1 / 4$
-1	$2^{-1}=1 / 2$
0	$2^{0}=1$
1	$2^{1}=2$
2	$2^{2}=4$

2.1 Graph of exponential

Example: Sketch the graph of $g(x)=2^{x}-1$. State the domain and range.

The graph of this function is a vertical translation of the graph of $f(x)=2^{x}$ down one unit.

Domain: $(-\infty, \infty)$
Range: $(-1, \infty)$

2.1 Graph of exponential

Example: Sketch the graph of $g(x)=2^{-x}$. State the domain and range.

The graph of this function is a reflection the graph of $f(x)=2^{x}$ in the y axis.

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$

2.1 Graph of exponential

The Natural Base e

The irrational number \boldsymbol{e}, where

$$
e \approx 2.718281828 . . .
$$

is used in applications involving growth and decay.

Using techniques of calculus, it can be shown that

$$
\left(1+\frac{1}{n}\right)^{n} \rightarrow e \text { as } n \rightarrow \infty
$$

2.1 Graph of exponential

The Natural Base e $\quad\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$

- We can experimentally verify that this number exists and is
$e \approx 2.718281828459045 \ldots$
- e is irrational
- e is transcendental

n	$\left(1+\frac{1}{n}\right)^{n}$
1	2
2	2.25
3	2.37037
10	2.59374
100	2.70481
1000	2.71692
10^{6}	2.71828

An irrational number is a number that cannot be expressed as a fraction \mathbf{p} / \mathbf{q} for any integers \mathbf{p} and \mathbf{q}. Irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.

2.1 Graph of exponential

The graph of $f(x)=e^{x}$

2.2 Properties of exponential

- The exponential function $y=b^{x}(b>0, b \neq 1)$ has the following properties:

1. Its domain is $(-\infty, \infty)$.
2. Its range is $(0, \infty)$.
3. Its graph passes through the point $(0,1)$
4. It is continuous on $(-\infty, \infty)$.
5. It is increasing on $(-\infty, \infty)$ if $b>1$ and decreasing on $(-\infty, \infty)$ if $b<1$.

2.2 Properties of exponential

Theorem
If $a>0$ and $a \neq 1$, then $f(x)=a^{x}$ is a continuous function with domain \mathbb{R} and range $(0, \infty)$. In particular, $a^{x}>0$ for all x. If $a, b>0$ and $x, y \in \mathbb{R}$, then

- $a^{x+y}=a^{x} a^{y}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$ negative exponents mean reciprocals.
- $\left(a^{x}\right)^{y}=a^{x y}$ fractional exponents mean roots
- $(a b)^{x}=a^{x} b^{x}$

Proof.

- This is true for positive integer exponents by natural definition
- Our conventional definitions make these true for rational exponents

2.2 Properties of exponential

Example
Simplify: $8^{2 / 3}$
Solution

$$
\begin{aligned}
& \text { - } 8^{2 / 3}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4 \\
& \text { - Or, }(\sqrt[3]{8})^{2}=2^{2}=4
\end{aligned}
$$

Example
Simplify: $\frac{\sqrt{8}}{2^{1 / 2}}$
Answer
2

2.3 Derivative of exponential

Look at the graph of $\quad y=e^{x}$

> The slope at $\mathbf{x}=0$ appears to be 1 .

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} f^{\prime}(0)
\end{aligned}
$$

2.3 Derivative of exponential

Now we attempt to find a general formula for the derivative of $y=e^{x}$ using the definition.

$$
\begin{array}{rlr}
\frac{d}{d x}\left(e^{x}\right)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} & =e^{x} \cdot \lim _{h \rightarrow} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} & \\
=\lim _{h \rightarrow 0}\left(e^{x} \cdot \frac{e^{h}-1}{h}\right) & & =e^{x} \cdot 1 \\
\text { have assume the sl } \\
& & =e^{x}
\end{array}
$$

$$
=e^{x} \cdot \lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)
$$

This is the slope at $x=0$, which we have assumed to be 1 .

2.3 Derivative of exponential

e^{x} is its own derivative!

If we incorporate the chain rule:

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

We can now use this formula to find the derivative of

2.3 Derivative of exponential

Derivative of $\boldsymbol{a}^{\boldsymbol{x}}$

If $a>0$ and $a \neq 1$, we can use the properties of logarithms to write a^{x} in terms of e^{x}. The formula for doing so is

$$
a^{x}=e^{x \ln a} . \quad e^{x \ln a}=e^{\ln \left(a^{x}\right)}=a^{x}
$$

We can then find the derivative of a^{x} with the Chain Rule.

