Answers of questions:

1. $\mathrm{y}=-10 \mathrm{x}+3 \cos \mathrm{x} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-10+3 \frac{\mathrm{~d}}{\mathrm{dx}}(\cos \mathrm{x})=-10-3 \sin \mathrm{x}$
2. $y=\frac{3}{x}+5 \sin x \Rightarrow \frac{d y}{d x}=\frac{-3}{x^{2}}+5 \frac{d}{d x}(\sin x)=\frac{-3}{x^{2}}+5 \cos x$
3. $y=\csc x-4 \sqrt{x}+7 \Rightarrow \frac{d y}{d x}=-\csc x \cot x-\frac{4}{2 \sqrt{x}}+0=-\csc x \cot x-\frac{2}{\sqrt{x}}$
4. $y-x^{2} \cot x-\frac{1}{x^{2}} \rightarrow \frac{d y}{d x}-x^{2} \frac{d}{d x}(\cot x)+\cot x \cdot \frac{d}{d x}\left(x^{2}\right)+\frac{2}{x^{4}}--x^{2} \csc ^{2} x+(\cot x)(2 x)+\frac{2}{x^{4}}$
$=-x^{2} \csc ^{2} x+2 x \cot x+\frac{2}{x^{3}}$
5. $y=(\sec x+\tan x)(\sec x-\tan x) \Rightarrow \frac{d y}{d x}=(\sec x+\tan x) \frac{d}{d x}(\sec x-\tan x)+(\sec x-\tan x) \frac{d}{d x}(\sec x+\tan x)$ $=(\sec x+\tan x)\left(\sec x \tan x-\sec ^{2} x\right)+(\sec x-\tan x)\left(\sec x \tan x+\sec ^{2} x\right)$
$=\left(\sec ^{2} x \tan x+\sec x \tan ^{2} x-\sec ^{3} x-\sec ^{2} x \tan x\right)+\left(\sec ^{2} x \tan x-\sec x \tan ^{2} x+\sec ^{3} x-\tan x \sec ^{2} x\right)=0$.
(Note also that $y=\sec ^{2} x-\tan ^{2} x=\left(\tan ^{2} x+1\right)-\tan ^{2} x=1 \Rightarrow \frac{d y}{d x}=0$.)
6. $y=(\sin x+\cos x) \sec x \Rightarrow \frac{d y}{d x}=(\sin x+\cos x) \frac{d}{d x}(\sec x)+\sec x \frac{d}{d x}(\sin x+\cos x)$
$=(\sin x+\cos x)(\sec x \tan x)+(\sec x)(\cos x-\sin x)=\frac{(\sin x+\cos x) \sin x}{\cos ^{2} x}+\frac{\cos x-\sin x}{\cos x}$
$=\frac{\sin ^{2} x+\cos x \sin x+\cos ^{2} x-\cos x \sin x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x$
(Note also that $y=\sin x \sec x+\cos x \sec x=\tan x+1 \Rightarrow \frac{d y}{d x}=\sec ^{2} x$.)
7. $\mathrm{y}=\frac{\cot \mathrm{x}}{1+\cot \mathrm{x}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(1+\cot \mathrm{x}) \frac{d}{d x}(\cot \mathrm{x})-(\cot \mathrm{x}) \frac{d}{d x}(1+\cot \mathrm{x})}{(1+\cot \mathrm{x})^{2}}=\frac{(1+\cot \mathrm{x})\left(-\csc ^{2} \mathrm{x}\right)-(\cot \mathrm{x})\left(-\csc ^{2} \mathrm{x}\right)}{(1+\cot \mathrm{x})^{2}}$
$=\frac{-\csc ^{2} x-\csc ^{2} x \cot x+\csc ^{2} x \cot x}{(1+\cot x)^{2}}=\frac{-\csc ^{2} x}{(1+\cot x)^{2}}$
8. $y=\frac{\cos x}{1+\sin \mathrm{x}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(1+\sin \mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}(\cos \mathrm{x})-(\cos \mathrm{x}) \frac{d}{d x}(1+\sin \mathrm{x})}{(1+\sin \mathrm{x})^{2}}=\frac{(1+\sin \mathrm{x})(-\sin \mathrm{x})-(\cos \mathrm{x})(\cos \mathrm{x})}{(1+\sin \mathrm{x})^{2}}$
$=\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}=\frac{-\sin x-1}{(1+\sin x)^{2}}=\frac{-(1+\sin x)}{(1+\sin x)^{2}}=\frac{-1}{1+\sin x}$
9. $y=\frac{4}{\cos x}+\frac{1}{\tan x}=4 \sec x+\cot x \Rightarrow \frac{d y}{d x}=4 \sec x \tan x-\csc ^{2} x$
10. $y=\frac{\cos x}{x}+\frac{x}{\cos x} \Rightarrow \frac{d y}{d x}=\frac{x(-\sin x)-(\cos x)(1)}{x^{2}}+\frac{(\cos x)(1)-x(-\sin x)}{\cos ^{2} x}=\frac{-x \sin x-\cos x}{x^{2}}+\frac{\cos x+x \sin x}{\cos ^{2} x}$
11. $y=x^{2} \sin x+2 x \cos x-2 \sin x \Rightarrow \frac{d y}{d x}=\left(x^{2} \cos x+(\sin x)(2 x)\right)+((2 x)(-\sin x)+(\cos x)(2))-2 \cos x$
$=\mathrm{x}^{2} \cos \mathrm{x}+2 \mathrm{x} \sin \mathrm{x}-2 \mathrm{x} \sin \mathrm{x}+2 \cos \mathrm{x}-2 \cos \mathrm{x}=\mathrm{x}^{2} \cos \mathrm{x}$
12. $y=x^{2} \cos x-2 x \sin x-2 \cos x \Rightarrow \frac{d y}{d x}=\left(x^{2}(-\sin x)+(\cos x)(2 x)\right)-(2 x \cos x+(\sin x)(2))-2(-\sin x)$
13. $\mathrm{s}=\tan \mathrm{t}-\mathrm{t} \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\tan \mathrm{t})-1=\sec ^{2} \mathrm{t}-1=\tan ^{2} \mathrm{t}$
14. $\mathrm{s}=\mathrm{t}^{2}-\sec \mathrm{t}+1 \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{t}-\frac{\mathrm{d}}{\mathrm{dt}}(\sec \mathrm{t})=2 \mathrm{t}-\sec \mathrm{t} \tan \mathrm{t}$
15. $\mathrm{s}=\frac{1+\csc t}{1-\operatorname{csct}} \Rightarrow \frac{\mathrm{ds}}{\mathrm{d} t}=\frac{(1-\csc)(-\csc t \cot t)-(1+\csc)(\csc t \cot t)}{(1-\csc t)^{\prime}}$

$$
=\frac{-\csc t \cot t+\csc ^{2} t \cot t-\csc t \cot t-\csc ^{2} t \cot t}{(1-\csc t)^{2}}=\frac{-2 \csc t \cot t}{(1-\csc t)^{2}}
$$

16. $\mathrm{s}=\frac{\sin t}{1-\cos t} \Rightarrow \frac{d \mathrm{~s}}{\mathrm{dt}}=\frac{(1-\cos \mathrm{t})(\cos t)-(\sin t)(\sin t)}{(1-\cos t)^{2}}=\frac{\cos t-\cos ^{2} t-\sin ^{2} t}{(1-\cos t)^{2}}=\frac{\cos t-1}{(1-\cos t)^{2}}=-\frac{1}{1-\cos t}$

$$
=\frac{1}{\cos t-1}
$$

17. $\mathrm{r}=4-\theta^{2} \sin \theta \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=-\left(\theta^{2} \frac{d}{d \theta}(\sin \theta)+(\sin \theta)(2 \theta)\right)=-\left(\theta^{2} \cos \theta+2 \theta \sin \theta\right)=-\theta(\theta \cos \theta+2 \sin \theta)$
18. $\mathrm{r}=\theta \sin \theta+\cos \theta \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=(\theta \cos \theta+(\sin \theta)(1))-\sin \theta=\theta \cos \theta$
19. $\mathrm{r}=\sec \theta \csc \theta \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=(\sec \theta)(-\csc \theta \cot \theta)+(\csc \theta)(\sec \theta \tan \theta)$

$$
=\left(\frac{-1}{\cos \theta}\right)\left(\frac{1}{\sin \theta}\right)\left(\frac{\cos \theta}{\sin \theta}\right)+\left(\frac{1}{\sin \theta}\right)\left(\frac{1}{\cos \theta}\right)\left(\frac{\sin \theta}{\cos \theta}\right)=\frac{-1}{\sin ^{2} \theta}+\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta-\csc ^{2} \theta
$$

20. $\mathrm{r}=(1+\sec \theta) \sin \theta \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=(1+\sec \theta) \cos \theta+(\sin \theta)(\sec \theta \tan \theta)=(\cos \theta+1)+\tan ^{2} \theta=\cos \theta+\sec ^{2} \theta$
21. $\mathrm{p}=5+\frac{1}{\cot \mathrm{q}}=5+\tan \mathrm{q} \Rightarrow \frac{\mathrm{dp}}{\mathrm{dq}}=\sec ^{2} \mathrm{q}$
22. $\mathrm{p}=(1+\csc \mathrm{q}) \cos \mathrm{q} \Rightarrow \frac{\mathrm{p}}{d \mathrm{q}}=(1+\csc \mathrm{q})(-\sin \mathrm{q})+(\cos \mathrm{q})(-\csc \mathrm{q} \cot \mathrm{q})=(-\sin \mathrm{q}-1)-\cot ^{2} \mathrm{q}=-\sin \mathrm{q}-\csc ^{2} \mathrm{q}$
23. $\mathrm{p}=\frac{\sin \mathrm{q}+\cos \mathrm{q}}{\cos \mathrm{q}} \Rightarrow \frac{\mathrm{dp}}{d \mathrm{q}}=\frac{(\cos \mathrm{q})(\cos q-\sin q)-(\sin q+\cos q)(-\sin q)}{\cos ^{2} q}$
$=\frac{\cos ^{2} q-\cos q \sin q+\sin ^{2} q+\cos q \sin q}{\cos ^{2} q}=\frac{1}{\cos ^{2} q}=\sec ^{2} q$
24. $p=\frac{\tan q}{1+\tan q} \Rightarrow \frac{d p}{d q}=\frac{(1+\tan q)\left(\sec ^{2} q\right)-(\tan q)\left(\sec ^{2} q\right)}{(1+\tan q)^{2}}=\frac{\sec ^{2} q+\tan q \sec ^{2} q-\tan q \sec ^{2} q}{(1+\tan q)^{2}}=\frac{\sec ^{2} q}{(1+\tan q)^{2}}$
25. (a) $y=\csc x \Rightarrow y^{\prime}=-\csc x \cot x \Rightarrow y^{\prime \prime}=-\left((\csc x)\left(-\csc ^{2} x\right)+(\cot x)(-\csc x \cot x)\right)=\csc ^{3} x+\csc x \cot ^{2} x$ $=(\csc x)\left(\csc ^{2} x+\cot ^{2} x\right)=(\csc x)\left(\csc ^{2} x+\csc ^{2} x-1\right)=2 \csc ^{3} x-\csc x$
(b) $y=\sec x \Rightarrow y^{\prime}=\sec x \tan x \Rightarrow y^{\prime \prime}=(\sec x)\left(\sec ^{2} x\right)+(\tan x)(\sec x \tan x)=\sec ^{3} x+\sec x \tan ^{2} x$ $=(\sec x)\left(\sec ^{2} x+\tan ^{2} x\right)=(\sec x)\left(\sec ^{2} x+\sec ^{2} x-1\right)=2 \sec ^{3} x-\sec x$
26. $f(u)=6 u-9 \Rightarrow f^{\prime}(u)=6 \Rightarrow f^{\prime}(g(x))=6 ; g(x)=\frac{1}{2} x^{4} \Rightarrow g^{\prime}(x)=2 x^{3}$; therefore $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)$ $=6 \cdot 2 x^{3}=12 x^{3}$
27. $f(u)=2 u^{3} \Rightarrow f^{\prime}(u)=6 u^{2} \Rightarrow f^{\prime}(g(x))=6(8 x-1)^{2} ; g(x)=8 x-1 \Rightarrow g^{\prime}(x)=8$; therefore $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)$ $=6(8 x-1)^{2} \cdot 8=48(8 x-1)^{2}$
28. $f(u)=\sin u \Rightarrow f^{\prime}(u)=\cos u \Rightarrow f^{\prime}(g(x))=\cos (3 x+1) ; g(x)=3 x+1 \Rightarrow g^{\prime}(x)=3$; therefore $\frac{\text { dy }}{\text { w }}=f^{\prime}(g(x)) g^{\prime}(x)$ $=(\cos (3 \mathrm{x}+1))(3)=3 \cos (3 \mathrm{x}+1)$
29. $f(u)=\cos u \Rightarrow f^{\prime}(u)=-\sin u \Rightarrow f^{\prime}(g(x))=-\sin \left(\frac{-x}{3}\right) ; g(x)=\frac{-x}{3} \Rightarrow g^{\prime}(x)=-\frac{1}{3}$; therefore $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)$ $=-\sin \left(\frac{-x}{3}\right) \cdot\left(\frac{-1}{3}\right)=\frac{1}{3} \sin \left(\frac{-x}{3}\right)$
30. $f(u)=\cos u \Rightarrow f^{\prime}(u)=-\sin u \Rightarrow f^{\prime}(g(x))=-\sin (\sin x) ; g(x)=\sin x \Rightarrow g^{\prime}(x)=\cos x$; therefore $\frac{d y}{\text { dx }}=f^{\prime}(g(x)) g^{\prime}(x)=-(\sin (\sin x)) \cos x$
31. $f(u)=\sin u \Rightarrow f^{\prime}(u)=\cos u \Rightarrow f^{\prime}(g(x))=\cos (x-\cos x) ; g(x)=x-\cos x \Rightarrow g^{\prime}(x)=1+\sin x$; therefore $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)=(\cos (x-\cos x))(1+\sin x)$
32. $f(u)=\tan u \Rightarrow f^{\prime}(u)=\sec ^{2} u \Rightarrow f^{\prime}(g(x))=\sec ^{2}(10 x-5) ; g(x)=10 x-5 \Rightarrow g^{\prime}(x)=10$; therefore $\frac{\text { dy }}{\text { dx }}=f^{\prime}(g(x)) g^{\prime}(x)=\left(\sec ^{2}(10 x-5)\right)(10)=10 \sec ^{2}(10 x-5)$
33. $f(u)=-\sec u \Rightarrow f^{\prime}(u)=-\sec u \tan u \Rightarrow f^{\prime}(g(x))=-\sec \left(x^{2}+7 x\right) \tan \left(x^{2}+7 x\right) ; g(x)=x^{2}+7 x$ $\Rightarrow g^{\prime}(x)=2 x+7$; therefore $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)=-(2 x+7) \sec \left(x^{2}+7 x\right) \tan \left(x^{2}+7 x\right)$
34. With $u=(2 x+1), y=u^{5}$: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=5 u^{4} \cdot 2=10(2 x+1)^{4}$
35. With $u=(4-3 x), y=u^{9}: \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=9 u^{8} \cdot(-3)=-27(4-3 x)^{8}$
36. With $\mathrm{u}=\left(1-\frac{\mathrm{x}}{7}\right), \mathrm{y}=u^{-7}: \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{du}} \frac{\mathrm{du}}{d x}=-7 \mathrm{u}^{-8} \cdot\left(-\frac{1}{7}\right)=\left(1-\frac{\mathrm{x}}{7}\right)^{-8}$
37. With $\mathrm{u}=\left(\frac{\mathrm{x}}{2}-1\right), \mathrm{y}=u^{-10}: \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{du}} \frac{\mathrm{du}}{d \mathrm{x}}=-10 \mathrm{u}^{-11} \cdot\left(\frac{1}{2}\right)=-5\left(\frac{\mathrm{x}}{2}-1\right)^{-11}$
38. With $u=\left(\frac{x^{2}}{8}+x-\frac{1}{x}\right), y=u^{4}$: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=4 u^{3} \cdot\left(\frac{x}{4}+1+\frac{1}{x^{2}}\right)=4\left(\frac{x^{2}}{8}+x-\frac{1}{x}\right)^{3}\left(\frac{x}{4}+1+\frac{1}{x^{2}}\right)$
39. With $u=\left(\frac{x}{5}+\frac{1}{5 x}\right), y=u^{5}: \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=5 u^{4} \cdot\left(\frac{1}{5}-\frac{1}{5 x^{2}}\right)=\left(\frac{x}{5}+\frac{1}{5 x}\right)^{4}\left(1-\frac{1}{x^{2}}\right)$
40. With $u=\tan x, y=\sec u: \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=(\sec u \tan u)\left(\sec ^{2} x\right)=(\sec (\tan x) \tan (\tan x)) \sec ^{2} x$
41. With $u=\pi-\frac{1}{x}, y=\cot u: \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\left(-\csc ^{2} u\right)\left(\frac{1}{x^{2}}\right)=-\frac{1}{x^{2}} \csc ^{2}\left(\pi-\frac{1}{x}\right)$
42. With $u=\sin x, y=u^{3}$: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=3 u^{2} \cos x=3\left(\sin ^{2} x\right)(\cos x)$
43. With $u=\cos x, y=5 u^{-4}: \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\left(-20 u^{-5}\right)(-\sin x)=20\left(\cos ^{-5} x\right)(\sin x)$
44. $\mathrm{p}=\sqrt{3-\mathrm{t}}=(3-\mathrm{t})^{1 / 2} \Rightarrow \frac{\mathrm{~d}}{\mathrm{dt}}=\frac{1}{2}(3-\mathrm{t})^{-1 / 2} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}(3-\mathrm{t})=-\frac{1}{2}(3-\mathrm{t})^{-1 / 2}=\frac{-1}{2 \sqrt{3-t}}$
45. $q=\sqrt{2 r-r^{2}}=\left(2 r-r^{2}\right)^{1 / 2} \Rightarrow \frac{d q}{d r}=\frac{1}{2}\left(2 r-r^{2}\right)^{-1 / 2} \cdot \frac{d}{d r}\left(2 r-r^{2}\right)=\frac{1}{2}\left(2 r-r^{2}\right)^{-1 / 2}(2-2 r)=\frac{1-r}{\sqrt{2 r-r}}$
46. $\mathrm{s}=\frac{4}{3 \pi} \sin 3 \mathrm{t}+\frac{4}{5 \pi} \cos 5 \mathrm{t} \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{4}{3 \pi} \cos 3 \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dt}}(3 \mathrm{t})+\frac{4}{5 \pi}(-\sin 5 \mathrm{t}) \cdot \frac{\mathrm{d}}{\mathrm{dt}}(5 \mathrm{t})=\frac{4}{\pi} \cos 3 \mathrm{t}-\frac{4}{\pi} \sin 5 \mathrm{t}$ $=\frac{4}{\pi}(\cos 3 \mathrm{t}-\sin 5 \mathrm{t})$
47. $\mathrm{s}=\sin \left(\frac{3 \pi t}{2}\right)+\cos \left(\frac{3 \pi}{2}\right) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}}=\cos \left(\frac{3 \pi \mathrm{t}}{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{d}}\left(\frac{3 \pi \mathrm{t}}{2}\right)-\sin \left(\frac{3 \mathrm{mt}}{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{3 \pi \mathrm{t}}{2}\right)=\frac{3 \pi}{2} \cos \left(\frac{3 \pi \mathrm{t}}{2}\right)-\frac{3 \pi}{2} \sin \left(\frac{3 \pi \mathrm{t}}{2}\right)$
$=\frac{3 \pi}{2}\left(\cos \frac{3 \pi}{2}-\sin \frac{3 \pi}{2}\right)$
48. $\mathrm{r}=(\csc \theta+\cot \theta)^{-1} \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=-(\csc \theta+\cot \theta)^{-2} \frac{\mathrm{~d}}{\mathrm{~d} \theta}(\csc \theta+\cot \theta)=\frac{\mathrm{csc} \theta \cot \theta+\csc ^{2} \theta}{(\csc \theta+\cot \theta)^{2}}=\frac{\csc \theta(\cos \theta+\csc \theta)}{(\operatorname{coc} \theta+\cot \theta)^{2}}$

