

Salahaddin University College of Engineering Electrical Department

Chapter Two

Exponential function

Prepared By: Khalid A.Hamed Khalid.abduljabbar@su.edu.krd Subject: Math II Class: 1st Year 2nd Sem.

Outline Exponential function

2.1 Graph of exponential

- 2.2 Properties of exponential
- **2.3** Derivative of exponential
- 2.4 Integration of exponential

The *exponential function f* with base *b* is defined by

For instance,

$$f(x) = \mathbf{a}b^x$$

are exponential functions.

 $f(x) = 3^x$ and $g(x) = 0.5^x$

where b > 0, $b \neq 1$, and x is any real number.

** when b> 1; b is considered a growth factor.

The value of $f(x) = 3^x$ when x = 2 is

$$f(2) = 3^2 = 9$$

The value of $f(x) = 3^x$ when x = -2 is $f(-2) = 3^{-2} = \frac{1}{9}$

The value of $g(x) = 0.5^x$ when x = 4 is

$$g(4) = 0.5^4 = 0.0625$$

Example: Sketch the graph of $f(x) = 2^x$.

Example: Sketch the graph of $g(x) = 2^x - 1$. State the domain and range.

The graph of this function is a vertical translation of the graph of $f(x) = 2^x$ down one unit.

Domain: $(-\infty, \infty)$ Range: $(-1, \infty)$

Example: Sketch the graph of $g(x) = 2^{-x}$. State the domain and range.

The graph of this function is a reflection the graph of $f(x) = 2^x$ in the yaxis. Domain: $(-\infty, \infty)$ Range: $(0, \infty)$

The Natural Base e

The irrational number *e*, where

 $e\approx 2.718281828\ldots$

is used in applications involving growth and decay.

Using techniques of calculus, it can be shown that

$$\left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

The Natural Base e

$$\left(1+\frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

 We can experimentally verify that this number exists and is

 $e \approx 2.718281828459045...$

- e is irrational
- e is transcendental

n	$\left(1+\frac{1}{n}\right)^n$
1	2
2	2.25
3	2.37037
10	2.59374
100	2.70481
1000	2.71692
10^{6}	2.71828

An irrational number is a number that cannot be expressed as a fraction **p/q** for any integers **p** and **q**. Irrational numbers have decimal expansions that neither terminate nor become periodic. Every transcendental number is irrational.

The graph of $f(x) = e^x$

2.2 Properties of exponential

 The exponential function y = b^x (b > 0, b ≠ 1) has the following properties:

- 1. Its domain is $(-\infty, \infty)$.
- 2. Its range is $(0, \infty)$.
- 3. Its graph passes through the point (0, 1)
- 4. It is continuous on $(-\infty, \infty)$.
- 5. It is increasing on $(-\infty, \infty)$ if b > 1 and decreasing on $(-\infty, \infty)$ if b < 1.

2.2 Properties of exponential

Theorem

If a > 0 and $a \neq 1$, then $f(x) = a^x$ is a continuous function with domain \mathbb{R} and range $(0, \infty)$. In particular, $a^x > 0$ for all x. If a, b > 0 and $x, y \in \mathbb{R}$, then

a^{x+y} = a^xa^y
a^{x-y} = ^{a^x}/_{a^y} negative exponents mean reciprocals.
(a^x)^y = a^{xy} fractional exponents mean roots
(ab)^x = a^xb^x

Proof.

- This is true for positive integer exponents by natural definition
- Our conventional definitions make these true for rational exponents

2.2 Properties of exponential

Example Simplify: 8^{2/3}

Solution

•
$$8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

• Or, $(\sqrt[3]{8})^2 = 2^2 = 4$.

Example Simplify: $\frac{\sqrt{8}}{2^{1/2}}$

Answer 2

Now we attempt to find a general formula for the derivative of $y = e^x$ using the definition.

$$\frac{d}{dx}\left(e^{x}\right) = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

$$=\lim_{h\to 0}\frac{e^x\cdot e^h-e^x}{h}$$

$$=\lim_{h\to 0}\left(e^x\cdot\frac{e^h-1}{h}\right)$$

$$=e^{x}\cdot\lim_{h\to 0}\left(\frac{e^{h}-1}{h}\right)$$

This is the slope at x=0, which we have assumed to be 1.

$$= e^x \cdot 1$$

 $=e^{x}$

 e^x is its own derivative!