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \cdot \frac{d}{d x}(x \ln a)=e^{x \ln a} \cdot \ln a=a^{x} \ln a
$$

Thus, if u is a differentiable function of x, we get the following rule.

For $a>0$ and $a \neq 1$,

$$
\frac{d}{d x}\left(a^{u}\right)=a^{u} \ln a \frac{d u}{d x}
$$

2.3 Derivative of exponential

example:

Differentiate the function $y=e^{\tan x}$
To use the Chain Rule, we let $u=\tan x$.
Then, we have $y=e^{u}$.

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \frac{d u}{d x}=e^{\tan x} \sec ^{2} x
$$

example:
Find y^{\prime} if $y=e^{-4 x} \sin 5 x$.

$$
\begin{aligned}
y^{\prime} & =e^{-4 x}(\cos 5 x)(5)+(\sin 5 x) e^{-4 x}(-4) \\
& =e^{-4 x}(5 \cos 5 x-4 \sin 5 x)
\end{aligned}
$$

2.3 Derivative of exponential

Example: Find the derivative of 2^{x}.
Solution: Recall $2=e^{\ln 2}$, so $2^{x}=\left(e^{\ln 2}\right)^{x}=e^{(\ln 2) x}$.
Thus $\frac{\mathrm{d}}{\mathrm{d} x} 2^{x}=\frac{\mathrm{d}}{\mathrm{d} x} e^{(\ln 2) x}=e^{(\ln 2) x} \frac{\mathrm{~d}}{\mathrm{~d} x}((\ln 2) x)$

$$
=(\ln 2) \cdot 2^{x} .
$$

Theorem

$$
\frac{\mathrm{d}}{\mathrm{dx}} b^{x}=(\ln b) \cdot b^{x}, \quad \text { for any base } b>0
$$

2.3 Derivative of exponential

Example: Find $\frac{\mathrm{d}}{\mathrm{d} x} 7^{x^{2}}$.
Solution: We apply the chain rule with outer function $f(u)=7^{u}$ and inner function $g(x)=x^{2}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} 7^{x^{2}} & =(\ln 7) \cdot 7^{\left(x^{2}\right)} \cdot \frac{\mathrm{d}}{\mathrm{~d} x} x^{2} \\
& =2 \ln 7 \cdot x \cdot 7^{x^{2}}
\end{aligned}
$$

Example: Find $\frac{\mathrm{d}}{\mathrm{d} x} 5^{5^{x}}$.

Solution:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} 5^{5^{x}} & =(\ln 5) \cdot 5^{5^{x}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} 5^{x} \\
& =(\ln 5) \cdot 5^{5^{x}} \cdot(\ln 5) \cdot 5^{x} \\
& =\ln ^{2} 5 \cdot 5^{x} \cdot 5^{5^{x}}
\end{aligned}
$$

2.4 Integration of exponential

- Because the exponential function $y=e^{x}$ has a simple derivative, its integral is also simple:

$$
\int e^{x} d x=e^{x}+C
$$

2.4 Integration of exponential

 Example Evaluate $\int e^{(3 x+1)} d x=\int e^{u} d x$Let $u=3 x+1$
$d u=3 d x$

$$
\frac{1}{3} d u=d x
$$

$$
\begin{aligned}
& =\int e^{u} \cdot \frac{1}{3} d u \\
& =\frac{1}{3} \int e^{u} d u \\
& =\frac{1}{3} e^{u}+C
\end{aligned}
$$

$$
=\frac{1}{3} e^{(3 x+1)}+C
$$

2.4 Integration of exponential

Test: Take the derivative of the choice of u. If you cannot find it elsewhere in the integrand, then use a different expression for u.

Testing Zone:
What if $u=10 x^{4}+4 x$?
Then $d u=\left(40 x^{3}+4\right) d x$
What if $u=x^{5}+x^{2}-1$?
Then $d u=\left(5 x^{4}+2 x\right) d x$
This expression is off only by a constant multiple.

2.4 Integration of exponential

Evaluate $\int\left(10 x^{4}+4 x\right) e^{\left(x^{5}+x^{2}-1\right)} d x=\int e^{u}\left(10 x^{4}+4 x\right) d x$

$$
\begin{aligned}
\text { Let } u & =x^{5}+x^{2}-1 & & =\int e^{u} \cdot 2 d u \\
d u & =\left(5 x^{4}+2 x\right) d x & & =2 \int e^{u} d u
\end{aligned}
$$

$$
2 d u=\left(10 x^{4}+4 x\right) d x
$$

$$
\begin{aligned}
& =2 e^{u}+C \\
& =2 e^{\left(x^{5}+x^{2}-1\right)}+C
\end{aligned}
$$