$$
=\frac{\csc \theta}{\csc \theta+\cos \theta}
$$

24. $\mathrm{r}=-(\sec \theta+\tan \theta)^{-1} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} \theta}=(\sec \theta+\tan \theta)^{-2} \frac{\mathrm{~d}}{\mathrm{~d} \theta}(\sec \theta+\tan \theta)=\frac{\operatorname{sc} \theta \tan \theta+\operatorname{sed}^{2} \theta}{(\sec \theta+\tan \theta)^{2}}=\frac{\sec \theta(\tan \theta+\sec \theta)}{(\sec \theta+\tan \theta)^{2}}$

$$
=\frac{\sec \theta}{\sec \theta+\tan \theta}
$$

25. $y=x^{2} \sin ^{4} x+x \cos ^{-2} x \Rightarrow \frac{d y}{d x}=x^{2} \frac{d}{d x}\left(\sin ^{4} x\right)+\sin ^{4} x \cdot \frac{d}{d x}\left(x^{2}\right)+x \frac{d}{d x}\left(\cos ^{-2} x\right)+\cos ^{-2} x \cdot \frac{d}{d x}(x)$
$=x^{2}\left(4 \sin ^{3} x \frac{d}{d x}(\sin x)\right)+2 x \sin ^{4} x+x\left(-2 \cos ^{-3} x \cdot \frac{d}{d x}(\cos x)\right)+\cos ^{-2} x$
$=x^{2}\left(4 \sin ^{3} x \cos x\right)+2 x \sin ^{4} x+x\left(\left(-2 \cos ^{-3} x\right)(-\sin x)\right)+\cos ^{-2} x$
$=4 x^{2} \sin ^{3} x \cos x+2 x \sin ^{4} x+2 x \sin x \cos ^{-3} x+\cos ^{-2} x$
26. $y=\frac{1}{x} \sin ^{-5} x-\frac{x}{3} \cos ^{3} x \Rightarrow y^{\prime}=\frac{1}{x} \frac{d}{d x}\left(\sin ^{-5} x\right)+\sin ^{-5} x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)-\frac{x}{3} \frac{d}{d x}\left(\cos ^{3} x\right)-\cos ^{3} x \cdot \frac{d}{d x}\left(\frac{x}{3}\right)$

$$
\begin{aligned}
& =\frac{1}{x}\left(-5 \sin ^{-6} x \cos x\right)+\left(\sin ^{-5} x\right)\left(-\frac{1}{x^{2}}\right)-\frac{x}{3}\left(\left(3 \cos ^{2} x\right)(-\sin x)\right)-\left(\cos ^{3} x\right)\left(\frac{1}{5}\right) \\
& =-\frac{5}{x} \sin ^{-6} x \cos x-\frac{1}{x} \sin ^{-5} x+x \cos ^{2} x \sin x-\frac{1}{3} \cos ^{3} x
\end{aligned}
$$

27. $y=\frac{1}{2 T}(3 x-2)^{7}+\left(4-\frac{1}{2 x^{x}}\right)^{-1} \Rightarrow \frac{d y}{d x}=\frac{7}{2 T}(3 x-2)^{6} \cdot \frac{d}{d x}(3 x-2)+(-1)\left(4-\frac{1}{2 x^{2}}\right)^{-2} \cdot \frac{d}{d x}\left(4-\frac{1}{2 x^{x}}\right)$

$$
=\frac{7}{21}(3 x-2)^{6} \cdot 3+(-1)\left(4-\frac{1}{2 x^{2}}\right)^{-2}\left(\frac{1}{x^{2}}\right)=(3 x-2)^{6}-\frac{1}{x^{3}\left(4-\frac{1}{3 x^{2}}\right)^{2}}
$$

28. $y=(5-2 x)^{-3}+\frac{1}{8}\left(\frac{2}{x}+1\right)^{4} \Rightarrow \frac{d y}{d x}=-3(5-2 x)^{-4}(-2)+\frac{4}{8}\left(\frac{2}{x}+1\right)^{3}\left(-\frac{2}{x^{2}}\right)=6(5-2 x)^{-4}-\left(\frac{1}{x^{2}}\right)\left(\frac{2}{x}+1\right)^{3}$ $=\frac{6}{(5-2 x)^{4}}-\frac{\left(\frac{2}{2}+1\right)^{3}}{x^{2}}$
29. $y=(4 x+3)^{4}(x+1)^{-3} \Rightarrow \frac{d y}{d x}=(4 x+3)^{4}(-3)(x+1)^{-4} \cdot \frac{d}{d x}(x+1)+(x+1)^{-3}(4)(4 x+3)^{3} \cdot \frac{d}{d x}(4 x+3)$ $=(4 x+3)^{4}(-3)(x+1)^{-4}(1)+(x+1)^{-3}(4)(4 x+3)^{3}(4)=-3(4 x+3)^{4}(x+1)^{-4}+16(4 x+3)^{3}(x+1)^{-3}$ $=\frac{(4 x+3)^{1}}{(x+1)^{2}}[-3(4 x+3)+16(x+1)]=\frac{(4 x+3)^{3}(4 x+7)}{(x+1)^{1}}$
30. $y=(2 x-5)^{-1}\left(x^{2}-5 x\right)^{6} \Rightarrow \frac{d y}{d x}=(2 x-5)^{-1}(6)\left(x^{2}-5 x\right)^{5}(2 x-5)+\left(x^{2}-5 x\right)^{6}(-1)(2 x-5)^{-2}(2)$

$$
=6\left(x^{2}-5 x\right)^{5}-\frac{2\left(x^{2}-5 x\right)^{4}}{(2 x-5)^{2}}
$$

31. $\mathrm{h}(\mathrm{x})=\mathrm{x} \tan (2 \sqrt{\mathrm{x}})+7 \Rightarrow \mathrm{~h}^{\prime}(\mathrm{x})=\mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan \left(2 \mathrm{x}^{1 / 2}\right)\right)+\tan \left(2 \mathrm{x}^{1 / 2}\right) \cdot \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})+0$

$$
=x \sec ^{2}\left(2 x^{1 / 2}\right) \cdot \frac{d}{d x}\left(2 x^{1 / 2}\right)+\tan \left(2 x^{1 / 2}\right)=x \sec ^{2}(2 \sqrt{x}) \cdot \frac{1}{\sqrt{x}}+\tan (2 \sqrt{x})=\sqrt{x} \sec ^{2}(2 \sqrt{x})+\tan (2 \sqrt{x})
$$

32. $k(x)=x^{2} \sec \left(\frac{1}{x}\right) \Rightarrow k^{\prime}(x)=x^{2} \frac{d}{d x}\left(\sec \frac{1}{x}\right)+\sec \left(\frac{1}{x}\right) \cdot \frac{d}{d x}\left(x^{2}\right)=x^{2} \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right) \cdot \frac{d}{d x}\left(\frac{1}{x}\right)+2 x \sec \left(\frac{1}{x}\right)$ $=x^{2} \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)+2 x \sec \left(\frac{1}{x}\right)=2 x \sec \left(\frac{1}{x}\right)-\sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right)$
33. $\mathrm{f}(\theta)=\left(\frac{\sin \theta}{1+\cos \theta}\right)^{2} \Rightarrow \mathrm{f}^{\prime}(\theta)=2\left(\frac{\sin \theta}{1+\cos \theta}\right) \cdot \frac{\mathrm{d}}{\mathrm{d} \theta}\left(\frac{\sin \theta}{1+\cos \theta}\right)=\frac{2 \sin \theta}{1+\cos \theta} \cdot \frac{(1+\operatorname{san} \theta)(\cos \theta)-(\sin B)(-\sin \theta)}{(1+\cos \theta)^{2}}$

$$
=\frac{(2 \sin \theta)\left(\cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)}{(1+\cos \theta)^{2}}=\frac{(2 \sin \theta)(\cos \theta+1)}{(1+\cos \theta)^{3}}=\frac{2 \sin \theta}{(1+\cos \theta)^{2}}
$$

34. $g(t)=\left(\frac{1+\cos t}{\sin t}\right)^{-1} \Rightarrow g^{\prime}(t)=-\left(\frac{1+\cos t}{\sin t}\right)^{-2} \cdot \frac{d}{d i}\left(\frac{1+\cos t}{\sin t}\right)=-\frac{\sin ^{2} t}{(1+2 \cos t)^{2}} \cdot \frac{(\sin t)(-\sin t)-(1+\cos t)(\cos t)}{(\sin t)^{2}}$

$$
=\frac{-\left(-\sin ^{2} t-\cos t-\cos ^{2} t\right)}{(1+\cos t)^{3}}=\frac{1}{1+\cos t}
$$

35. $\mathrm{r}=\sin \left(\theta^{2}\right) \cos (2 \theta) \Rightarrow \frac{\mathrm{d}}{\mathrm{d} \theta}=\sin \left(\theta^{2}\right)(-\sin 2 \theta) \frac{\mathrm{d}}{\mathrm{d} \theta}(2 \theta)+\cos (2 \theta)\left(\cos \left(\theta^{2}\right)\right) \cdot \frac{\mathrm{d}}{\mathrm{d} \theta}\left(\theta^{2}\right)$

$$
=\sin \left(\theta^{2}\right)(-\sin 2 \theta)(2)+(\cos 2 \theta)\left(\cos \left(\theta^{2}\right)\right)(2 \theta)=-2 \sin \left(\theta^{2}\right) \sin (2 \theta)+2 \theta \cos (2 \theta) \cos \left(\theta^{2}\right)
$$

36. $\mathrm{r}=(\sec \sqrt{\theta}) \tan \left(\frac{1}{\theta}\right) \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=(\sec \sqrt{\theta})\left(\sec ^{2} \frac{1}{\theta}\right)\left(-\frac{1}{\theta}\right)+\tan \left(\frac{1}{\theta}\right)(\sec \sqrt{\theta} \tan \sqrt{\theta})\left(\frac{1}{2 \sqrt{\theta}}\right)$

$$
=-\frac{1}{\theta} \sec \sqrt{\theta} \sec ^{2}\left(\frac{1}{\theta}\right)+\frac{1}{2 \sqrt{\theta}} \tan \left(\frac{1}{\theta}\right) \sec \sqrt{\theta} \tan \sqrt{\theta}=(\sec \sqrt{\theta})\left[\frac{\tan \sqrt{\theta} \tan \left(\frac{1}{t}\right)}{2 \sqrt{\theta}}-\frac{\sec ^{2}\left(\frac{1}{2}\right)}{\theta}\right]
$$

37. $\mathrm{q}=\sin \left(\frac{\mathrm{t}}{\sqrt{\mathrm{t}+1}}\right) \Rightarrow \frac{d q}{d t}=\cos \left(\frac{\mathrm{t}}{\sqrt{t+1}}\right) \cdot \frac{d}{d t}\left(\frac{\mathrm{t}}{\sqrt{\mathrm{t}+1}}\right)=\cos \left(\frac{\mathrm{t}}{\sqrt{t+1}}\right) \cdot \frac{\sqrt{t+1}(1)-\mathrm{t} \cdot \frac{d}{2}(\sqrt{\mathrm{t}+1})}{(\sqrt{t+1})^{2}}$

$$
=\cos \left(\frac{t}{\sqrt{t+1}}\right) \cdot \frac{\sqrt{t+1}-\frac{t}{2 y^{t+1}}}{t+1}=\cos \left(\frac{t}{\sqrt{t+1}}\right)\left(\frac{2(t+1)-t}{2(t+1)^{1 / 2}}\right)=\left(\frac{t+2}{2(t+1)^{1 / 2}}\right) \cos \left(\frac{t}{\sqrt{t+1}}\right)
$$

38. $\mathrm{q}=\cot \left(\frac{\sin t}{\mathrm{t}}\right) \Rightarrow \frac{\mathrm{dq}}{\mathrm{dt}}=-\csc ^{2}\left(\frac{\sin t}{\mathrm{t}}\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\sin \mathrm{t}}{\mathrm{t}}\right)=\left(-\csc ^{2}\left(\frac{\sin \mathrm{t}}{\mathrm{t}}\right)\right)\left(\frac{\mathrm{t} \cos \mathrm{t}-\sin \mathrm{t}}{\mathrm{t}^{2}}\right)$
39. $y=\sin ^{2}(\pi t-2) \Rightarrow \frac{d y}{d t}=2 \sin (\pi t-2) \cdot \frac{d}{d t} \sin (\pi t-2)=2 \sin (\pi t-2) \cdot \cos (\pi t-2) \cdot \frac{d}{d t}(\pi t-2)$ $=2 \pi \sin (\pi t-2) \cos (\pi t-2)$
40. $y=\sec ^{2} \pi t \Rightarrow \frac{d y}{d t}=(2 \sec \pi t) \cdot \frac{d}{d t}(\sec \pi t)=(2 \sec \pi t)(\sec \pi t \tan \pi t) \cdot \frac{d}{d t}(\pi t)=2 \pi \sec ^{2} \pi t \tan \pi t$
41. $y=(1+\cos 2 t)^{-4} \Rightarrow \underset{d t}{d y}=-4(1+\cos 2 t)^{-5} \cdot \underset{d t}{d}(1+\cos 2 t)=-4(1+\cos 2 t)^{-5}(-\sin 2 t) \cdot{ }_{d t}^{d t}(2 t)=\underset{(1+\cos 2 t)^{\circ}}{8 \sin 2 t}$
42. $y=\left(1+\cot \left(\frac{t}{2}\right)\right)^{-2} \Rightarrow \frac{d y}{d t}=-2\left(1+\cot \left(\frac{t}{2}\right)\right)^{-3} \cdot \frac{d}{d i t}\left(1+\cot \left(\frac{t}{2}\right)\right)=-2\left(1+\cot \left(\frac{t}{2}\right)\right)^{-3} \cdot\left(-\csc ^{2}\left(\frac{t}{2}\right)\right) \cdot \frac{d}{d t}\left(\frac{t}{2}\right)$ $=\frac{\csc ^{2}\left(\frac{1}{4}\right)}{\left(1+\cot \left(\frac{1}{2}\right)\right)^{2}}$
$43 \mathrm{y}=\sin (\cos (7 \mathrm{t}-5)) \Rightarrow \frac{d y}{d t}=\cos (\cos (7 \mathrm{t}-5)) \cdot \frac{d}{d t} \cos (7 t-5)=\cos (\cos (7 t-5)) \cdot(-\sin (7 t-5)) \cdot \frac{d}{d t}(7 t-5)$ $=-2 \cos (\cos (2 t-5))(\sin (2 t-5))$
43. $\mathrm{y}=\cos \left(5 \sin \left(\frac{1}{3}\right)\right) \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\sin \left(5 \sin \left(\frac{1}{3}\right)\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(5 \sin \left(\frac{1}{3}\right)\right)=-\sin \left(5 \sin \left(\frac{1}{3}\right)\right)\left(5 \cos \left(\frac{1}{3}\right)\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{3}\right)$ $=-\frac{5}{3} \sin \left(5 \sin \left(\frac{t}{3}\right)\right)\left(\cos \left(\frac{t}{3}\right)\right)$
44. $y=\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]^{3} \Rightarrow \frac{d y}{d t}=3\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]^{2} \cdot \frac{d}{d t}\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]=3\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]^{2}\left[4 \tan ^{3}\left(\frac{t}{12}\right) \cdot \frac{d}{d t} \tan \left(\frac{t}{12}\right)\right]$ $=12\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]^{2}\left[\tan ^{3}\left(\frac{t}{12}\right) \sec ^{2}\left(\frac{t}{12}\right) \cdot \frac{1}{12}\right]=\left[1+\tan ^{4}\left(\frac{t}{12}\right)\right]^{2}\left[\tan ^{3}\left(\frac{t}{12}\right) \sec ^{2}\left(\frac{t}{12}\right)\right]$
45. $\mathrm{y}=\frac{1}{6}\left[1+\cos ^{2}(7 \mathrm{t})\right]^{3} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{3}{6}\left[1+\cos ^{2}(7 \mathrm{t})\right]^{2} \cdot 2 \cos (7 \mathrm{t})(-\sin (7 \mathrm{t}))(7)=-7\left[1+\cos ^{2}(7 \mathrm{t})\right]^{2}(\cos (7 \mathrm{t}) \sin (7 \mathrm{t}))$
46. $y=\left(1+\cos \left(t^{2}\right)\right)^{1 / 2} \Rightarrow \frac{d y}{d t}=\frac{1}{2}\left(1+\cos \left(t^{2}\right)\right)^{-1 / 2} \cdot \frac{d}{d t}\left(1+\cos \left(t^{2}\right)\right)=\frac{1}{2}\left(1+\cos \left(t^{2}\right)\right)^{-1 / 2}\left(-\sin \left(t^{2}\right) \cdot \frac{d}{d t}\left(t^{2}\right)\right)$

$$
=-\frac{1}{2}\left(1+\cos \left(t^{2}\right)\right)^{-1 / 2}\left(\sin \left(t^{2}\right)\right) \cdot 2 t=-\frac{\sin \left(t^{2}\right)}{\sqrt{1+\cos \left(t^{2}\right)}}
$$

48. $y=4 \sin (\sqrt{1+\sqrt{t}}) \Rightarrow \frac{d y}{d t}=4 \cos (\sqrt{1+\sqrt{t}}) \cdot \frac{d}{d t}(\sqrt{1+\sqrt{t}})=4 \cos (\sqrt{1+\sqrt{t}}) \cdot \frac{1}{2 \sqrt{1+\sqrt{t}}} \cdot \frac{d}{d t}(1+\sqrt{\mathrm{t}})$

$$
=\frac{2 \cos (\sqrt{1+\sqrt{t}})}{\sqrt{1+\sqrt{t} \cdot 2 \sqrt{t}}}=\frac{\cos (\sqrt{1+\sqrt{t}})}{\sqrt{t+\sqrt{t}}}
$$

