Q1- Answer the following questions:
A. Find the domain and range of the following functions:

1. $f(x)=-\sqrt{2-x}$
2. $f(x)=3+\sqrt{16-x^{2}}$
3. $f(x)=1+\frac{3}{x-3}$
B. Decide whether the following equation defines a one-to-one function. If so, find the equation of the inverse: $f(x)=(x-2)^{3}$

Q2. Answer the following questions:
A. Find the equations of the tangent lines to the curve $\sin (x+y)=2 x-2 y$, at the point (π, π).
B. Find second derivative of the parametric curve:

$$
x=5 t^{3}+6 t \text { and } y=t^{4}-3
$$

Q3. Answer the following:
A. If $g(x)=\frac{\cos (x)+2}{\sin (x)}$ with $\sin (x) \neq 0$, then find $g^{\prime}\left(\frac{\pi}{2}\right)$
B. Find the approximate value of $f(5.001)$, where $\quad f(x)=x^{3}-\mathbf{7} \boldsymbol{x}^{2}+\mathbf{1 5}$

Q4. Answer the following:
A. Find the local extrema (maxima and minima) for the function,

$$
f(x)=x^{3}-3 x+5
$$

B. If R is the region bounded above by the graph of the function $f(x)=9-\left(\frac{x}{2}\right)^{2}$ and below by the graph of the function $f(x)=6-x$ find the Area of the region R.

Q5- Answer the following questions:
A. Find the domain and range of the following functions:
2. $f(x)=2 \sqrt{x+4}$
3. $f(x)=\sqrt{-2-x}$
4. $f(x)=\frac{1}{x+3}-5$
4. $f(x)=\frac{1}{x-4}$
B. Given $h(x)=\frac{x+4}{2 x-5}$ find $h^{-1}(x)$. Then find $\left(h^{\circ} h^{-1}\right)(x)$.

Q6. Answer the following questions:
A. Find \boldsymbol{y}^{\prime} for each of the following:

1. $x^{3} y^{5}+3 x=8 y^{3}+1$
2. $x^{2} \tan y+y^{10} \sec x=2 x$
B. Find $\frac{d^{2} y}{d x^{2}}$ as a function of t if: $x=t^{3}+3 t^{2}$ and $y=t^{4}-8 t^{2}$

Q7. Answer the following:
A. Find the derivative of:

$$
y=\frac{\sin ^{2} x}{\cos ^{2} x}
$$

B. Use differentials to find the approximate value of $\sqrt{36.1}$

Q8. Answer the following:
A. Evaluate this integral:

$$
\int \sin ^{5} x d x
$$

B. Determine the area of the region bounded
by $y=2 x^{2}+10$ and $y=4 x+16$.
$\boldsymbol{x}=-2$ and $\boldsymbol{x}=\mathbf{5}$

Q9- Answer the following questions:
A. Sketch the following functions stating the domain and range of each:
5. $f(x)=3 x-x^{2}$
6. $f(x)=(x-1)^{2}+1$
B. Determine by composition whether each pair of functions are inverses: (Find the composition $f(g(x)$) and $g(f(x)) f(x)=\frac{2}{3} x+6$ and $g(x)=\frac{3}{2} x-9$

Q10. Answer the following questions:
A. Find the derivative of $\frac{y^{2}+x^{3}}{y^{3}-x^{2}}=x \quad$ at $(1,1)$.
B. Find $\frac{d^{2} y}{d x^{2}}$ as a function of t if: $x=t^{3}+3 t^{2}$ and $y=t^{4}-8 t^{2}$

Q11. Answer the following:
A police car is parked 40 feet from the road at the point P in the shown diagram. Your vehicle is approaching on the road as in the shown diagram and the police are pointing a radar gun at your car. Let x denote the distance from your car to the police car and let θ be the angle between the line of sight of the radar gun and the road. How fast is x changing with respect to θ when $\theta=\frac{\pi}{4}$?

Q12. A dynamite blast blows a heavy rock straight up
with a launch velocity of $160 \mathrm{ft} / \mathrm{sec}$. Its height is given
Q12. A dynamite blast blows a heavy rock straight up
with a launch velocity of $160 \mathrm{ft} / \mathrm{sec}$. Its height is given by $s=-16 t^{2}+160 t$.
I. How high does the rock go? (Maximum Hight)
II. What is the velocity when the rock is 256 ft .
above the ground on the way up? On the way