If we incorporate the chain rule:

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$

We can now use this formula to find the derivative of a^x

Derivative of a^x

If a > 0 and $a \neq 1$, we can use the properties of logarithms to write a^x in terms of e^x . The formula for doing so is

$$a^x = e^{x \ln a}$$
. $e^{x \ln a} = e^{\ln(a^x)} = a^x$

We can then find the derivative of a^x with the Chain Rule.

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x\ln a} = e^{x\ln a} \cdot \frac{d}{dx}(x\ln a) = e^{x\ln a} \cdot \ln a = a^{x}\ln a$$

Thus, if *u* is a differentiable function of *x*, we get the following rule.

For a > 0 and $a \neq 1$, $\frac{d}{dx}(a^u) = a^u \ln a \frac{du}{dx}.$

example:

Differentiate the function $y = e^{\tan x}$

To use the Chain Rule, we let $u = \tan x$.

Then, we have $y = e^{u}$.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = e^{u}\frac{du}{dx} = e^{\tan x}\sec^{2} x$$

example:

Find y' if $y = e^{-4x} \sin 5x$.

$$y' = e^{-4x} (\cos 5x)(5) + (\sin 5x)e^{-4x} (-4)$$
$$= e^{-4x} (5\cos 5x - 4\sin 5x)$$

Example: Find the derivative of 2^x . Solution: Recall $2 = e^{\ln 2}$, so $2^x = (e^{\ln 2})^x = e^{(\ln 2)x}$. Thus $\frac{d}{dx} 2^x = \frac{d}{dx} e^{(\ln 2)x} = e^{(\ln 2)x} \frac{d}{dx} ((\ln 2)x)$ $= (\ln 2) \cdot 2^x$.

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x}b^{x} = (\ln b) \cdot b^{x}, \quad \text{for any base } b > 0.$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x} 7^{x^2}$$
.

Solution: We apply the chain rule with outer function $f(u) = 7^u$ and inner function $g(x) = x^2$:

$$\frac{\mathrm{d}}{\mathrm{d}x} 7^{x^2} = (\ln 7) \cdot 7^{(x^2)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} x^2$$
$$= 2 \ln 7 \cdot x \cdot 7^{x^2}$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}$$
 5^{5*}

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x} 5^{5^{\mathsf{x}}} = (\ln 5) \cdot 5^{5^{\mathsf{x}}} \cdot \frac{\mathrm{d}}{\mathrm{d}x} 5^{\mathsf{x}}$$
$$= (\ln 5) \cdot 5^{5^{\mathsf{x}}} \cdot (\ln 5) \cdot 5^{\mathsf{x}}$$
$$= \ln^2 5 \cdot 5^{\mathsf{x}} \cdot 5^{5^{\mathsf{x}}}$$

.

Because the exponential function y = e^x has a simple derivative, its integral is also simple:

$$\int e^x dx = e^x + C$$

Example

Let u = 3x + 1 du = 3 dx $\frac{1}{3}du = dx$

 $=\int e^{u}\cdot\frac{1}{3}du$

Evaluate $\int e^{(3x+1)} dx = \int e^u dx$

 $=\frac{1}{3}\int e^{u} du$

 $= \frac{1}{3}e^u + C$

 $= \frac{1}{3}e^{(3x+1)} + C$

Evaluate $\int (10x^4 + 4x)e^{(x^5 + x^2 - 1)} dx$

Test: Take the derivative of the choice of *u*. If you cannot find it elsewhere in the integrand, then use a different expression for *u*.

Testing Zone:

What if $u = 10x^4 + 4x$? Then $du = (40x^3 + 4)dx$ What if $u = x^5 + x^2 - 1$? Then $du = (5x^4 + 2x)dx$

This expression is off only by a constant multiple.

Evaluate $\int (10x^4 + 4x) e^{(x^5 + x^2 - 1)} dx = \int e^u (10x^4 + 4x) dx$ $=\int e^{u}\cdot 2du$ Let $u = x^5 + x^2 - 1$ $du = \left(5x^4 + 2x\right) dx$ $=2\int e^{u} du$ $2du = \left(10x^4 + 4x\right)dx$ $=2e^{u}+C$ $=2e^{(x^5+x^2-1)}+C$