49. $y=\left(1+\frac{1}{x}\right)^{3} \Rightarrow y^{\prime}=3\left(1+\frac{1}{x}\right)^{2}\left(-\frac{1}{x^{2}}\right)=-\frac{\frac{3}{x^{2}}}{}\left(1+\frac{1}{x}\right)^{2} \Rightarrow y^{\prime \prime}=\left(-\frac{3}{x^{\prime}}\right) \cdot \frac{d}{d x}\left(1+\frac{1}{x}\right)^{2}-\left(1+\frac{1}{x}\right)^{2} \cdot \frac{d}{d x}\left(\frac{3}{x^{2}}\right)$ $=\left(-\frac{3}{x^{3}}\right)\left(2\left(1+\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)\right)+\left(\frac{6}{x^{3}}\right)\left(1+\frac{1}{x}\right)^{2}=\frac{6}{x^{\top}}\left(1+\frac{1}{x}\right)+\frac{6}{x^{\lambda}}\left(1+\frac{1}{x}\right)^{2}=\frac{6}{x^{\lambda}}\left(1+\frac{1}{x}\right)\left(\frac{1}{x}+1+\frac{1}{x}\right)$ $=\frac{6}{x^{2}}\left(1+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)$
50. $y=(1-\sqrt{x})^{-1} \Rightarrow y^{\prime}=-(1-\sqrt{x})^{-2}\left(-\frac{1}{2} x^{-1 / 2}\right)=\frac{1}{2}(1-\sqrt{x})^{-2} x^{-1 / 2}$
$\Rightarrow y^{\prime \prime}=\frac{1}{2}\left[(1-\sqrt{\mathrm{x}})^{-2}\left(-\frac{1}{2} \mathrm{x}^{-3 / 2}\right)+\mathrm{x}^{-1 / 2}(-2)(1-\sqrt{\mathrm{x}})^{-3}\left(-\frac{1}{2} \mathrm{x}^{-1 / 2}\right)\right]$
$=\frac{1}{2}\left[\frac{-1}{2} x^{-3 / 2}(1-\sqrt{x})^{-2}+x^{-1}(1-\sqrt{x})^{-3}\right]=\frac{1}{2} x^{-1}(1-\sqrt{x})^{-3}\left[-\frac{1}{2} x^{-1 / 2}(1-\sqrt{x})+1\right]$
$=\frac{1}{2 x}(1-\sqrt{x})^{-3}\left(-\frac{1}{2 \sqrt{x}}+\frac{1}{2}+1\right)=\frac{1}{2 x}(1-\sqrt{x})^{-3}\left(\frac{3}{2}-\frac{1}{2 \sqrt{x}}\right)$
51. $\mathrm{y}=\frac{1}{9} \cot (3 \mathrm{x}-1) \Rightarrow \mathrm{y}^{\prime}=-\frac{1}{9} \csc ^{2}(3 \mathrm{x}-1)(3)=-\frac{1}{3} \csc ^{2}(3 \mathrm{x}-1) \Rightarrow \mathrm{y}^{\prime \prime}=\left(-\frac{2}{3}\right)\left(\csc (3 \mathrm{x}-1) \cdot \frac{\mathrm{d}}{\mathrm{dx}} \csc (3 \mathrm{x}-1)\right)$ $=-\frac{2}{3} \csc (3 x-1)\left(-\csc (3 x-1) \cot (3 x-1) \cdot \frac{d}{d x}(3 x-1)\right)=2 \csc ^{2}(3 x-1) \cot (3 x-1)$
52. $y=9 \tan \left(\frac{x}{3}\right) \Rightarrow y^{\prime}=9\left(\sec ^{2}\left(\frac{x}{3}\right)\right)\left(\frac{1}{3}\right)=3 \sec ^{2}\left(\frac{x}{3}\right) \Rightarrow y^{\prime \prime}=3 \cdot 2 \sec \left(\frac{x}{3}\right)\left(\sec \left(\frac{x}{3}\right) \tan \left(\frac{x}{3}\right)\right)\left(\frac{1}{3}\right)=2 \sec ^{2}\left(\frac{x}{3}\right) \tan \left(\frac{x}{3}\right)$
53. $y=x^{9 / 4} \Rightarrow \frac{d y}{4}=\frac{9}{4} x^{5 / 4}$
54. $\mathrm{y}=\sqrt[3]{2 \mathrm{x}}=(2 \mathrm{x})^{1 / 3} \Rightarrow \frac{d y}{4}=\frac{1}{5}(2 \mathrm{x})^{-2 / 3} \cdot 2=\frac{2^{1 / 3}}{3 \mathrm{x}^{2 / 7}}$
55. $y=7 \sqrt{x+6}=7(x+6)^{1 / 2} \Rightarrow \frac{d y}{d x}=\frac{7}{2}(x+6)^{-1 / 2}=\frac{7}{2 \sqrt{x+6}}$
56. $y=-2 \sqrt{x-1}=-2(x-1)^{1 / 2} \Rightarrow \frac{d y}{d x}=-1(x-1)^{-1 / 2}=-\frac{1}{\sqrt{x-1}}$
57. $y=(2 x+5)^{-1 / 2} \Rightarrow \frac{d y}{d x}=-\frac{1}{2}(2 x+5)^{-3 / 2} \cdot 2=-(2 x+5)^{-3 / 2}$
58. $y=(1-6 x)^{2 / 3} \Rightarrow \frac{d y}{d x}=\frac{2}{3}(1-6 x)^{-1 / 3}(-6)=-4(1-6 x)^{-1 / 3}$
59. $y=x\left(x^{2}+1\right)^{1 / 2} \Rightarrow y^{\prime}=x \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)+\left(x^{2}+1\right)^{1 / 2} \cdot 1=\left(x^{2}+1\right)^{-1 / 2}\left(x^{2}+x^{2}+1\right)=\frac{2 x^{2}+1}{\sqrt{x^{2}+1}}$
60. $y=x\left(x^{2}+1\right)^{-1 / 2} \Rightarrow y^{\prime}=x \cdot\left(-\frac{1}{2}\right)\left(x^{2}+1\right)^{-3 / 2}(2 x)+\left(x^{2}+1\right)^{-1 / 2} \cdot 1=\left(x^{2}+1\right)^{-3 / 2}\left(-x^{2}+x^{2}+1\right)=\frac{1}{\left(x^{2}+1\right)^{1 / 2}}$
61. $\mathrm{s}=\sqrt[7]{\mathrm{t}^{2}}=\mathrm{t}^{2 / 7} \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{2}{7} \mathrm{t}^{-5 / 7}$
62. $\mathrm{r}=\sqrt[4]{\theta^{-3}}=\theta^{-3 / 4} \Rightarrow \frac{\mathrm{dr}}{\mathrm{\omega}}=-\frac{3}{4} \theta^{-7 / 4}$
63. $y=\sin \left((2 t+5)^{-2 / 3}\right) \Rightarrow \frac{d y}{d t}=\cos \left((2 t+5)^{-2 / 3}\right) \cdot\left(-\frac{2}{3}\right)(2 t+5)^{-5 / 3} \cdot 2=-\frac{4}{3}(2 t+5)^{-5 / 3} \cos \left((2 t+5)^{-2 / 3}\right)$
64. $\mathrm{z}=\cos \left((1-6 \mathrm{t})^{2 / 3}\right) \Rightarrow \frac{d}{\mathrm{~d}}=-\sin \left((1-6 \mathrm{t})^{2 / 3}\right) \cdot \frac{2}{3}(1-6 \mathrm{t})^{-1 / 3}(-6)=4(1-6 \mathrm{t})^{-1 / 3} \sin \left((1-6 \mathrm{t})^{2 / 3}\right)$
65. $f(x)=\sqrt{1-\sqrt{x}}=\left(1-x^{1 / 2}\right)^{1 / 2} \Rightarrow f^{\prime}(x)=\frac{1}{2}\left(1-x^{1 / 2}\right)^{-1 / 2}\left(-\frac{1}{2} x^{-1 / 2}\right)=\frac{-1}{4(\sqrt{1-\sqrt{v}}) \sqrt{x}}=\frac{-1}{4 \sqrt{x}(1-\sqrt{v}}$
66. $g(x)=2\left(2 x^{-1 / 2}+1\right)^{-1 / 3} \Rightarrow g^{\prime}(x)=-\frac{2}{3}\left(2 x^{-1 / 2}+1\right)^{-4 / 3} \cdot(-1) x^{-3 / 2}=\frac{2}{3}\left(2 x^{-1 / 2}+1\right)^{-4 / 3} x^{-3 / 2}$
67. $\mathrm{h}(\theta)=\sqrt[3]{1+\cos (2 \theta)}=(1+\cos 2 \theta)^{1 / 3} \Rightarrow \mathrm{~h}^{\prime}(\theta)=\frac{1}{3}(1+\cos 2 \theta)^{-2 / 3} \cdot(-\sin 2 \theta) \cdot 2=-\frac{2}{3}(\sin 2 \theta)(1+\cos 2 \theta)^{-2 / 3}$
68. $\mathbf{k}(\theta)=(\sin (\theta+5))^{5 / 4} \Rightarrow \mathbf{k}^{\prime}(\theta)=\frac{5}{4}(\sin (\theta+5))^{1 / 4} \cdot \cos (\theta+5)=\frac{5}{4} \cos (\theta+5)(\sin (\theta+5))^{1 / 4}$
69. $x^{2} y+x y^{2}=6$:

Step 1: $\quad\left(x^{2} \frac{d y}{d x}+y \cdot 2 x\right)+\left(x \cdot 2 y \frac{d y}{d x}+y^{2} \cdot 1\right)=0$
Step 2: $\quad x^{2} \frac{d y}{d x}+2 x y \frac{d y}{d x}=-2 x y-y^{2}$
Step 3: $\quad \frac{d y}{d x}\left(x^{2}+2 x y\right)=-2 x y-y^{2}$
Step 4: $\quad \frac{d y}{d x}=\frac{-2 x y-y^{2}}{x^{2}+2 y}$
20. $x^{3}+y^{3}=18 x y \Rightarrow 3 x^{2}+3 y^{2} \frac{d y}{d x}=18 y+18 x \frac{d y}{d x} \Rightarrow\left(3 y^{2}-18 x\right) \frac{d y}{d x}=18 y-3 x^{2} \Rightarrow \frac{d y}{d x}=\frac{6 y-x^{2}}{y-6 x}$
21. $2 x y+y^{2}=x+y$:

Step 1: $\quad\left(2 x \frac{d y}{d x}+2 y\right)+2 y \frac{d y}{d x}=1+\frac{d y}{d x}$

Step 2: $\quad 2 \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}-\frac{\mathrm{dy}}{\mathrm{dx}}=1-2 \mathrm{y}$
Step 3: $\quad \frac{d y}{d x}(2 x+2 y-1)=1-2 y$
Step 4: $\quad \frac{d y}{d x}=\frac{1-2 y}{2 x+2 y-1}$
22. $x^{3}-x y+y^{3}=1 \Rightarrow 3 x^{2}-y-x \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=0 \Rightarrow\left(3 y^{2}-x\right) \frac{d y}{d x}=y-3 x^{2} \Rightarrow \frac{d y}{d x}=\frac{y-3 x^{2}}{3 y^{2}-x}$
23. $x^{2}(x-y)^{2}-x^{2}-y^{2}$:

Step 1: $\quad x^{2}\left[2(x-y)\left(1-\frac{d y}{d x}\right)\right]+(x-y)^{2}(2 x)=2 x-2 y \frac{d y}{d x}$
Step 2: $\quad-2 x^{2}(x-y) \frac{d y}{d x}+2 y \frac{d y}{d x}=2 x-2 x^{2}(x-y)-2 x(x-y)^{2}$
Step 3: $\quad \frac{d y}{d x}\left[-2 x^{2}(x-y)+2 y\right]=2 x\left[1-x(x-y)-(x-y)^{2}\right]$
Step 4: $\quad \frac{d y}{d x}=\frac{2 x\left[1-x(x-y)-(x-y)^{2}\right]}{-2 x^{2}(x-y)+2 y}=\frac{x\left[1-x(x-y)-(x-y)^{2}\right]}{y-x^{2}(x-y)}=\frac{x\left(1-x^{2}+x y-x^{2}+2 x y-y^{2}\right)}{x^{2} y-x^{3}+y}$

$$
=\frac{x-2 x^{3}+3 x^{2} y-x y^{2}}{x^{3} y-x^{3}+y}
$$

24. $(3 x y+7)^{2}-6 y \rightarrow 2(3 x y+7) \cdot\left(3 x \frac{d y}{d x}+3 y\right)-6 \frac{d y}{d x} \rightarrow 2(3 x y+7)(3 x) \frac{d y}{d x}-6 \frac{d y}{d x}--6 y(3 x y+7)$
$\Rightarrow \frac{d y}{d x}[6 x(3 x y+7)-6]=-6 y(3 x y+7) \Rightarrow \frac{d y}{d x}=-\frac{y(3 x y+7)}{x(3 x y+7)-1}=\frac{3 x y^{2}+7 y}{1-3 x^{1} y-7 x}$
25. $y^{9}=\frac{x-1}{x+1} \Rightarrow 2 y \frac{d y}{d x}=\frac{(x+1)-(x-1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}} \Rightarrow \frac{d y}{d x}=\frac{1}{y(x+1)^{2}}$
26. $x^{2}=\frac{x-y}{x+y} \Rightarrow x^{3}+x^{2} y=x-y \Rightarrow 3 x^{2}+2 x y+x^{2} y^{\prime}=1-y^{\prime} \Rightarrow\left(x^{2}+1\right) y^{\prime}=1-3 x^{2}-2 x y \Rightarrow y^{\prime}=\frac{1-3 x^{2}-2 x y}{x^{2}+1}$

2\%. $x=\tan y \Rightarrow 1=\left(\sec ^{2} y\right) \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{\sec ^{2} y}=\cos ^{2} y$
28. $x y-\cot (x y) \rightarrow x \frac{d y}{d x}+y--\csc ^{2}(x y)\left(x \frac{d y}{d x}+y\right) \rightarrow x \frac{d y}{d x}+x \csc ^{2}(x y) \frac{d y}{d x}--y \csc ^{2}(x y)-y$

$$
\rightarrow \frac{d y}{d x}\left[x+x \csc ^{2}(x y)\right]--y\left[\csc ^{2}(x y)+1\right] \rightarrow \frac{d y}{d x}-\frac{-y\left[\csc ^{2}(x y)+1\right]}{x\left[1+\csc ^{2}(x y)\right]}--\frac{y}{x}
$$

29. $x+\tan (x y)=0 \Rightarrow 1+\left[\sec ^{2}(x y)\right]\left(y+x \frac{d y}{d x}\right)=0 \Rightarrow x \sec ^{2}(x y) \frac{d y}{d x}=-1-y \sec ^{2}(x y) \Rightarrow \frac{d y}{d x}=\frac{-1-y \sec ^{2}(x y)}{x \sec ^{2}(x y)}$

$$
=\frac{-1}{x \sec ^{2}(x y)}-\frac{y}{x}=\frac{-\cos ^{2}(x y)}{x}-\frac{y}{x}=\frac{-\cos ^{2}(x y)-y}{x}
$$

30. $x+\sin y=x y \Rightarrow 1+(\cos y) \frac{d y}{d x}=y+x \frac{d y}{d x} \Rightarrow(\cos y-x) \frac{d y}{d x}=y-1 \Rightarrow \frac{d y}{d x}=\frac{y-1}{\cos y-x}$
31. $\mathrm{y} \sin \binom{1}{y}=1-\mathrm{xy} \Rightarrow \mathrm{y}\left[\cos \binom{1}{y} \cdot(-1) \frac{1}{y^{4}} \cdot \frac{d y}{d x}\right]+\sin \binom{1}{y} \cdot \frac{d y}{d x}=-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y} \Rightarrow$ $\frac{\text { dy }}{d x}\left[-\frac{1}{y} \cos \left(\frac{1}{y}\right)+\sin \left(\frac{1}{y}\right)+x\right]=-y \Rightarrow \frac{d y}{d x}=\frac{-y}{-\frac{1}{y} \cos \left(\frac{1}{y}\right)+\sin \left(\frac{1}{y}\right)+x}=\frac{-y^{2}}{y \sin \left(\frac{1}{y}\right)-\cos \left(\frac{1}{y}\right)+x y}$
32. $y^{2} \cos \left(\frac{1}{y}\right)=2 x+2 y \Rightarrow y^{2}\left[-\sin \left(\frac{1}{y}\right) \cdot(-1) \frac{1}{y^{2}} \cdot \frac{d y}{d x}\right]+\cos \left(\frac{1}{y}\right) \cdot 2 y \frac{d y}{d x}=2+2 \frac{d y}{d x} \Rightarrow$ $\frac{d y}{d x}\left[\sin \left(\frac{1}{y}\right)+2 y \cos \left(\frac{1}{y}\right)-2\right]=2 \Rightarrow \frac{d y}{d x}=\frac{2}{\sin \left(\frac{1}{y}\right)+2 y \cos \left(\frac{1}{y}\right)-2}$
33. $\theta^{1 / 2}+\mathrm{r}^{1 / 2}=1 \Rightarrow \frac{1}{2} \theta^{-1 / 2}+\frac{1}{2} \mathrm{r}^{-1 / 2} \cdot \frac{\mathrm{dr}}{\mathrm{d} \theta}=0 \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}\left[\frac{1}{2 \sqrt{\mathrm{r}}}\right]=\frac{-1}{2 \sqrt{\theta}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=-\frac{2 \sqrt{\mathrm{r}}}{2 \sqrt{\theta}}=-\frac{\sqrt{\mathrm{r}}}{\sqrt{\theta}}$
34. $\mathrm{r}-2 \sqrt{\theta}=\frac{3}{2} \theta^{2 / 3}+\frac{4}{3} \theta^{3 / 4} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} \theta}-\theta^{-1 / 2}=\theta^{-1 / 3}+\theta^{-1 / 4} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} \theta}=\theta^{-1 / 2}+\theta^{-1 / 3}+\theta^{-1 / 4}$
35. $\sin (\mathrm{r} \theta)=\frac{1}{2} \Rightarrow[\cos (\mathrm{r} \theta)]\left(\mathrm{r}+\theta \frac{\mathrm{dr}}{\mathrm{d} \theta}\right)=0 \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}[\theta \cos (\mathrm{r} \theta)]=-\mathrm{r} \cos (\mathrm{r} \theta) \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=\frac{-\mathrm{r} \cos (\mathrm{r} \theta)}{\theta \cos (\mathrm{r} \theta)}=-\frac{\mathrm{r}}{\theta}$, $\cos (\mathrm{r} \theta) \neq 0$
36. $\cos \mathrm{r}+\cot \theta=\mathrm{r} \theta \Rightarrow(-\sin \mathrm{r}) \frac{\mathrm{dr}}{\mathrm{d} \theta}-\csc ^{2} \theta=\mathrm{r}+\theta \frac{\mathrm{dr}}{\mathrm{d} \theta} \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}[-\sin \mathrm{r}-\theta]=\mathrm{r}+\csc ^{2} \theta \Rightarrow \frac{d \mathrm{r}}{\mathrm{d} \theta}=-\frac{\mathrm{r}+\csc ^{2} \theta}{\sin \mathrm{r}+\theta}$
37. $x^{2}+y^{2}=1 \Rightarrow 2 x+2 y y^{\prime}=0 \Rightarrow 2 y y^{\prime}=-2 x \Rightarrow \frac{d y}{d x}=y^{\prime}=-\frac{x}{y}$; now to find $\frac{d^{\prime} y}{d x^{2}}, \frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(-\frac{x}{y}\right)$
$\Rightarrow y^{\prime \prime}=\frac{(-1)+x y^{\prime}}{y^{+}}=\frac{-y+x\left(-\frac{x}{y}\right)}{y^{2}}$ since $y^{\prime}=-\frac{x}{y} \Rightarrow \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\frac{-y^{2}-x^{2}}{y^{\prime}}=\frac{-y^{2}-\left(1-y^{3}\right)}{y^{3}}=\frac{-1}{y^{\prime}}$
38. $x^{2 / 3}+y^{2 / 3}=1 \Rightarrow \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}\left[\frac{2}{3} y^{-1 / 3}\right]=-\frac{2}{3} x^{-1 / 3} \Rightarrow y^{\prime}=\frac{d y}{d x}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}=-\left(\frac{y}{x}\right)^{1 / 3} ;$

$\Rightarrow \frac{d^{3} y}{d x^{2}}=\frac{1}{3} x^{-2 / 3} y^{-1 / 3}+\frac{1}{3} y^{1 / 3} x^{-4 / 3}=\frac{y^{1 / 3}}{3 x^{1 / 3}}+\frac{1}{3 y^{1 / 3} x^{1 / 3}}$
39. $y^{2}=x^{2}+2 x \Rightarrow 2 y y^{\prime}=2 x+2 \Rightarrow y^{\prime}=\frac{2 x+2}{2 y}=\frac{x+1}{y}$: then $y^{\prime \prime}=\frac{y-(x+1) y^{\prime}}{y^{\prime}}=\frac{y-(\Delta+1)\left(\frac{y}{y}\right)}{y^{\prime}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\frac{y^{1}-(x+1)^{2}}{y^{2}}$
40. $y^{2}-2 x=1-2 y \Rightarrow 2 y \cdot y^{\prime}-2=-2 y^{\prime} \Rightarrow y^{\prime}(2 y+2)=2 \Rightarrow y^{\prime}=\frac{1}{y+1}=(y+1)^{-1} ;$ then $y^{\prime \prime}=-(y+1)^{-2} \cdot y^{\prime}$
$=-(y+1)^{-2}(y+1)^{-1} \Rightarrow \frac{d^{\prime} y}{d x^{\prime}}=y^{\prime \prime}=\frac{-1}{(y+1)^{\prime}}$
41. $2 \sqrt{y}=x-y \Rightarrow y^{-1 / 2} y^{\prime}=1-y^{\prime} \Rightarrow y^{\prime}\left(y^{-1 / 2}+1\right)=1 \Rightarrow \frac{d y}{d x}=y^{\prime}=\frac{1}{y^{-1 / 2}+1}=\frac{\sqrt{y}}{\sqrt{y}+1}$; we can differentiate the equation $y^{\prime}\left(y^{-1 / 2}+1\right)=1$ again to find $y^{\prime \prime}: y^{\prime}\left(-\frac{1}{2} y^{-3 / 2} y^{\prime}\right)+\left(y^{-1 / 2}+1\right) y^{\prime \prime}=0$
$\Rightarrow\left(y^{-1 / 2}+1\right) y^{\prime \prime}=\frac{1}{2}\left[y^{\prime}\right]^{2} y^{-3 / 2} \Rightarrow \frac{d^{\prime} y}{d x^{\prime}}=y^{\prime \prime}=\frac{\left.\frac{t}{y^{-1 / 2}}\right)^{2} y^{-1 / 2}}{\left(y^{-1 / 2}+1\right)}=\frac{1}{2 y^{3 / 2}\left(y^{-1 / 2}+1\right)^{1}}=\frac{1}{2(1+\sqrt{y})^{1}}$
42. $x y+y^{2}=1 \Rightarrow x y^{\prime}+y+2 y y^{\prime}=0 \Rightarrow x y^{\prime}+2 y y^{\prime}=-y \Rightarrow y^{\prime}(x+2 y)=-y \Rightarrow y^{\prime}=\frac{-y}{(x+2 y)}$; $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ $=\frac{-\left(x+2 y y y^{\prime}+y\left(1+2 y^{\prime}\right)\right.}{(x+2 y)^{2}}=\frac{-(x+2 y)\left[\frac{-y}{(x+2 y]}\right]+y\left[1+2\left(\frac{-y}{(x+2 y)}\right)\right]}{(x+2 y)^{2}}=\frac{\frac{1}{(x+2 y)}\left[y(x+2 y)+y(x+2 y)-2 y^{2}\right]}{(x+2 y)^{2}}$
$-\frac{2 y(x+2 y)-2 y^{2}}{(x+2 y)^{2}}-\frac{2 y^{2}+2 x y}{(x+2 y)^{2}}-\frac{2 y(x+y)}{(x+2 y)^{r}}$
43. $x^{3}+y^{3}=16 \Rightarrow 3 x^{2}+3 y^{2} y^{\prime}=0 \Rightarrow 3 y^{2} y^{\prime}=-3 x^{2} \Rightarrow y^{\prime}=-\frac{x^{2}}{y^{2}}$; we differentiate $y^{2} y^{\prime}=-x^{2}$ to find $y^{\prime \prime}$:
$y^{2} y^{\prime \prime}+y^{\prime}\left[2 y \cdot y^{\prime}\right]=-2 x \Rightarrow y^{2} y^{\prime \prime}=-2 x-2 y\left[y^{\prime}\right]^{2} \Rightarrow y^{\prime \prime}=\frac{-2 x-2 y\left(-\frac{x^{2}}{r^{2}}\right)^{2}}{y^{2}}=\frac{-2 x-\frac{2 x^{4}}{s^{2}}}{y^{2}}$
$=\left.\frac{-2 x y^{1}-2 x^{4}}{y^{5}} \Rightarrow \frac{d^{4} y}{d x^{2}}\right|_{(2,2)}=\frac{-32-32}{32}=-2$
44. $x y+y^{2}=1 \Rightarrow x y^{\prime}+y+2 y^{\prime}=0 \Rightarrow y^{\prime}(x+2 y)=-y \Rightarrow y^{\prime}=\frac{-y}{(x+2 y)} \Rightarrow y^{\prime \prime}=\frac{(x+2 y)\left(-y^{\prime}\right)-(-y)\left(1+2 y^{\prime}\right)}{(x+2 y)^{\prime}}$; since $\left.y^{\prime}\right|_{(0,-1)}=-\frac{1}{2}$ we obtain $\left.y^{\prime \prime}\right|_{(1,-1)}=\frac{(-2)\left(\frac{t}{2}\right)-(1)(0)}{4}=-\frac{1}{4}$
45. $y^{2}+x^{2}=y^{4}-2 x$ at $(-2,1)$ and $(-2,-1) \Rightarrow 2 y \frac{d y}{d x}+2 x=4 y^{3} \frac{d y}{d x}-2 \Rightarrow 2 y \frac{d y}{d x}-4 y^{3} \frac{d y}{d x}=-2-2 x$
$\Rightarrow \frac{d y}{d x}\left(2 y-4 y^{3}\right)=-2-2 x \Rightarrow \frac{d y}{d x}=\left.\frac{x+1}{2 y^{2}-y} \Rightarrow \frac{d y}{d x}\right|_{(-2,1)}=-1$ and $\left.\frac{d y}{d x}\right|_{(-2,-1)}=1$
46. $\left(x^{2}+y^{2}\right)^{2}=(x-y)^{2} a t(1,0)$ and $(1,-1) \Rightarrow 2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=2(x-y)\left(1-\frac{d y}{d x}\right)$
$\Rightarrow \frac{d y}{d x}\left[2 y\left(x^{2}+y^{2}\right)+(x-y)\right]=-2 x\left(x^{2}+y^{2}\right)+(x-y) \Rightarrow \frac{d y}{d x}=\left.\frac{-2 x\left(x^{2}+y^{2}\right)+(x-y)}{2 y\left(x^{2}+y^{2}\right)+(x-y)} \Rightarrow \frac{d y}{d x}\right|_{(1,0)}=-1$ and $\left.\frac{d y}{d x}\right|_{(1,-1)}=1$
47. $x^{2}+x y-y^{2}=1 \Rightarrow 2 x+y+x y^{\prime}-2 y y^{\prime}=0 \Rightarrow(x-2 y) y^{\prime}=-2 x-y \Rightarrow y^{\prime}=\frac{2 x+y}{2 y-x}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(2,3)}=\frac{7}{4} \Rightarrow$ the tangent line is $y-3=\frac{7}{4}(x-2) \Rightarrow y=\frac{7}{4} x-\frac{1}{2}$
(b) the normal line is $\mathrm{y}-3=-\frac{4}{7}(\mathrm{x}-2) \Rightarrow \mathrm{y}=-\frac{4}{7} \mathrm{x}+\frac{29}{7}$
48. $x^{2}+y^{2}=25 \Rightarrow 2 x+2 y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{x}{y}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(,-4)}=-\left.\frac{x}{y}\right|_{(3,-4)}=\frac{3}{4} \Rightarrow$ the tangent line is $y+4=\frac{3}{4}(x-3)$

$$
\Rightarrow y=\frac{3}{4} x-\frac{25}{4}
$$

(b) the normal line is $y+4=-\frac{4}{3}(x-3) \Rightarrow y=-\frac{4}{3} x$
49. $x^{2} y^{2}=9 \Rightarrow 2 x y^{2}+2 x^{2} y y^{\prime}=0 \Rightarrow x^{2} y y^{\prime}=-x y^{2} \Rightarrow y^{\prime}=-\frac{y}{x}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(-1,3)}=-\left.\frac{y}{x}\right|_{(-1,3)}=3 \Rightarrow$ the tangent line is $y-3=3(x+1)$

$$
\Rightarrow y=3 x+6
$$

(b) the normal line is $y-3=-\frac{1}{3}(x+1) \Rightarrow y=-\frac{1}{3} x+\frac{8}{3}$
50. $\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-1=0 \Rightarrow 2 \mathrm{yy}^{\prime}-2-4 \mathrm{y}^{\prime}=0 \Rightarrow 2(\mathrm{y}-2) \mathrm{y}^{\prime}=2 \Rightarrow \mathrm{y}^{\prime}=\frac{1}{\mathrm{y}-2}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(-2,1)}=-1 \Rightarrow$ the tangent line is $y-1=-1(x+2) \Rightarrow y=-x-1$
(b) the normal line is $y=1=1(x+2) \Rightarrow y=x+3$
51. $6 x^{2}+3 x y+2 y^{2}+17 y-6=0 \Rightarrow 12 x+3 y+3 x y^{\prime}+4 y^{\prime}+17 y^{\prime}=0 \Rightarrow y^{\prime}(3 x+4 y+17)=-12 x-3 y$ $\Rightarrow y^{\prime}=\frac{-12 x-3 y}{3 x+4 y+17}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(-1,0)}=\left.\frac{-12 x-3 y}{3 x+4 y+17}\right|_{(-1,0)}=\frac{6}{7} \Rightarrow$ the tangent line is $y-0=\frac{6}{7}(x+1)$

$$
\Rightarrow y=\frac{6}{7} x+\frac{6}{7}
$$

(b) the normal line is $y-0=-\frac{7}{6}(x+1) \Rightarrow y=-\frac{7}{6} x-\frac{7}{6}$
52. $x^{2}-\sqrt{3} x y+2 y^{2}=5 \Rightarrow 2 x-\sqrt{3} x y^{\prime}-\sqrt{3} y+4 y y^{\prime}=0 \Rightarrow y^{\prime}(4 y-\sqrt{3} x)=\sqrt{3} y-2 x \Rightarrow y^{\prime}=\frac{\sqrt{3 y}-2 x}{4 y-\sqrt{3} x}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(\sqrt{3}, 2)}=\left.\frac{\sqrt{3} y-2 x}{4 y-\sqrt{3} x}\right|_{(\sqrt{3}, 2)}=0 \Rightarrow$ the tangent line is $y=2$
(b) the normal line is $x-\sqrt{3}$
53. $2 x y+\pi \sin y=2 \pi \Rightarrow 2 x y^{\prime}+2 y+\pi(\cos y) y^{\prime}=0 \Rightarrow y^{\prime}(2 x+\pi \cos y)=-2 y \Rightarrow y^{\prime}=\frac{-2 y}{2 x+\pi \cos y}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{|1,5|}=\left.\frac{-2 y}{2 x+\pi \cos y}\right|_{|1,5|}=-\frac{\pi}{2} \Rightarrow$ the tangent line is $y-\frac{\pi}{2}=-\frac{\pi}{2}(x-1) \Rightarrow y=-\frac{\pi}{2} x+\pi$
(b) the normal line is $y-\frac{\pi}{2}=\frac{2}{\pi}(x-1) \Rightarrow y=\frac{2}{\pi} x-\frac{2}{\pi}+\frac{\pi}{2}$
54. $x \sin 2 y=y \cos 2 x \Rightarrow x(\cos 2 y) 2 y^{\prime}+\sin 2 y=-2 y \sin 2 x+y^{\prime} \cos 2 x \Rightarrow y^{\prime}(2 x \cos 2 y-\cos 2 x)$ $=-\sin 2 \mathrm{y}-2 \mathrm{y} \sin 2 \mathrm{x} \Rightarrow \mathrm{y}^{\prime}=\frac{\sin 2 \mathrm{y}+2 \mathrm{y} \sin 2 \mathrm{x}}{\cos 2 \mathrm{x}-2 \mathrm{cos} 2 \mathrm{y}}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{|-i|}=\left.\frac{\sin 2 y+2 y \sin 2 x}{\cos 2 x-2 x \cos 2 y}\right|_{\left\lvert\, \frac{5}{2}\right., 7}=\frac{\pi}{\frac{\pi}{2}}=2 \Rightarrow$ the tangent line is $y-\frac{\pi}{2}=2\left(x-\frac{\pi}{4}\right) \Rightarrow y=2 x$
(b) the normal line is $y-\frac{\pi}{2}=-\frac{1}{2}\left(x-\frac{\pi}{4}\right) \Rightarrow y=-\frac{1}{2} x+\frac{5 \pi}{8}$
55. $\mathrm{y}=2 \sin (\pi \mathrm{x}-\mathrm{y}) \Rightarrow \mathrm{y}^{\prime}=2[\cos (\pi \mathrm{x}-\mathrm{y})] \cdot\left(\pi-\mathrm{y}^{\prime}\right) \Rightarrow \mathrm{y}^{\prime}[1+2 \cos (\pi \mathrm{x}-\mathrm{y})]=2 \pi \cos (\pi \mathrm{x}-\mathrm{y})$
$\Rightarrow y^{\prime}=\frac{2 \pi \cos (\pi x-y)}{1+2 \cos (\pi x-y)}$;
(a) the slope of the tangent line $m=\left.y^{\prime}\right|_{(1,0)}=\left.\frac{2 \pi \cos (\pi x-y)}{1+2 \cos (\pi x-y)}\right|_{(0,0)}=2 \pi \Rightarrow$ the tangent line is $\mathrm{y}-0=2 \pi(\mathrm{x}-1) \Rightarrow \mathrm{y}=2 \pi \mathrm{x}-2 \pi$
(b) the normal line is $y-0=-\frac{1}{2 \pi}(x-1) \Rightarrow y=-\frac{x}{2 \pi}+\frac{1}{2 \pi}$
56. $x^{2} \cos ^{2} y-\sin y=0 \Rightarrow x^{2}(2 \cos y)(-\sin y) y^{\prime}+2 x \cos ^{2} y-y^{\prime} \cos y=0 \Rightarrow y^{\prime}\left[-2 x^{2} \cos y \sin y-\cos y\right]$ $=-2 x \cos ^{2} y \Rightarrow y^{\prime}=\frac{2 x \cos ^{2} y}{2 x^{2} \cos y \sin y+\cos y}$;
(a) the slope of the tangent line $m-\left.y^{\prime}\right|_{(4, z)}-\left.\frac{2 x \cos ^{2} y}{2 x^{2} \cos y \sin y+\cos y}\right|_{(0, z)}-0 \rightarrow$ the tangent line is $y-\pi$
(b) the normal line is $\mathrm{x}=0$

D

1. $\mathrm{A}=\pi \mathrm{r}^{2} \Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=2 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}$
2. $\mathrm{S}-4 \pi \mathrm{t}^{2} \rightarrow \frac{\mathrm{dS}}{\mathrm{dt}}-8 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}$
3. (a) $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}}$
(b) $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=2 \pi \mathrm{rh} \frac{\mathrm{dr}}{\mathrm{dt}}$
(c) $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\pi \mathrm{r}^{2} \frac{\mathrm{hh}}{\mathrm{dt}}+2 \pi \mathrm{rh} \frac{\mathrm{dr}}{\mathrm{dt}}$
4. (a) $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{1}{3} \pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{d}}$
(b) $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{2}{3} \pi \mathrm{rh} \frac{\mathrm{d}}{\mathrm{d}}$
(c) $\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{1}{3} \pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}}+\frac{2}{3} \pi \mathrm{rh} \frac{\mathrm{dr}}{\mathrm{dr}}$
5. (a) $\frac{\mathrm{dV}}{\mathrm{dt}}=1 \mathrm{vol} / \mathrm{sec}$
(b) $\frac{\mathrm{dl}}{\mathrm{dt}}=-\frac{1}{3} \mathrm{amp} / \mathrm{sec}$
(c) $\frac{d V}{d t}-R\left(\frac{d i l}{d t}\right)+\mathrm{I}\left(\frac{d R}{d t}\right) \rightarrow \frac{d R}{d t}-\frac{1}{\mathrm{~T}}\left(\frac{\mathrm{dV}}{\mathrm{d}}-\mathrm{R} \frac{\mathrm{d}}{\mathrm{d}}\right) \rightarrow \frac{\mathrm{d}}{\mathrm{d}}-\frac{1}{\mathrm{t}}\left(\frac{\mathrm{dV}}{\mathrm{dt}}-\frac{\mathrm{V}}{\mathrm{T}} \frac{\mathrm{d}}{\mathrm{d}}\right)$
(d) $\frac{\mathrm{dR}}{\mathrm{dt}}=\frac{1}{2}\left[1-\frac{12}{2}\left(-\frac{1}{3}\right)\right]=\left(\frac{1}{2}\right)(3)=\frac{3}{2}$ ohms $/ \mathrm{scc}$, R is increasing
6. (a) $\mathrm{P}=\mathrm{RI}^{2} \Rightarrow \frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{I}^{2} \frac{\mathrm{dR}}{\mathrm{dt}}+2 \mathrm{RI} \frac{\mathrm{dI}}{\mathrm{dt}}$

7. (a) $s=\sqrt{x^{2}+y^{2}}=\left(x^{2}+y^{2}\right)^{1 / 2} \Rightarrow \frac{d}{d t}=\frac{x}{\sqrt{x^{1}}+y^{2}} \frac{d x}{d t}$
(b) $s=\sqrt{x^{2}+y^{2}}=\left(x^{2}+y^{2}\right)^{1 / 2} \Rightarrow \frac{d s}{d t}=\frac{x}{\sqrt{x^{2}+y^{2}}} \frac{d x}{d t}+\frac{y}{\sqrt{x^{2}+y^{2}}} \frac{d y}{d t}$
(c) $s=\sqrt{x^{2}+y^{2}} \Rightarrow s^{2}=x^{2}+y^{2} \Rightarrow 2 s \frac{d s}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow 2 s \cdot 0=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow \frac{d x}{d t}=-\frac{y}{x} \frac{d y}{d t}$
8. (a) $s=\sqrt{x^{2}+y^{2}+z^{2}} \Rightarrow s^{2}=x^{2}+y^{2}+z^{2} \Rightarrow 2 s \frac{d x}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 z \frac{d z}{d t}$

$$
\Rightarrow \frac{d s}{d t}=\frac{x}{\sqrt{x^{2}+y^{\prime}+x^{2}}} \frac{d x}{d t}+\frac{y}{\sqrt{x^{2}+y^{1}+x}} \frac{d y}{d t}+\frac{x}{\sqrt{x^{2}+y^{2}+x^{2}}} \frac{d x}{d t}
$$

(b) From part (a) with $\frac{d x}{d t}=0 \Rightarrow \frac{d s}{d t}=\frac{y}{\sqrt{x^{2}+y^{2}}+x^{2}} \frac{d y}{d t}+\frac{x}{\sqrt{x^{2}+y^{3}+x^{2}}} \frac{d t}{d t}$
(c) From part (a) with $\frac{\frac{d x}{d t}}{d t}=0 \Rightarrow 0=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 z \frac{d z}{d t} \Rightarrow \frac{d x}{d t}+\frac{y}{x} \frac{d y}{d t}+\frac{z}{x} \frac{d z}{d t}=0$
9. (a) $\mathrm{A}=\frac{1}{2} \mathrm{ab} \sin \theta \Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \mathrm{ab} \cos \theta \frac{\mathrm{d} \theta}{\mathrm{dt}} \quad$ (b) $\mathrm{A}=\frac{1}{2} \mathrm{ab} \sin \theta \Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \mathrm{ab} \cos \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}+\frac{1}{2} \mathrm{~b} \sin \theta \frac{\mathrm{~d}}{\mathrm{dt}}$
(c) $\mathrm{A}=\frac{1}{2} \mathrm{ab} \sin \theta \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}=\frac{1}{2} \mathrm{ab} \cos \theta \frac{\mathrm{d}}{\mathrm{dt}}+\frac{1}{2} \mathrm{~b} \sin \theta \frac{\mathrm{~d}}{\mathrm{dt}}+\frac{1}{2} \mathrm{a} \sin \theta \frac{\mathrm{db}}{\mathrm{dt}}$
10. Given $\mathrm{A}=\pi \mathrm{r}^{2}$, $\frac{\mathrm{dr}}{d \mathrm{t}}=0.01 \mathrm{~cm} / \mathrm{sec}$, and $\mathrm{r}=50 \mathrm{~cm}$. Since $\frac{\mathrm{dA}}{d \mathrm{~A}}=2 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}$, then $\left.\frac{\mathrm{dA}}{\mathrm{dt}}\right|_{\mathrm{rs0}}=2 \pi(50)\left(\frac{1}{100}\right)$ $=\pi \mathrm{cm}^{2} / \mathrm{min}$.
11. Given $\frac{d \ell}{d t}=-2 \mathrm{~cm} / \mathrm{sec}, \frac{\mathrm{dw}}{\mathrm{dt}}=2 \mathrm{~cm} / \mathrm{sec}, \ell=12 \mathrm{~cm}$ and $\mathrm{w}=5 \mathrm{~cm}$.
(a) $\mathrm{A}=\ell \mathrm{w} \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}=\ell \frac{\mathrm{dw}}{\mathrm{dt}}+\mathrm{w} \frac{\mathrm{d} \ell}{\mathrm{dt}} \Rightarrow \frac{\mathrm{d} A}{\mathrm{dt}}=12(2)+5(-2)=14 \mathrm{~cm}^{2} / \mathrm{sec}$, increasing
(b) $\mathrm{P}=2 \ell+2 \mathrm{w} \Rightarrow \frac{\mathrm{dP}}{\mathrm{dt}}=2 \frac{\mathrm{~d} \ell}{\mathrm{dt}}+2 \frac{\mathrm{dw}}{\mathrm{dt}}=2(-2)+2(2)=0 \mathrm{~cm} / \mathrm{sec}$, constant
(c) $\mathrm{D}=\sqrt{\mathrm{w}^{2}+\ell^{2}}=\left(\mathrm{w}^{2}+\ell^{2}\right)^{1 / 2} \Rightarrow \frac{\mathrm{dD}}{\mathrm{dt}}=\frac{1}{2}\left(\mathrm{w}^{2}+\ell^{2}\right)^{-1 / 2}\left(2 \mathrm{w} \frac{\mathrm{dw}}{\mathrm{dt}}+2 \ell \frac{\mathrm{~d} \ell}{\mathrm{~d}}\right) \Rightarrow \frac{\mathrm{dD}}{\mathrm{dt}}=\frac{\mathrm{w} \frac{\mathrm{w}+\ell \frac{\mu}{厅}}{\sqrt{\mathrm{w}^{2}+\ell^{2}}}}{\text { (}}$

$$
=\frac{(5)(2)+(12)(-2)}{\sqrt{25+144}}=-\frac{14}{13} \mathrm{~cm} / \mathrm{sec} \text {, decreasing }
$$

12. (a) $\mathrm{V}=\mathrm{xyz} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{yz} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{xz} \frac{\mathrm{dy}}{\mathrm{dt}}+\left.\mathrm{xy} \frac{\mathrm{d}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}\right|_{\mathrm{t}, 3,2)}=(3)(2)(1)+(4)(2)(-2)+(4)(3)(1)=2 \mathrm{~m}^{3} / \mathrm{sec}$
(b) $\mathrm{S}=2 \mathrm{xy}+2 \mathrm{xz}+2 \mathrm{yz} \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=(2 \mathrm{y}+2 \mathrm{z}) \frac{\mathrm{dx}}{\mathrm{dt}}+(2 \mathrm{x}+2 \mathrm{z}) \frac{\mathrm{dy}}{\mathrm{dt}}+(2 \mathrm{x}+2 \mathrm{y}) \frac{\mathrm{dt}}{\mathrm{dt}}$

$$
\left.\Rightarrow \frac{d S}{d t}\right|_{(4,3,2)}=(10)(1)+(12)(-2)+(14)(1)=0 \mathrm{~m}^{2} / \mathrm{sec}
$$

(c) $\ell=\sqrt{x^{2}+y^{2}+z^{2}}=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \Rightarrow \frac{d \ell}{d t}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{d x}{d t}+\frac{y}{\sqrt{x^{2}+y^{2}+z}} \frac{d y}{d t}+\frac{z}{\sqrt{x^{2}+y^{2}+x^{2}}} \frac{d z}{d t}$

$$
\left.\Rightarrow \frac{\mathrm{d} f}{\mathrm{~d}}\right|_{(4,3,2)}=\left(\frac{4}{\sqrt{29}}\right)(1)+\left(\frac{3}{\sqrt{29}}\right)(-2)+\left(\frac{2}{\sqrt{29}}\right)(1)=0 \mathrm{~m} / \mathrm{sec}
$$

13. Given: $\frac{\mathrm{dx}}{\mathrm{dt}}=5 \mathrm{ft} / \mathrm{sec}$, the ladder is 13 ft long, and $\mathrm{x}=12, \mathrm{y}=5$ at the instant of time
(a) Since $\mathrm{x}^{2}+\mathrm{y}^{2}=169 \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\frac{\mathrm{x}}{\mathrm{y}} \frac{\mathrm{dx}}{\mathrm{dt}}=-\left(\frac{12}{5}\right)(5)=-12 \mathrm{ft} / \mathrm{sec}$, the ladder is sliding down the wall
(b) The area of the triangle formed by the ladder and walls is $\mathrm{A}=\frac{1}{2} \mathrm{xy} \Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=\left(\frac{1}{2}\right)\left(\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{y} \frac{\mathrm{dx}}{\mathrm{dt}}\right)$. The area is changing at $\frac{1}{2}[12(-12)+5(5)]=-\frac{119}{2}=-59.5 \mathrm{ft}^{2} / \mathrm{sec}$.
(c) $\cos \theta=\frac{x}{13} \Rightarrow-\sin \theta \frac{d \theta}{d t}=\frac{1}{13} \cdot \frac{\mathrm{dx}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{d} \theta}{\mathrm{dt}}=-\frac{1}{13 \sin \theta} \cdot \frac{\mathrm{dx}}{\mathrm{dt}}=-\left(\frac{1}{5}\right)(5)=-1 \mathrm{rad} / \mathrm{sec}$
14. $\mathrm{s}^{2}=\mathrm{y}^{2}+\mathrm{x}^{2} \Rightarrow 2 \mathrm{~s} \frac{\mathrm{~d}}{\mathrm{dt}}=2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}+2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}=\frac{1}{\mathrm{~s}}\left(\mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dt}}\right) \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{1}{\sqrt{169}}[5(-442)+12(-481)]$ $=-614$ knots
15. Let s represent the distance between the girl and the kite and x represents the horizontal distance between the girl and kite $\Rightarrow s^{2}=(300)^{2}+x^{2} \Rightarrow \frac{d \mathrm{~s}}{\mathrm{dt}}=\frac{\mathrm{x}}{\mathrm{s}} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{400(25)}{500}=20 \mathrm{ft} / \mathrm{sec}$.
16. When the diameter is 3.8 in ., the radius is 1.9 in . and $\frac{\mathrm{dt}}{\mathrm{d}}=\frac{\mathrm{i}}{3000} \mathrm{in} / \mathrm{min}$. Also $\mathrm{V}=6 \pi \mathrm{r}^{2} \Rightarrow \frac{\mathrm{JV}}{\mathrm{dt}}=12 \pi \mathrm{r} \frac{\mathrm{d}}{\mathrm{dt}}$ $\Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=12 \pi(1.9)\left(\frac{1}{3000}\right)=0.0076 \pi$. The volume is changing at about $0.0239 \mathrm{in}^{3} / \mathrm{min}$.
17. $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}, \mathrm{~h}=\frac{3}{8}(2 \mathrm{r})=\frac{3 \mathrm{r}}{4} \Rightarrow \mathrm{r}=\frac{4 \mathrm{~h}}{3} \Rightarrow \mathrm{~V}=\frac{1}{3} \pi\left(\frac{4 \mathrm{~h}}{3}\right)^{2} \mathrm{~h}=\frac{16 \pi \mathrm{~h}^{3}}{27} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{16 \pi \mathrm{~h}^{2}}{9} \frac{\mathrm{dh}}{\mathrm{dt}}$
(a) $\left.\frac{\mathrm{dh}}{\mathrm{dt}}\right|_{\mathrm{h}=4}=\left(\frac{9}{16 \mathrm{~T}^{2}}\right)(10)=\frac{90}{256 \pi} \approx 0.1119 \mathrm{~m} / \mathrm{sec}=11.19 \mathrm{~cm} / \mathrm{sec}$
(b) $\mathrm{r}=\frac{4 \mathrm{~h}}{3} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{4}{3} \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{4}{3}\left(\frac{90}{256 \pi}\right)=\frac{15}{32 \pi} \approx 0.1492 \mathrm{~m} / \mathrm{sec}=14.92 \mathrm{~cm} / \mathrm{sec}$
18. (a) $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$ and $\mathrm{r}=\frac{15 \mathrm{~h}}{2} \Rightarrow \mathrm{~V}=\frac{1}{3} \pi\left(\frac{15 \mathrm{~h}}{2}\right)^{2} \mathrm{~h}=\frac{75 \mathrm{~m} \mathrm{~h}^{2}}{4} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\left.\frac{225 \mathrm{rh}}{} \mathrm{h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}\right|_{\mathrm{L}=5}=\frac{4(-50)}{225 \pi(5)^{2}}=\frac{-8}{225 \pi}$ $\approx-0.0113 \mathrm{~m} / \mathrm{min}=-1.13 \mathrm{~cm} / \mathrm{min}$
(b) $\mathrm{r}=\frac{15 \mathrm{~h}}{2} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\left.\frac{15}{2} \frac{\mathrm{H}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}}\right|_{\mathrm{hre}}=\left(\frac{15}{2}\right)\left(\frac{-8}{25 \pi}\right)=\frac{-4}{15 \pi} \approx-0.0849 \mathrm{~m} / \mathrm{sec}=-8.49 \mathrm{~cm} / \mathrm{sec}$
19. (a) $\mathrm{V}=\frac{\pi}{3} \mathrm{y}^{2}(3 \mathrm{R}-\mathrm{y}) \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\pi}{3}\left[2 \mathrm{y}(3 \mathrm{R}-\mathrm{y})+\mathrm{y}^{2}(-1)\right] \frac{\mathrm{dy}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\left[\frac{\pi}{3}\left(6 \mathrm{Ry}-3 \mathrm{y}^{2}\right)\right]^{-1} \frac{\mathrm{dv}}{\mathrm{dt}} \Rightarrow$ at $\mathrm{R}=13$ and $y=8$ we have $\frac{\mathrm{dy}}{\mathrm{d}}=\frac{1}{144 \pi}(-6)=\frac{-1}{24 \pi} \mathrm{~m} / \mathrm{min}$
(b) The hemisphere is on the circle $\mathrm{r}^{2}+(13-\mathrm{y})^{2}=169 \Rightarrow \mathrm{r}=\sqrt{26 \mathrm{y}-\mathrm{y}^{2}} \mathrm{~m}$
(c) $\mathrm{r}=\left(26 \mathrm{y}-\mathrm{y}^{2}\right)^{1 / 2} \Rightarrow \underset{\mathrm{dt}}{\mathrm{dr}}=\frac{1}{2}\left(26 \mathrm{y}-\mathrm{y}^{2}\right)^{-1 / 2}(26-2 \mathrm{y}) \underset{\mathrm{dt}}{\mathrm{dy}} \Rightarrow \underset{\mathrm{dt}}{\mathrm{dr}}=\left.\sqrt{\sqrt{26 y-y^{2}}} \underset{\mathrm{dt}}{\mathrm{dy}} \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}\right|_{,-s}=\frac{13-8}{\sqrt{26-8}-64}\left(\frac{-1}{24 \pi}\right)$ $=\frac{-5}{288 \pi} \mathrm{~m} / \mathrm{min}$
20. If $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}, \mathrm{~S}=4 \pi \mathrm{r}^{2}$, and $\frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{kS}=4 \mathrm{k} \pi \mathrm{r}^{2}$, then $\frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow 4 \mathrm{k} \pi \mathrm{r}^{2}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{k}$, a constant. Therefore, the radius is increasing at a constant rate
21. If $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}, \mathrm{r}=5$, and $\frac{\mathrm{dV}}{\mathrm{dt}}=100 \pi \mathrm{ft}^{3} / \mathrm{min}$, then $\frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=1 \mathrm{ft} / \mathrm{min}$. Then $\mathrm{S}=4 \pi \mathrm{r}^{2} \Rightarrow \frac{\mathrm{dS}}{\mathrm{dt}}$ $=8 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{d}}=8 \pi(5)(1)=40 \pi \mathrm{ft}^{2} / \mathrm{min}$, the rate at which the surface area is increasing.
22. Let s represent the length of the rope and x the horizontal distance of the boat from the dock.
(a) We have $\mathrm{s}^{2}=\mathrm{x}^{2}+36 \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{x}}{\mathrm{x}} \frac{\mathrm{d}}{\mathrm{dt}}=\frac{\mathrm{s}}{\sqrt{\mathrm{s}^{2}-36}} \frac{\mathrm{~d}}{\mathrm{dt}}$. Therefore, the boat is approaching the dock at $\left.\frac{\mathrm{dx}}{\mathrm{dt}}\right|_{\mathrm{m}=10}=\frac{10}{\sqrt{10^{2}-36}}(-2)=-2.5 \mathrm{ft} / \mathrm{sec}$.
(b) $\cos \theta=\frac{6}{\mathrm{r}} \Rightarrow-\sin \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}=-\frac{6}{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{d} 9}{\mathrm{dt}}=\frac{6}{\mathrm{r} \sin \theta} \frac{\mathrm{dr}}{\mathrm{dt}}$. Thus, $\mathrm{r}=10, \mathrm{x}=8$, and $\sin \theta=\frac{8}{10}$ $\Rightarrow \frac{\mathrm{d} 9}{\mathrm{dt}}=\frac{6}{10^{2}\left(\frac{\pi}{\mathrm{~N}}\right)} \cdot(-2)=-\frac{3}{20} \mathrm{rad} / \mathrm{sec}$
23. Let s represent the distance between the bicycle and balloon, h the height of the balloon and x the horizontal distance between the balloon and the bicycle. The relationship between the variables is $\mathrm{s}^{2}=\mathrm{h}^{2}+\mathrm{x}^{2}$
$\Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{1}{\mathrm{~s}}\left(\mathrm{~h} \frac{\mathrm{hh}}{\mathrm{dt}}+\mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}\right) \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{1}{85}[68(1)+51(17)]=11 \mathrm{ft} / \mathrm{sec}$.
24. (a) Let h be the height of the coffee in the pot. Since the radius of the pot is 3 , the volume of the coffee is $\mathrm{V}=9 \pi \mathrm{~h} \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=9 \pi \frac{\mathrm{dh}}{\mathrm{dt}} \Rightarrow$ the rate the coffee is rising is $\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{9 \pi} \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{10}{9 \pi} \mathrm{in} / \mathrm{min}$.
(b) Let h be the height of the coffee in the pot. From the figure, the radius of the filter $\mathrm{r}=\frac{\mathrm{h}}{2} \Rightarrow \mathrm{~V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$ $=\frac{\pi h^{3}}{12}$, the volume of the filter. The rate the coffee is falling is $\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{4}{\mathrm{xh}} \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{4}{25 \pi}(-10)=-\frac{8}{5 \pi} \mathrm{in} / \mathrm{min}$.
25. $\mathrm{y}=\mathrm{QD}^{-1} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{D}^{-1} \frac{\mathrm{~d} \mathrm{O}}{\mathrm{dt}}-\mathrm{QD}^{-2} \frac{\mathrm{dD}}{\mathrm{dt}}=\frac{1}{41}(0)-\frac{233}{(41)^{2}}(-2)=\frac{466}{1681} \mathrm{~L} / \mathrm{min} \Rightarrow$ increasing about $0.2772 \mathrm{~L} / \mathrm{min}$
26. (a) $\frac{\mathrm{dc}}{\mathrm{dt}}=\left(3 \mathrm{x}^{2}-12 \mathrm{x}+15\right) \frac{\mathrm{dx}}{\mathrm{dt}}=\left(3(2)^{2}-12(2)+15\right)(0.1)=0.3, \frac{\mathrm{dr}}{\mathrm{dt}}=9 \frac{\mathrm{dx}}{\mathrm{dt}}=9(0.1)=0.9, \frac{\mathrm{dp}}{\mathrm{dt}}=0.9-0.3=0.6$
(b) $\frac{\mathrm{dc}}{\mathrm{dt}}=\left(3 \mathrm{x}^{2}-12 \mathrm{x}-45 \mathrm{x}^{-2}\right) \frac{\mathrm{dx}}{\mathrm{dt}}=\left(3(1.5)^{2}-12(1.5)-45(1.5)^{-2}\right)(0.05)=-1.5625$, $\frac{\mathrm{d}}{\mathrm{dt}}=70 \frac{\mathrm{dx}}{\mathrm{dt}}=70(0.05)=3.5$, $\frac{d p}{d t}=3.5-(-1.5625)=5.0625$
27. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent a point on the curve $\mathrm{y}=\mathrm{x}^{2}$ and θ the angle of inclination of a line containing P and the origin. Consequently, $\tan \theta=\frac{y}{x} \Rightarrow \tan \theta=\frac{x^{2}}{x}=x \Rightarrow \sec ^{2} \theta \frac{d \theta}{d t}=\frac{d x}{d t} \Rightarrow \frac{d \theta}{d t}=\cos ^{2} \theta \frac{d x}{d t}$. Since $\frac{d x}{d t}=10 \mathrm{~m} / \mathrm{sec}$ and $\left.\cos ^{2} \theta\right|_{x=3}=\frac{x^{2}}{y^{2}+x^{2}}=\frac{3^{2}}{y^{2}+3^{2}}=\frac{1}{10}$, we have $\left.\frac{d \theta}{d t}\right|_{x=3}=1 \mathrm{rad} / \mathrm{sec}$.
28. $\mathrm{y}=(-\mathrm{x})^{1 / 2}$ and $\tan \theta=\frac{y}{\mathrm{x}} \Rightarrow \tan \theta=\frac{(-\mathrm{x})^{1 / 2}}{\mathrm{x}} \Rightarrow \sec ^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{dt}}=\frac{\left(\frac{f}{\mathrm{f}}\right)(-\mathrm{x})^{-1 / 2}(-1) \mathrm{x}-(-\mathrm{x})^{1 / 2}(1)}{\mathrm{x}^{2}} \frac{\mathrm{dx}}{\mathrm{d}}$

$$
\begin{aligned}
& \Rightarrow \frac{d \theta}{d t}=\left(\frac{\frac{-x}{2 \sqrt{x}}-\sqrt{-x}}{x^{2}}\right)\left(\cos ^{2} \theta\right)\left(\frac{d x}{d t}\right) \cdot \text { Now, } \tan \theta=\frac{2}{-4}=-\frac{1}{2} \Rightarrow \cos \theta=-\frac{2}{\sqrt{5}} \Rightarrow \cos ^{2} \theta=\frac{4}{5} . \text { Then } \\
& \frac{d \theta}{d t}=\left(\frac{4-2}{16}\right)\left(\frac{4}{5}\right)(-8)=\frac{2}{5} \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

29. The distance from the origin is $s=\sqrt{x^{2}+y^{2}}$ and we wish to find $\left.\frac{d s}{d t}\right|_{(s, 12)}$

$$
=\left.\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}\right)\right|_{(5,12)}=\frac{(5)(-1)+(12 x-5)}{\sqrt{25+144}}=-5 \mathrm{~m} / \mathrm{sec}
$$

30. When s represents the length of the shadow and x the distance of the man from the streetlight, then $\mathrm{s}=\frac{3}{5} \mathrm{x}$.
(a) If I represents the distance of the tip of the shadow from the streetlight, then $I=s+x \Rightarrow \frac{d I}{d t}=\frac{d s}{d t}+\frac{d x}{d t}$ (which is velocity not speed) $\Rightarrow\left|\frac{d 1}{d t}\right|=\left|\frac{3}{5} \frac{d x}{d t}+\frac{d x}{d t}\right|=\left|\frac{8}{5}\right|\left|\frac{d x}{d t}\right|=\frac{8}{5}|-5|=8 \mathrm{ft} / \mathrm{sec}$, the speed the tip of the shadow is moving along the ground.
(b) $\frac{\mathrm{ds}}{\mathrm{dt}}=\frac{3}{5} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{3}{5}(-5)=-3 \mathrm{ft} / \mathrm{sec}$, so the length of the shadow is decreasing at a rate of $3 \mathrm{ft} / \mathrm{sec}$.
31. Let $\mathrm{s}=16 \mathrm{t}^{2}$ represent the distance the ball has fallen, h the distance between the ball and the ground, and I the distance between the shadow and the point directly beneath the ball. Accordingly, $\mathrm{s}+\mathrm{h}=50$ and since the triangle LOQ and triangle PRQ are similar we have $\mathrm{I}=\frac{30 \mathrm{~h}}{50-\mathrm{h}} \Rightarrow \mathrm{h}=50-16 \mathrm{t}^{2}$ and $\mathrm{I}=\frac{30\left(50-16 \mathrm{t}^{2}\right)}{50-\left(50-16 \mathrm{t}^{2}\right)}$

$=\frac{1500}{16 \mathrm{t}^{2}}-30 \Rightarrow \frac{\mathrm{dI}}{\mathrm{dt}}=-\left.\frac{1500}{8 \mathrm{t}^{2}} \Rightarrow \frac{\mathrm{dI}}{\mathrm{dt}}\right|_{\mathrm{te}}=-1500 \mathrm{ft} / \mathrm{sec}$.
32. Let $\mathrm{s}=$ distance of car from foot of perpendicular in the textbook diagram $\Rightarrow \tan \theta=\frac{\mathrm{s}}{132} \Rightarrow \sec ^{2} \theta \frac{\mathrm{~d} 9}{\mathrm{u}}=\frac{1}{132} \frac{\mathrm{ds}}{\mathrm{d}}$ $\Rightarrow \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\cos ^{2} \theta}{132} \frac{\mathrm{~d}}{\mathrm{dt}} ; \frac{\mathrm{ds}}{\mathrm{dt}}=-264$ and $\theta=0 \Rightarrow \frac{\mathrm{~d} \theta}{\mathrm{dt}}=-2 \mathrm{rad} / \mathrm{sec}$. A half second later the car has traveled 132 ft right of the perpendicular $\Rightarrow|\theta|=\frac{\pi}{4}, \cos ^{2} \theta=\frac{1}{2}$, and $\frac{\frac{d s}{d t}}{d t}=264$ (since s increases) $\Rightarrow \frac{d \theta}{d t}=\frac{(\hat{t})}{132}(264)=1 \mathrm{rad} / \mathrm{sec}$
33. I'Hôpital: $\lim _{x \rightarrow 2} \frac{x-2}{x^{-}-4}=\left.\frac{1}{2 x}\right|_{x-2}=\frac{1}{4}$ or $\lim _{x \rightarrow 2} \frac{x-2}{x^{1}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}$
34. I'Hôpital: $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\left.\frac{5 \cos 5 x}{1}\right|_{x=0}=5$ or $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=5 \lim _{5 x \rightarrow 0} \frac{\sin 5 x}{5 x}=5 \cdot 1=5$
35. I'Hôpital: ${ }_{x} \lim _{\infty} \frac{5 x^{3}-3 x}{7 x^{2}+1}={ }_{x} \lim _{\infty} \frac{10 x-3}{14 x}=\lim _{x \rightarrow \infty} \frac{10}{14}=\frac{5}{7}$ or $\lim _{x} \frac{5 x^{3}-3 x}{7 x^{2}+1}={ }_{x} \lim _{\infty} \frac{5-\frac{3}{4}}{7+\frac{1}{x}}=\frac{5}{7}$
36. l'Hôpital: $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{2}-x-3}=\lim _{x \rightarrow 1} \frac{3 x^{1}}{12 x^{1}-1}=\frac{3}{11}$ or $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)\left(4 x^{2}+4 x+3\right)}$

$$
=\lim _{x \rightarrow 1} \frac{\left(x^{2}+x+1\right)}{\left(4 x^{2}+4 x+3\right)}=\frac{3}{11}
$$

5. I'Hôpital: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{i}}=\lim _{x \rightarrow 0} \frac{\operatorname{six}}{2 x}=\lim _{x \rightarrow 0} \frac{\operatorname{mos} x}{2}=\frac{1}{2}$ or $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{\prime}}=\lim _{x \rightarrow 0}\left[\frac{(1-\cos x)}{x^{2}}\left(\frac{1+\cos x}{1+\cos x}\right)\right]$

$$
=\lim _{x \rightarrow 0} \frac{\sin ^{1} x}{x^{2}(1+\cos x)}=\lim _{x \rightarrow 0}\left[\left(\frac{\sin x}{x}\right)\left(\frac{\sin x}{x}\right)\left(\frac{1}{1+\cos x}\right)\right]=\frac{1}{2}
$$

6. l'Hôpital: $\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}}{x^{2}+1}+1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{4 x+3}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{4}{6 x}=0$ or $\lim _{x \rightarrow \infty} \frac{2 x+3 x}{x^{2}+x+1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{3}{x^{2}}}{1+\frac{1}{x^{1}}+\frac{1}{x^{2}}}=\frac{0}{1}=0$
7. $\lim _{t \rightarrow 0} \frac{\sin t^{t}}{t}=\lim _{t \rightarrow 0} \frac{2 t \cos t}{1}=0$
8. $\lim _{x \rightarrow \pi / 2} \frac{2 x-\pi}{\cos x}=\lim _{\theta \rightarrow \pi / 2} \frac{2}{-\sin x}=\frac{2}{-1}=-2$
9. $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\pi-\theta}=\lim _{\theta \rightarrow \pi} \frac{\cos \theta}{-1}=\frac{-1}{-1}=1$
10. $\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{1+\cos 2 x}=\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-2 \sin 2 x}=\lim _{x \rightarrow \pi / 2} \frac{\sin x}{-4 \cos 2 x}=\frac{1}{-4(-1)}=\frac{1}{4}$
11. $\lim _{x \rightarrow \pi / 4} \frac{\sin x-\cos x}{x-t}=\lim _{x \rightarrow \pi / 4} \frac{\cos x+\sin x}{1}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}$
12. $\lim _{x \rightarrow \pi / 3} \frac{\cos x-1}{x-\frac{1}{4}}=\lim _{x \rightarrow \pi / 3} \frac{-\sin x}{1}=-\frac{\sqrt{3}}{2}$
13. $\lim _{x \rightarrow \pi / 2}-\left(x-\frac{\pi}{2}\right) \tan x=\lim _{x \rightarrow \pi / 2} \frac{-(x-\pi) \sin x}{\cos x}=\lim _{x \rightarrow \pi / 2} \frac{(f-x) \cos x+\sin x(-1)}{-\sin x}=\frac{-1}{-1}=1$
14. $\lim _{x \rightarrow 0} \frac{2 x}{x+7 \sqrt{x}}=\lim _{x \rightarrow 0} \frac{2}{1+\frac{7}{2 \sqrt{7}}}=\lim _{x \rightarrow 0} \frac{4 \sqrt{x}}{2 \sqrt{x}+7}=\frac{40}{20+7}=0$
15. $\lim _{x \rightarrow 1} \frac{2 x^{i}-(3 x+1) \sqrt{x}+2}{x-1}=\lim _{x \rightarrow 1} \frac{2 x^{x^{i}}-3 x^{x^{2}}-x^{\prime \prime}+2}{x-1}=\lim _{x \rightarrow 1} \frac{4 x-\frac{1}{2} x^{x^{3}}-\frac{1}{2 \sqrt{3}}}{1}=-1$
16. $\lim _{x \rightarrow 2} \frac{\sqrt{x^{\prime}+5}-3}{x^{\prime}-4}=\lim _{x \rightarrow 2} \frac{\left.\frac{1}{x^{\prime}}+5\right)^{-1}(2 x)}{2 x}=\lim _{x \rightarrow 2} \frac{1}{2 \sqrt{x^{\prime}+5}}=\frac{1}{6}$
17. $\lim _{x \rightarrow 0} \frac{\sqrt{x(a+x)}-a}{x}=\lim _{x \rightarrow 0} \frac{a}{2 \sqrt{x^{2}+a x}}=\frac{a}{2 \sqrt{x}}=\frac{1}{2}$, where $a>0$.
18. $\lim _{t \rightarrow 0} \frac{10(\sin t-t)}{t^{2}}=\lim _{t \rightarrow 0} \frac{10(\cos t-1)}{3 t^{t}}=\lim _{t \rightarrow 0} \frac{10(-\sin t)}{6 t}=\lim _{t \rightarrow 0} \frac{-10 \cos t}{6}=\frac{-10.1}{6}=-\frac{5}{3}$
19. $\lim _{x \rightarrow 0} \frac{x(\cos x-1)}{\sin x-x}=\lim _{x \rightarrow 0} \frac{-\sin x+\cos x-1}{\cos x-1}=\lim _{x \rightarrow 0} \frac{-x \cos x-2 \sin x}{-\sin x}=\lim _{x \rightarrow 0} \frac{x \cos x+\sin x}{-x}=\lim _{x \rightarrow 0} \frac{-x \sin x+3 \cos x}{\cos x}=\frac{3}{1}=3$
20. $\lim _{h \rightarrow 0} \frac{\sin (a+h)-\sin a}{h}=\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{1}=0$
21. $\lim _{r \rightarrow 1} \frac{a\left(r^{n}-1\right)}{r-1}=\lim _{r \rightarrow 1} \frac{a\left(n d^{-}\right)}{I}=a_{r \rightarrow 1} \lim _{r \rightarrow r} r^{n-1}=$ an, where n is a positive integer.
22. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sqrt{x}}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{1-\sqrt{x}}{x}\right)=\binom{$ 1Hoptuls rule }{ does mot apply }$=\lim _{x \rightarrow 0^{+}}(1-\sqrt{x}) \cdot \frac{1}{x}=\infty$
23. $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)=\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)\left(\frac{x+\sqrt{x^{3}+x}}{x+\sqrt{x^{2}+x}}\right)=\lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+x\right)}{x+\sqrt{x^{2}+x}}=\lim _{x \rightarrow \infty} \frac{-\frac{1}{2}}{\frac{1}{x^{2}+\frac{1}{x^{2}}}}$
$=\lim _{\mathrm{x}} \frac{-1}{1+\sqrt{1+\frac{1}{x}}}=-\frac{1}{2}\binom{$ 1Hopialiv nile }{ is unnosencry }
24. $\lim _{x \rightarrow \infty} x \tan \left(\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{L}{x}\right)}{\frac{x}{x}}=\lim _{x \rightarrow \infty} \frac{-\frac{1}{x} \sec ^{2}\left(\frac{1}{x}\right)}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \sec ^{2}\left(\frac{1}{x}\right)=\sec ^{2} 0=1$
25. $\lim _{x \rightarrow \pm \infty} \frac{3 x-5}{2 x-x+2}=\lim _{x \rightarrow \pm \infty} \frac{3}{4 x-1}=0$
26. $\lim _{x \rightarrow 0} \frac{\sin 7 x}{\tan 11 x}=\lim _{x \rightarrow 0} \frac{7 \cos (7 x)}{1 \cos (11 x)}=\frac{7.1}{11-1}=\frac{7}{11}$
27. $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}=\sqrt{x \lim _{\infty} \frac{9 x+1}{x+1}}=\sqrt{x \rightarrow \lim _{\infty} 9}=\sqrt{9}=3$
28. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{\sin x}}=\sqrt{\frac{1}{\lim }}=\sqrt{\frac{1}{4}}=1$
29. $\lim _{x \rightarrow \pi / 2^{-}} \frac{\sec x}{\sin x}=\lim _{x \rightarrow \pi / 2^{-}}\left(\frac{1}{\cos x}\right)\left(\frac{\cos x}{\sin x}\right)=\lim _{x \rightarrow \pi / 2^{-}} \frac{1}{\sin x}=1$
30. $\left.\lim _{x \rightarrow 0^{+}} \frac{\cos x}{\cos x}=\lim _{x \rightarrow 0^{+}} \frac{(\sin)}{(\sin x}\right)=\lim _{x \rightarrow 0^{+}} \cos x=1$
31. Part (b) is correct because part (a) is neither in the $\frac{0}{6}$ nor $\frac{2}{\infty}$ form and so IHopital's rule may not be used.
32. Answers may vary.
(a) $f(x)=3 x+1 ; g(x)=x$
$x \lim _{\infty} \frac{f(x)}{g(x)}={ }_{x} \lim _{\infty} \frac{3 x+1}{x}={ }_{x} \lim _{\infty} \frac{3}{1}=3$
(b) $\mathrm{f}(\mathrm{x})=\mathrm{x}+\operatorname{lig}(\mathrm{x})=\mathrm{x}^{2}$
$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x+1}{x^{1}}=\lim _{x \rightarrow \infty} \frac{1}{2 x}=0$
(c) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \cdot \mathrm{~g}(\mathrm{x})=\mathrm{x}+1$
$x \lim _{x} \frac{(f)}{g(x)}={ }_{x} \lim _{\infty} \frac{x^{1}}{x+1}=x \lim _{x c} \frac{2 x}{1}=\infty$
33. If $f(x)$ is to be continuous at $x=0$, then $\lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow c=f(0)=\lim _{x \rightarrow 0} \frac{2 x-3 \sin 2 x}{5 x}=\lim _{x \rightarrow 0} \frac{2-9 \lim ^{3} x}{15 x}$ $=\lim _{x \rightarrow 0} \frac{27 \sin 3 x}{3 \sin }=\lim _{x \rightarrow 0} \frac{51 \cos 3 x}{30}=\frac{27}{10}$.
34. (a) For $x \neq 0, f^{\prime}(x)=\frac{4}{4 x}(x+2)=1$ and $g^{\prime}(x)=\frac{d}{d x}(x+1)=1$. Therefore, $\lim _{x \rightarrow 0} \frac{f(x)}{f^{\prime}(x)}=\frac{1}{T}=1$, while $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g(x)}$ $=\frac{x+2}{x+1}=\frac{0+2}{0+1}=2$.
(b) This does not contradict l'Hốpital's rule because neither f nor g is differentiable at $\mathrm{x}=0$ (as evidenced by the fact that neither is continuous at $\mathrm{x}=0$), so IHốpital's rule does not apply.
35. The graph indicates a limit near -1 . The limit leads to the indeterminate form $\frac{0}{0}=\lim _{x \rightarrow 1} \frac{2 x^{3}-(3 x+1) \sqrt{x}+2}{x-1}$
$=\lim _{x \rightarrow 1} \frac{2 x^{1}-3 x^{1}+x^{1!}+2}{x-1}=\lim _{x \rightarrow 1} \frac{4 x-2 x^{n^{1}}--^{-2}}{1}$
$=\frac{4-\frac{2-t}{f}}{f}=\frac{4-9}{1}=-1$

36. (a)

(b) The limit leads to the indeterminate form $\infty-\infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)=\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)\left(\frac{x+\sqrt{x^{1}+x}}{x+\sqrt{x^{1}+x}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{1}-\left(x^{1}+x\right)}{x+\sqrt{x^{1}+x}}\right)=\lim _{x \rightarrow \infty} \frac{-x}{x+\sqrt{x^{i}+x}} \\
& =\lim _{x \rightarrow \infty} \frac{-1}{1+\sqrt{1+\frac{1}{x}}}=\frac{-1}{1+\sqrt{1+0}}=-\frac{1}{2}
\end{aligned}
$$

5. $y=\ln 3 x \Rightarrow y^{\prime}=\left(\frac{1}{x x}\right)(3)=\frac{1}{x}$
6. $y=\ln k x \Rightarrow y^{\prime}=\left(\frac{1}{1 x}\right)(k)=x$
7. $y=\ln \left(t^{2}\right) \Rightarrow \frac{d y}{d t}=\left(\frac{1}{t}\right)(2 t)=\frac{2}{i}$
8. $y=\ln \left(t^{3 / 2}\right) \Rightarrow \frac{d y}{a}=\left(\frac{1}{b i}\right)\left(\frac{1}{2} t^{1 / 2}\right)=\frac{1}{21}$
9. $y=\ln \frac{3}{x}=\ln 3 x^{-1} \Rightarrow \frac{d y}{4 x}=\left(\frac{1}{1 x^{-}}\right)\left(-3 x^{-2}\right)=-\frac{1}{x}$
10. $y=\ln \frac{10}{x}=\ln 10 x^{-1} \Rightarrow \frac{d y}{d x}=\left(\frac{1}{10 x^{-1}}\right)\left(-10 x^{-2}\right)=-\frac{1}{x}$
11. $\mathrm{y}=\ln (\theta+1) \Rightarrow \frac{d y}{d \theta}=\left(\frac{1}{\theta+1}\right)(1)=\frac{1}{\theta+1}$
12. $\mathrm{y}=\ln (2 \theta+2) \Rightarrow \frac{d y}{d y}=\left(\frac{1}{3 x+2}\right)(2)=\frac{1}{\theta+1}$
13. $y=\ln x^{3} \Rightarrow \frac{b y}{d}=\left(\frac{1}{x}\right)\left(3 x^{2}\right)=\frac{1}{x}$
14. $y=(\ln x)^{3} \Rightarrow \frac{d x}{d x}=3(\ln x)^{2}+\frac{d}{d}(\ln x)=\frac{\operatorname{3n}\left(\ln x^{2}\right.}{x}$
15. $y=t(\ln t)^{2} \Rightarrow \frac{d y}{a}=(\ln t)^{2}+2 t(\ln t) \cdot \frac{1}{4}(\ln t)=(\ln t)^{2}+\frac{2 \ln t}{t}=(\ln t)^{2}+2 \ln t$
16. $y=t \sqrt{\ln t}=t(\ln t)^{1 / 2} \Rightarrow \frac{d v}{x}=(\ln t)^{1 / 2}+\frac{1}{2} t(\ln t)^{-1 / 2} \cdot \frac{d}{a}(\ln t)=(\ln t)^{1 / 2}+\frac{t \ln t)^{-1}}{2 t}$

$$
=(\ln t)^{1 / 2}+\frac{1}{2 \ln t)^{2}}
$$

17. $y=\frac{x^{\frac{1}{4}}}{4} \ln x-\frac{x^{1}}{16} \Rightarrow \frac{d y}{d x}=x^{3} \ln x+\frac{x^{1}}{4} \cdot \frac{1}{x}-\frac{4 x^{\frac{1}{1}}}{16}=x^{3} \ln x$
18. $y=\frac{x^{1}}{3} \ln x-\frac{x^{1}}{9} \Rightarrow \frac{d y}{d x}=x^{2} \ln x+\frac{x^{1}}{3} \cdot \frac{1}{x}-\frac{\frac{3 x^{2}}{9}=x^{2} \ln x}{}$
19. $y=\frac{\ln t}{t} \Rightarrow \frac{d y}{d t}=\frac{\operatorname{t(t)}-(\ln)(1)}{f^{t}}=\frac{1-\ln \mid}{f}$
20. $y=\frac{1+\ln t}{t} \Rightarrow \frac{d y}{d t}=\frac{(t)-(1+\ln 1)(1)}{t}=\frac{1-1-\ln t}{t}=-\frac{\ln t}{t}$

21. $y=\frac{x \ln x}{1+\ln x} \Rightarrow y^{\prime}=\frac{(1+\ln x)(\ln x+x \cdot-)-(x \ln x)(t)}{(1+\ln x)^{\prime}}=\frac{\left(1+\ln y y^{\prime}-\ln x\right.}{\left(1+\ln x y^{\prime}\right.}=1-\frac{\ln x}{(1+\ln x y}$
22. $y=\ln (\ln x) \Rightarrow y^{\prime}=\left(\frac{1}{\ln x}\right)\left(\frac{1}{x}\right)=\frac{1}{\sin x}$
23. $y=\ln (\ln (\ln x)) \Rightarrow y^{\prime}=\frac{1}{\ln (\ln x)} \cdot \frac{d}{d x}(\ln (\ln x))=\frac{1}{\ln (\ln x)} \cdot \frac{1}{\ln x} \cdot \frac{d}{d x}(\ln x)=\frac{1}{x(\ln x) \ln (\ln x)}$
24. $\mathrm{y}=\theta[\sin (\ln \theta)+\cos (\ln \theta)] \Rightarrow \frac{\operatorname{ly}}{\mathrm{d} \theta}=[\sin (\ln \theta)+\cos (\ln \theta)]+\theta\left[\cos (\ln \theta) \cdot \frac{1}{\theta}-\sin (\ln \theta) \cdot \frac{1}{\theta}\right]$
$=\sin (\ln \theta)+\cos (\ln \theta)+\cos (\ln \theta)-\sin (\ln \theta)=2 \cos (\ln \theta)$
25. $y=\ln (\sec \theta+\tan \theta) \Rightarrow \frac{d y}{\omega \theta}=\frac{\sec \theta \tan \theta+\operatorname{sen}^{2} \theta}{\sec \theta+\tan \theta}=\frac{\sec \theta(\tan \theta+\sec \theta)}{\tan \theta+\sec \theta}=\sec \theta$
26. $y=\ln \frac{1}{x \sqrt{x+1}}=-\ln x-\frac{1}{2} \ln (x+1) \Rightarrow y^{\prime}=-\frac{1}{x}-\frac{1}{2}\left(\frac{1}{x+1}\right)=-\frac{2 x+1)+x}{2 x(x+1)}=-\frac{3 x+2}{2 x(x+1)}$
27. $y=\frac{1}{2} \ln \frac{1+x}{1-x}=\frac{1}{2}[\ln (1+x)-\ln (1-x)] \Rightarrow y^{\prime}=\frac{1}{2}\left[\frac{1}{1+x}-\left(\frac{1}{1-x}\right)(-1)\right]=\frac{1}{2}\left[\frac{1-x+1+x}{1+x+1-x)}\right]=\frac{1}{1-x}$

28. $y=\sqrt{\ln \sqrt{t}}=\left(\ln t^{1 / 2}\right)^{1 / 2} \Rightarrow \frac{4}{4}=\frac{1}{2}\left(\ln t^{1 / 2}\right)^{-1 / 2} \cdot \frac{d}{4}\left(\ln t^{1 / 2}\right)=\frac{1}{2}\left(\ln t^{1 / 2}\right)^{-1 / 2} \cdot \frac{1}{2 / 1} \cdot \frac{d}{4}\left(t^{1 / 2}\right)$ $=\frac{1}{2}\left(\ln t^{1 / 2}\right)^{-1 / 2} \cdot \frac{1}{t} \cdot \frac{1}{2} t^{-1 / 2}=\frac{1}{4 \sqrt{\ln \sqrt{1}}}$
29. $y=\ln (\sec (\ln \theta)) \Rightarrow \frac{d v}{\omega}=\frac{1}{\operatorname{sc}(\ln \theta)} \cdot \frac{d}{d}(\sec (\ln \theta))=\frac{\sec (\ln \theta \tan (\ln \theta)}{\sec (\ln \theta)} \cdot \frac{d}{d \theta}(\ln \theta)=\frac{\operatorname{san} \ln \theta}{\sigma}$
30. $y=\ln \frac{\sqrt{\sin \theta \cos \theta}}{1+2 \ln \theta}=\frac{1}{2}(\ln \sin \theta+\ln \cos \theta)-\ln (1+2 \ln \theta) \Rightarrow \frac{\theta y}{\alpha}=\frac{1}{2}\left(\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}\right)-\frac{t}{1+2 \ln \theta}$ $=\frac{1}{2}\left[\cot \theta-\tan \theta-\frac{4}{(1+2 \ln \theta)}\right]$
31. $y=\ln \left(\frac{\left.x^{\prime}+1\right)^{\prime}}{\sqrt{1-x}}\right)=5 \ln \left(x^{2}+1\right)-\frac{1}{2} \ln (1-x) \Rightarrow y^{\prime}=\frac{5.2 x}{x^{x}+1}-\frac{1}{2}\left(\frac{1}{1-x}\right)(-1)=\frac{10 x}{x^{2}+1}+\frac{1}{2(1-x)}$
32. $y=\ln \sqrt{\frac{\left(x+1 y^{\prime}\right.}{(x+2) \mid}}=\frac{1}{2}[5 \ln (x+1)-20 \ln (x+2)] \Rightarrow y^{\prime}=\frac{1}{2}\left(\frac{5}{x+1}-\frac{20}{x+2}\right)=\frac{4}{2}\left[\frac{(x+2)-4(x+1)}{(x+1)(x+2)}\right]$ $=-\frac{1}{2}\left[\frac{3+2}{(x+1)(x+2)}\right]$
33. $y=\int_{v i 1}^{v} \ln \sqrt{t d t} \Rightarrow \frac{d x}{d x}=\left(\ln \sqrt{x^{2}}\right) \cdot \frac{4}{d s}\left(x^{2}\right)-\left(\ln \sqrt{\frac{x}{2}}\right) \cdot \frac{d}{d x}\left(\frac{1}{2}\right)=2 x \ln |x|-x \ln \frac{\operatorname{ls} \mid}{\sqrt{2}}$
34. $y=\int_{\sqrt{2}}^{i=} \ln t d t \Rightarrow \frac{4 n}{4 x}=(\ln \sqrt[3]{x}) \cdot \frac{d}{4 x}(\sqrt[3]{x})-(\ln \sqrt{x}) \cdot \frac{d}{4}(\sqrt{x})=(\ln \sqrt[3]{x})\left(\frac{1}{3} x^{-2 / 5}\right)-(\ln \sqrt{x})\left(\frac{1}{2} x^{-1 / 2}\right)$ $=\frac{\min \sqrt{x}}{3 \sqrt{x^{2}}}-\frac{\ln \sqrt{x}}{2 \sqrt{x}}$
35. $\int_{-1}^{-2} \frac{1}{3} \mathrm{dx}=\|\ln |x|\|_{-3}^{-2}=\ln 2-\ln 3=\ln \frac{2}{5}$
36. $\int_{-1}^{0} \frac{3}{x-2} d x=[\ln |3 x-2|]_{-1}^{0}=\ln 2-\ln 5=\ln \frac{2}{5}$
37. $\int \frac{2 y}{Y-35} d y=\ln \left|y^{2}-25\right|+C$
38. $\int \frac{8}{7 \pi-5} \mathrm{dr}=\ln \left|4 r^{2}-5\right|+\mathrm{C}$
39. $\int_{0}^{=} \frac{\sin t}{2-\cos t} d t=|\ln | 2-\cos t| |_{0}^{\pi}=\ln 3-\ln 1=\ln 3 ;$ or $\operatorname{let} \mathrm{u}=2-\cos \mathrm{t} \Rightarrow \mathrm{du}=\sin \mathrm{t}$ dt with $\mathrm{t}=0$ $\Rightarrow \mathrm{u}=1$ and $\mathrm{t}=\pi \Rightarrow \mathrm{u}=3 \Rightarrow \int_{0}^{0} \frac{\sin t}{2-\operatorname{cost}} \mathrm{dt}=\int_{1}^{3} \frac{1}{\mathrm{u}} \mathrm{du}=\left[\ln |\mathrm{u}| \|_{1}^{3}=\ln 3-\ln 1=\ln 3\right.$
40. $\int_{0}^{-1} \frac{4 \tan \theta}{1-\cos \theta} \mathrm{d} \theta=|\ln | 1-4 \cos \theta \|_{0}^{\pi / 3}=\ln |1-2|=-\ln 3=\ln \frac{1}{3} ;$ or let $\mathrm{u}=1-4 \cos \theta \Rightarrow \mathrm{du}=4 \sin \theta \mathrm{~d} \theta$ with $\theta=0 \Rightarrow u=-3$ and $\theta=\frac{\pi}{3} \Rightarrow u=-1 \Rightarrow \int_{0}^{-13} \frac{4+\cos d}{1-\cos \theta} d \theta=\int_{-}^{1} \frac{1}{u} d u=\left[\ln |u|_{-3}^{-1}=-\ln 3=\ln \frac{1}{3}\right.$
41. Let $\mathrm{u}=\ln \mathrm{x} \Rightarrow \mathrm{du}=\frac{1}{2} \mathrm{dx} ; \mathrm{x}=1 \Rightarrow \mathrm{u}=0$ and $\mathrm{x}=2 \Rightarrow \mathrm{u}=\ln 2$;
$\int_{1}^{2} \frac{2 \ln x}{x} d x=\int_{0}^{\infty 2} 2 u d u=\left[\left.u^{2}\right|_{0} ^{n 2}=(\ln 2)^{2}\right.$
42. Let $\mathrm{u}=\ln \mathrm{x} \Rightarrow \mathrm{du}=\frac{1}{\mathrm{x}} \mathrm{dx} ; \mathrm{x}=2 \Rightarrow \mathrm{u}=\ln 2 \mathrm{and} \mathrm{x}=4 \Rightarrow \mathrm{u}=\ln 4$;
43. Let $\mathrm{u}=\ln \mathrm{x} \Rightarrow \mathrm{du}=\frac{1}{\mathrm{x}} \mathrm{dx} ; \mathrm{x}=2 \Rightarrow \mathrm{u}=\ln 2$ and $\mathrm{x}=4 \Rightarrow \mathrm{u}=\ln 4$;
44. Let $u=\ln x \Rightarrow d u=\frac{1}{x} d x ; x=2 \Rightarrow u=\ln 2$ and $x=16 \Rightarrow u=\ln 16 ;$
$\int_{2}^{16} \frac{d x}{2 \mathrm{~V} \sqrt{\ln \mathrm{x}}}=\frac{1}{2} \int_{\ln 2}^{\infty 16} \mathrm{u}^{-1 / 2} \mathrm{du}=\left[\mathrm{u}^{1 / 2}\right]_{\ln 2}^{\operatorname{los}}=\sqrt{\ln 16}-\sqrt{\ln 2}=\sqrt{4 \ln 2}-\sqrt{\ln 2}=2 \sqrt{\ln 2}-\sqrt{\ln 2}=\sqrt{\ln }$
45. Let $\mathrm{u}=6+3 \tan \mathrm{t} \Rightarrow \mathrm{du}=3 \sec ^{2} \mathrm{tdt}$;
$\int \frac{3 \cos ^{\mathrm{t}} \mathrm{t}}{\mathrm{b}+3 \operatorname{tant} \mathrm{t}} \mathrm{dt} \int \frac{\mathrm{d}}{\mathrm{E}}=\ln |\mathrm{u}|+\mathrm{C}=\ln |6+3 \tan \mathrm{t}|+\mathrm{C}$
46. Let $u=2+\sec y \Rightarrow d u=\sec y \tan y d y$;
$\int \frac{\sec y \tan y}{2+\sec y} d y=\int \frac{d u}{a}=\ln |u|+C=\ln |2+\sec y|+C$
47. Let $u=\cos \frac{x}{2} \Rightarrow d u=-\frac{1}{2} \sin \frac{x}{2} d x \Rightarrow-2 d u=\sin \frac{x}{2} d x ; x=0 \Rightarrow u=1$ and $x=\frac{\pi}{2} \Rightarrow u=\frac{1}{\sqrt{2}}$;

$$
\int_{0}^{-12} \tan \frac{x}{2} \mathrm{dx}=\int_{0}^{-2} \frac{\sin \dagger}{\cos \dagger} \mathrm{dx}=-2 \int_{1}^{1 / \sqrt{2}} \frac{\operatorname{dn}}{\mathrm{v}}=[-2 \ln |\mathrm{u}|]_{1}^{1 / \sqrt{2}}=-2 \ln \frac{1}{\sqrt{2}}=2 \ln \sqrt{2}=\ln 2
$$

50. Let $\mathrm{u}=\sin \mathrm{t} \Rightarrow \mathrm{du}=\cos \mathrm{tdt} ; \mathrm{t}=\frac{\pi}{4} \Rightarrow \mathrm{u}=\frac{1}{\sqrt{2}}$ and $\mathrm{t}=\frac{\pi}{2} \Rightarrow \mathrm{u}=1$;

$$
\int_{-/ 4}^{-12} \cot t d t=\int_{-1}^{12} \cos d \mathrm{~d} t=\int_{1 / \sqrt{2}}^{1} \frac{d u}{u}=|\ln | u| |_{1 / \sqrt{2}}^{1}=-\ln \frac{1}{\sqrt{2}}=\ln \sqrt{2}
$$

51. Let $\mathrm{u}=\sin \frac{\varphi}{3} \Rightarrow \mathrm{du}=\frac{1}{5} \cos \frac{\theta}{5} \mathrm{~d} \theta \Rightarrow 6 \mathrm{du}=2 \cos \frac{\theta}{5} \mathrm{~d} \theta ; \theta=\frac{\pi}{2} \Rightarrow \mathrm{u}=\frac{1}{2}$ and $\theta=\pi \Rightarrow \mathrm{u}=\frac{\sqrt{3}}{2}$;

$$
\int_{-2}^{-} 2 \cot \frac{\theta}{3} \mathrm{~d} \theta=\int_{-12} \frac{2 \cos +\frac{t}{\sin }+7}{} \mathrm{~d} \theta=6 \int_{12}^{\sqrt{72}} \frac{\ln }{u}=6|\ln | \mathrm{u} \|_{12}^{\sqrt{2}}=6\left(\ln \frac{\sqrt{3}}{2}-\ln \frac{1}{2}\right)=6 \ln \sqrt{3}=\ln 27
$$

52. Let $\mathrm{u}=\cos 3 \mathrm{x} \Rightarrow \mathrm{du}=-3 \sin 3 \mathrm{xdx} \Rightarrow-2 \mathrm{du}=6 \sin 3 \mathrm{xdx} ; \mathrm{x}=0 \Rightarrow \mathrm{~d}=1$ and $\mathrm{x}=\frac{\pi}{12} \Rightarrow \mathrm{u}=\frac{1}{\sqrt{2}}$; $\int_{0}^{-12} 6 \tan 3 \mathrm{x} \mathrm{dx}=\int_{0}^{-12} \frac{6 \sin 3 \mathrm{~s}}{\cos 3 \mathrm{~s}} \mathrm{dx}=-2 \int_{1}^{1 \sqrt{2}} \frac{\operatorname{da}}{\mathrm{x}}=-2\left[\ln \mid \mathrm{u} \|_{1}^{\pi} \sqrt{2}^{2}=-2 \ln \frac{1}{\sqrt{2}}-\ln 1=2 \ln \sqrt{2}=\ln 2\right.$
53. $\int \frac{d x}{2 \sqrt{x}+2 x}=\int \frac{d x}{2 \sqrt{x}(1+\sqrt{x})} ; \operatorname{let} u=1+\sqrt{x} \Rightarrow d u=\frac{1}{2 \sqrt{x}} d x ; \int \frac{d x}{2 \sqrt{x}(1+\sqrt{x})}=\int \frac{d u}{u}=\ln |u|+C$ $=\ln |1+\sqrt{x}|+C=\ln (1+\sqrt{x})+C$
54. Let $u=\sec x+\tan x \Rightarrow d u=\left(\sec x \tan x+\sec ^{2} x\right) d x=(\sec x)(\tan x+\sec x) d x \Rightarrow \sec x d x=\frac{d}{a}$; $\int \frac{\sec x \operatorname{co}}{\sqrt{\ln (\sec x+\tan x)}}=\int \frac{d u}{u \sqrt{\ln u}}=\int(\ln u)^{-1 / 2} \cdot \frac{1}{u} d u=2(\ln u)^{1 / 2}+C=2 \sqrt{\ln (\sec x+\tan x)}+C$
55. $\ln y=2 t+4 \Rightarrow e^{\ln y}=e^{x+4} \Rightarrow y=e^{2+4}$
56. $\ln y=-t+5 \Rightarrow e^{\ln y}=e^{-t+5} \Rightarrow y=e^{-4+5}$
57. $\ln (y-40)=5 t \Rightarrow e^{\ln (y-40)}=e^{t} \Rightarrow y-40=e^{5 t} \Rightarrow y=e^{5 t}+40$
58. $\ln (1-2 y)=t \Rightarrow e^{\ln (1-2 y)}=e^{t} \Rightarrow 1-2 y=e^{t} \Rightarrow-2 y=e^{t}-1 \Rightarrow y=-\left(\frac{t-1}{2}\right)$
59. $\ln (y-1)-\ln 2=x+\ln x \Rightarrow \ln (y-1)-\ln 2-\ln x=x \Rightarrow \ln \left(\frac{y-1}{2 x}\right)=x \Rightarrow e^{\ln \left(\frac{2-1}{2}\right)}=e^{x} \Rightarrow \frac{x-1}{2 x}=e^{x}$ $\Rightarrow \mathrm{y}-1=2 \mathrm{xe}^{\mathrm{x}} \Rightarrow \mathrm{y}=2 \mathrm{xe}^{\mathrm{x}}+1$
60. $\ln \left(y^{2}-1\right)-\ln (y+1)=\ln (\sin x) \Rightarrow \ln \left(\frac{x^{2}-1}{y+1}\right)=\ln (\sin x) \Rightarrow \ln (y-1)=\ln (\sin x) \Rightarrow e^{\ln (y-1)}=e^{\ln (\sin x)}$ $\Rightarrow y-1=\sin x \Rightarrow y=\sin x+1$
61. (a) $e^{2 k}=4 \Rightarrow \ln e^{2 k}=\ln 4 \Rightarrow 2 k \ln e=\ln 2^{2} \Rightarrow 2 k=2 \ln 2 \Rightarrow k=\ln 2$
(b) $100 e^{10 k}=200 \Rightarrow e^{10 k}=2 \Rightarrow \ln e^{10 k}=\ln 2 \Rightarrow 10 k \ln e=\ln 2 \Rightarrow 10 k=\ln 2 \Rightarrow k=\frac{\ln 2}{10}$
(c) $e^{k / 1000}=a \Rightarrow \ln e^{k / 10000}=\ln a \Rightarrow \frac{k}{1000} \ln c=\ln a \Rightarrow \frac{k}{1000}=\ln a \Rightarrow k=1000 \ln a$
62. (a) $e^{5 k}=\frac{1}{4} \Rightarrow \ln e^{5 k}=\ln 4^{-1} \Rightarrow 5 k \ln e=-\ln 4 \Rightarrow 5 k=-\ln 4 \Rightarrow k=-\frac{\ln 4}{5}$
(b) $80 e^{k}=1 \Rightarrow e^{k}=80^{-1} \Rightarrow \ln e^{k}=\ln 80^{-1} \Rightarrow k \ln e=-\ln 80 \Rightarrow k=-\ln 80$
(c) $\mathrm{e}^{(\mathrm{ln} 0.3) k}=0.8 \Rightarrow\left(\mathrm{e}^{\ln 0.3}\right)^{\mathrm{k}}=0.8 \Rightarrow(0.8)^{k}=0.8 \Rightarrow \mathrm{k}=1$
63. (a) $\mathrm{e}^{-0.3 \mathrm{t}}=27 \Rightarrow \ln \mathrm{e}^{-0.3 \mathrm{t}}=\ln 3^{3} \Rightarrow(-0.3 \mathrm{t}) \ln \mathrm{e}=3 \ln 3 \Rightarrow-0.3 \mathrm{t}=3 \ln 3 \Rightarrow \mathrm{t}=-10 \ln 3$
(b) $\mathrm{e}^{\mathrm{kt}}=\frac{1}{2} \Rightarrow \ln \mathrm{e}^{\mathrm{kt}}=\ln 2^{-1}=\mathrm{kt} \ln \mathrm{e}=-\ln 2 \Rightarrow \mathrm{t}=-\frac{\ln 2}{\mathrm{k}}$
(c) $\mathrm{e}^{(\ln 0.2) t}=0.4 \Rightarrow\left(\mathrm{e}^{\ln 0.2}\right)^{t}=0.4 \Rightarrow 0.2^{t}=0.4 \Rightarrow \ln 0.2^{t}=\ln 0.4 \Rightarrow t \ln 0.2=\ln 0.4 \Rightarrow t=\frac{\ln 0.4}{\ln 0.2}$
64. (a) $e^{-0.01 t}=1000 \Rightarrow \ln e^{-0.01 t}=\ln 1000 \Rightarrow(-0.01 \mathrm{t}) \ln \mathrm{e}=\ln 1000 \Rightarrow-0.01 \mathrm{lt}=\ln 1000 \Rightarrow t=-100 \ln 1000$
(b) $\mathrm{e}^{\mathrm{kt}}=\frac{1}{10} \Rightarrow \ln \mathrm{e}^{\mathrm{kt}}=\ln 10^{-1}=\mathrm{kt} \ln \mathrm{e}=-\ln 10 \Rightarrow \mathrm{kt}=-\ln 10 \Rightarrow \mathrm{t}=-\frac{\ln 10}{\mathrm{k}}$
(c) $e^{(\ln 2) t}=\frac{1}{2} \Rightarrow\left(\mathrm{c}^{\ln 2}\right)^{t}=2^{-1} \Rightarrow 2^{4}=2^{-1} \Rightarrow \mathrm{t}=-1$
65. $e^{\sqrt{1}}=x^{2} \Rightarrow \ln e^{\sqrt{1}}=\ln x^{2} \Rightarrow \sqrt{t}=2 \ln x \Rightarrow t=4(\ln x)^{2}$
66. $e^{x^{1}} e^{2 x+1}=e^{t} \Rightarrow e^{x^{2}+2 x+1}=e^{t} \Rightarrow \ln e^{x^{2}+2 x+1}=\ln e^{t} \Rightarrow t=x^{2}+2 x+1$
67. $y=e^{-5 x} \Rightarrow y^{\prime}=e^{-5 x} \frac{d}{d x}(-5 x) \Rightarrow y^{\prime}=-5 e^{-5 x}$
68. $y=e^{2 x / 3} \Rightarrow y^{\prime}=e^{2 x / 3} \frac{4}{d x}\left(\frac{2 x}{3}\right) \Rightarrow y^{\prime}=\frac{2}{3} e^{2 x / 3}$
69. $y=e^{5-7 x} \Rightarrow y^{\prime}=e^{5-7 x} \frac{d}{d x}(5-7 x) \Rightarrow y^{\prime}=-7 e^{5-7 x}$
70. $y=e^{\left(4 \sqrt{x}+x^{\prime}\right)} \Rightarrow y^{\prime}=e^{\left(4 \sqrt{x}+x^{\prime}\right)} \frac{d}{d x}\left(4 \sqrt{x}+x^{2}\right) \Rightarrow y^{\prime}=\left(\frac{2}{\sqrt{x}}+2 x\right) e^{\left(4 \sqrt{x}+x^{\prime}\right)}$
71. $y=x e^{x}-e^{x} \Rightarrow y^{\prime}=\left(e^{x}+x e^{x}\right)-e^{x}=x e^{x}$
72. $y=(1+2 x) e^{-2 x} \Rightarrow y^{\prime}=2 e^{-2 x}+(1+2 x) e^{-2 x} \frac{d}{d x}(-2 x) \Rightarrow y^{\prime}=2 e^{-2 x}-2(1+2 x) e^{-2 x}=-4 x e^{-2 x}$
73. $y=\left(x^{2}-2 x+2\right) e^{x} \Rightarrow y^{\prime}=(2 x-2) e^{x}+\left(x^{2}-2 x+2\right) c^{x}=x^{2} e^{x}$
74. $y=\left(9 x^{2}-6 x+2\right) e^{t x} \Rightarrow y^{\prime}=(18 x-6) e^{5 x}+\left(9 x^{2}-6 x+2\right) e^{5 x} \frac{d}{d x}(3 x) \Rightarrow y^{\prime}=(18 x-6) e^{3 x}+3\left(9 x^{2}-6 x+2\right) e^{5 x}$ $=27 \mathrm{x}^{2} \mathrm{e}^{3 \mathrm{x}}$
75. $y=e^{\theta}(\sin \theta+\cos \theta) \Rightarrow y^{\prime}=e^{\theta}(\sin \theta+\cos \theta)+e^{\theta}(\cos \theta-\sin \theta)=2 e^{\theta} \cos \theta$
76. $y=\ln \left(30 \mathrm{e}^{-\theta}\right)=\ln 3+\ln \theta+\ln \mathrm{e}^{-\theta}=\ln 3+\ln \theta-\theta \Rightarrow$ कy $=\frac{1}{\theta}-1$

77. $\mathrm{y}=\theta^{3} \mathrm{e}^{-2 \theta} \cos 5 \theta \Rightarrow \frac{\theta y}{\theta \theta}=\left(3 \theta^{2}\right)\left(\mathrm{e}^{-2 \theta} \cos 5 \theta\right)+\left(\theta^{3} \cos 5 \theta\right) \mathrm{e}^{-2 \theta} \frac{d}{\theta \theta}(-2 \theta)-5(\sin 5 \theta)\left(\theta^{3} \mathrm{e}^{-2 \theta}\right)$

$$
=\theta^{2} \mathrm{e}^{-2 t}(3 \cos 5 \theta-2 \theta \cos 5 \theta-5 \theta \sin 5 \theta)
$$

29. $y=\ln \left(3 t e^{-t}\right)=\ln 3+\ln t+\ln e^{-t}=\ln 3+\ln t-t \Rightarrow \frac{d y}{w}=\frac{1}{1}-1=\frac{1-t}{t}$
30. $y=\ln \left(2 e^{-t} \sin t\right)=\ln 2+\ln e^{-t}+\ln \sin t=\ln 2-t+\ln \sin t \Rightarrow \frac{d y}{d x}=-1+\left(\frac{1}{\sin t}\right) \frac{d}{a}(\sin t)=-1+\frac{\cos t}{\sin t}$ $=\frac{\cos t-\sin t}{\sin t}$

31. $y=\ln \frac{\sqrt{\theta}}{1+\sqrt{\theta}}=\ln \sqrt{\theta}-\ln (1+\sqrt{\theta}) \Rightarrow \frac{d v}{\omega 2}=\left(\frac{1}{\sqrt{v}}\right) \frac{d}{d \theta}(\sqrt{\theta})-\left(\frac{1}{1+\sqrt{v}}\right) \frac{d}{d \theta}(1+\sqrt{\theta})$

$$
=\left(\frac{1}{\sqrt{v}}\right)\left(\frac{1}{2 \sqrt{v}}\right)-\left(\frac{1}{1+\sqrt{v}}\right)\left(\frac{1}{2 \sqrt{v}}\right)=\frac{(1+\sqrt{\theta})-\sqrt{\theta}}{2 v(1+\sqrt{v})}=\frac{1}{2 v(1+\sqrt{v})}=\frac{1}{2 v(1+\theta)}
$$

33. $y=e^{(\cos t+\ln t)}=e^{\cos t} e^{\ln t}=t e^{\cos t} \Rightarrow \frac{d y}{d}=e^{\cos t}+t e^{\cos t} \frac{d}{d}(\cos t)=(1-t \sin t) e^{\cos t}$
34. $y=e^{\operatorname{dn} t}\left(\ln t^{2}+1\right) \Rightarrow \frac{d y}{d t}=e^{\sin t}(\cos t)\left(\ln t^{2}+1\right)+\frac{2}{t} e^{\sin t}=e^{\sin t}\left[\left(\ln t^{2}+1\right)(\cos t)+\frac{2}{t}\right]$
35. $\int_{0}^{\ln x} \sin e^{t} d t \Rightarrow y^{\prime}=\left(\sin e^{\ln x}\right) \cdot \frac{d}{d}(\ln x)=\frac{\sin x}{x}$
36. $y=\int_{e^{2}}^{v^{2 x}} \ln t d t \Rightarrow y^{\prime}=\left(\ln e^{2 x}\right) \cdot \frac{d}{d x}\left(e^{2 x}\right)-\left(\ln e^{4 \sqrt{x}}\right) \cdot \frac{4}{d x}\left(e^{4 \sqrt{x}}\right)=(2 x)\left(2 e^{2 x}\right)-(4 \sqrt{x})\left(e^{4 \sqrt{x}}\right) \cdot \frac{d}{d x}(4 \sqrt{x})$ $=4 x e^{2 x}-4 \sqrt{x} e^{4 \sqrt{x}}\left(\frac{2}{\sqrt{x}}\right)=4 x e^{2 x}-8 e^{4 \sqrt{x}}$
37. $\ln y=e^{y} \sin x \Rightarrow\left(\frac{1}{y}\right) y^{\prime}=\left(y^{\prime} e^{y}\right)(\sin x)+e^{y} \cos x \Rightarrow y^{\prime}\left(\frac{1}{y}-e^{y} \sin x\right)=e^{y} \cos x$
$\Rightarrow y^{\prime}\left(\frac{1-\omega^{\prime} \sin x}{y}\right)=e^{y} \cos x \Rightarrow y^{\prime}=\frac{y^{\prime} \cos x}{1-y^{\prime} \sin x}$
38. $\ln x y=e^{x+y} \Rightarrow \ln x+\ln y=e^{x+y} \Rightarrow \frac{1}{x}+\left(\frac{1}{y}\right) y^{\prime}=\left(1+y^{\prime}\right) e^{x+y} \Rightarrow y^{\prime}\left(\frac{1}{y}-e^{x+y}\right)=e^{x+y}-\frac{1}{x}$
$\Rightarrow y^{\prime}\left(\frac{1-y x^{*-}}{y}\right)=\frac{x^{*-y}-1}{2} \Rightarrow y^{\prime}=\frac{y\left(x^{n}+y-1\right)}{x\left(1-y x^{2 v}\right)}$
39. $\mathrm{e}^{2 \mathrm{x}}=\sin (\mathrm{x}+3 \mathrm{y}) \Rightarrow 2 \mathrm{e}^{2 \mathrm{x}}=\left(1+3 y^{\prime}\right) \cos (\mathrm{x}+3 \mathrm{y}) \Rightarrow 1+3 \mathrm{y}^{\prime}=\frac{2 \mathrm{e}^{2 x}}{\cos (\mathrm{x}+3 y)} \Rightarrow 3 y^{\prime}=\frac{22^{2 x}}{\cos (x+3 y)}-1$
$\Rightarrow y^{\prime}=\frac{2 x^{3}-\cos (x+3 y)}{3 \cos (x+3 y)}$
40. $\tan y=e^{x}+\ln x \Rightarrow\left(\sec ^{2} y\right) y^{\prime}=e^{x}+\frac{1}{x} \Rightarrow y^{\prime}=\frac{\left(x x^{2}+1\right) \operatorname{cma}^{1} y}{x}$
41. $\int\left(e^{3 x}+5 e^{-x}\right) d x=\frac{e^{2}}{3}-5 e^{-x}+C$
42. $\int\left(2 e^{x}-3 e^{-2 x}\right) d x=2 e^{x}+\frac{3}{2} e^{-2 x}+C$
43. $\int_{\ln 2}^{\ln 3} \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\left[\mathrm{e}^{x}\right]_{\ln 2}^{\ln 3}=\mathrm{e}^{\ln 3}-\mathrm{e}^{\ln 2}=3-2=1$
44. $\int_{-\ln 2}^{\ln 3} e^{-x} d x=\left[-e^{-x}\right]_{-\ln 2}^{0}=-e^{0}+e^{\ln 2}=-1+2=1$
45. $\int 8 e^{(x+1)} d x=8 e^{(x+1)}+C$
46. $\int 2 e^{(2 x-1)} d x=e^{(2 x-1)}+C$
47. $\int_{\ln 4}^{\ln 9} \mathrm{e}^{\mathrm{x} / 2} \mathrm{dx}=\left[2 \mathrm{e}^{x / 2}\right]_{\ln 4}^{\ln 9}=2\left[\mathrm{e}^{(\ln v) / 2}-\mathrm{e}^{(\ln 4) / 2}\right]=2\left(\mathrm{e}^{\ln 3}-\mathrm{e}^{\ln 2}\right)=2(3-2)=2$
48. $\int_{0}^{\ln 16} e^{x / 4} d x=\left[4 e^{x / 4}\right]_{0}^{\ln 16}=4\left(e^{\ln 16 / / 4}-e^{0}\right)=4\left(e^{\ln 2}-1\right)=4(2-1)=4$
49. Let $\mathrm{u}=\mathrm{r}^{1 / 2} \Rightarrow \mathrm{du}=\frac{1}{2} \mathrm{r}^{-1 / 2} \mathrm{dr} \Rightarrow 2 \mathrm{du}=\mathrm{r}^{-1 / 2} \mathrm{dr}$,
$\int \frac{\mathrm{ev}^{v}}{\sqrt{r}} d r=\int \mathrm{e}^{r^{\prime}} \cdot \mathrm{r}^{-1 / 2} \mathrm{dr}=2 \int \mathrm{e}^{u} \mathrm{du}=2 \mathrm{e}^{u}+\mathrm{C}=2 \mathrm{e}^{\mathrm{r}^{1}}+\mathrm{C}=2 e^{\sqrt{r}}+\mathrm{C}$
50. Let $\mathrm{u}=-\mathrm{r}^{1 / 2} \Rightarrow \mathrm{du}=-\frac{1}{2} \mathrm{r}^{-1 / 2} \mathrm{dr} \Rightarrow-2 \mathrm{du}=\mathrm{r}^{-1 / 2} \mathrm{dr} ;$
$\int \frac{\mathbf{c}^{-v}}{\sqrt{r}} \mathrm{dr}=\int \mathrm{e}^{-z^{\prime}} \cdot \mathrm{r}^{-1 / 2} \mathrm{dr}=-2 \int \mathrm{e}^{u} \mathrm{du}=-2 \mathrm{e}^{-r^{\prime t}}+\mathbf{C}=-2 \mathrm{e}^{-\sqrt{\mathrm{r}}}+\mathrm{C}$
51. Let $==-\mathbf{t}^{2} \Rightarrow \mathbf{d u}=-\mathbf{2} \mathbf{d t} \Rightarrow-\mathbf{d a}=2 \mathrm{t} \mathbf{d t}$
$\int 2 \mathrm{k}^{-1} \mathrm{dt}=-\int \mathrm{e}^{-} \mathrm{d}=\mathrm{m}=-\mathrm{e}^{+}+\mathrm{C}=-\mathrm{e}^{-\mathrm{t}^{\prime}}+\mathrm{C}$
52. Let $==t^{2} \Rightarrow d x=4 t^{3} d t \Rightarrow \frac{4}{d u}=t^{3} d t$ $\int \mathrm{t}^{2} e^{\prime} d=\frac{4}{\mathrm{t}} \int \mathrm{e}^{d} d u=\frac{1}{1} e^{\prime}+\mathrm{C}$
53. Let $==\frac{1}{4} \Rightarrow d u=-\frac{1}{v} d x \Rightarrow-d x=\frac{1}{2} d s ;$ $\int \frac{\text { ch }}{2} \mathrm{dx}=\int-e^{d} d \mathrm{~m}=-e^{2}+C=-e^{2 / x}+C$
54. Let $==-x^{-2} \Rightarrow d x=2 x^{-1} d x \Rightarrow \frac{1}{2} d x=x^{-3} d x ;$

$=(1-\omega)+(c-1)=c$

$=(0+1)-(1-\varepsilon)=\varepsilon$

$\int e^{-\infty} \left\lvert\,=\sec (x t) \ln (m) d t=+\int e^{-} d n=4+C=\frac{a+4}{n}+C\right.$
55. Let $==c \mathrm{cs}(\mathrm{r}+\mathrm{t}) \Rightarrow \mathrm{dr}=-\mathrm{cc}(\pi+\mathrm{t}) \cot (\mathrm{r}+\mathrm{t}) \mathrm{d}$;

56. Let $==\varepsilon^{v} \Rightarrow d u=2 x x^{\prime} d x ; x=0 \Rightarrow u=1, x=\sqrt{\ln \pi} \Rightarrow u=e^{n v}=\pi ;$
$\int_{0}^{\sqrt{\pi x}} 2 \mathrm{ve} e^{v} \cos \left(e^{v}\right) d \mathrm{~d}=\int_{1}^{n} \cos u d x=|\dot{\operatorname{con}} \mathrm{u}|_{i}^{i}=\sin (\pi)-\sin (1)=-\sin (1) \in-0.84147$
57. Let $=1+\varepsilon^{\prime} \Rightarrow d \Delta=c^{\prime} d=$
$\int \frac{f}{r} d r=\int \frac{1}{4} d u=\ln |u|+C=\ln \left(1+z^{\prime}\right)+C$
58. $\int \stackrel{1}{\underset{\sim}{r}} d x=\int \underset{\sim}{\sim} \underset{\sim}{r} d x$
let $u=e^{-3}+1 \Rightarrow d u=-e^{-x} d x \Rightarrow-d x=e^{-x} d x ;$
$\int \frac{-r}{-\infty} d x=-\int \frac{1}{x} d=-\ln |x|+C=-\ln \left(e^{-x}+1\right)+C$
59. $\int_{0}^{1} 2^{-1} \mathrm{~d} \theta=\int_{0}^{1}\left(\frac{1}{2}\right)^{\theta} \mathrm{d} \theta=\left[\frac{(\mathrm{t})^{\prime}}{\ln (\mathrm{t})}\right]_{0}^{1}=\frac{\mathrm{t}}{\ln (\mathrm{t})}-\frac{1}{\ln (\mathrm{t})}=-\frac{\mathrm{t}}{\ln (\mathrm{t})}=\frac{-1}{2(\ln 1-\ln 2)}=\frac{1}{2 \ln 2}$
60. $\int_{-2}^{0} 5^{-1} \mathrm{~d} \theta=\int_{-2}^{0}\left(\frac{1}{5}\right)^{\theta} \mathrm{d} \theta=\left[\frac{\left(\frac{1}{5}\right)^{1}}{\ln \left(\frac{1}{5}\right)}\right]_{-2}^{0}=\frac{1}{\ln \left(\frac{1}{5}\right)}-\frac{\left(\frac{1}{3}\right)^{-1}}{\ln \left(\frac{1}{5}\right)}=\frac{1}{\ln \left(\frac{1}{5}\right)}(1-25)=\frac{-24}{\ln 1-\ln 3}=\frac{24}{\ln 5}$
61. Let $\mathrm{u}=\mathrm{x}^{2} \Rightarrow \mathrm{du}=2 \mathrm{xdx} \Rightarrow \frac{1}{2} \mathrm{du}=\mathrm{xdx} ; \mathrm{x}=1 \Rightarrow \mathrm{u}=1, \mathrm{x}=\sqrt{2} \Rightarrow \mathrm{u}=2$;

$$
\int_{1}^{\sqrt{2}} \mathrm{x} 2^{\left(x^{1}\right)} \mathrm{dx}=\int_{1}^{2}\left(\frac{1}{2}\right) 2^{u} \mathrm{du}=\frac{1}{2}\left[\frac{2}{\operatorname{m}^{2}}\right]_{1}^{2}=\left(\frac{1}{2 \max }\right)\left(2^{2}-2^{1}\right)=\frac{1}{\ln ^{2} 3}
$$

52. Let $\mathrm{u}=\mathrm{x}^{1 / 2} \Rightarrow \mathrm{du}=\frac{1}{2} \mathrm{x}^{-1 / 2} \mathrm{dx} \Rightarrow 2 \mathrm{du}=\frac{\text { du }}{\sqrt{\mathrm{x}}} ; \mathrm{x}=1 \Rightarrow \mathrm{u}=1, \mathrm{x}=4 \Rightarrow \mathrm{u}=2$;

$$
\int_{1}^{1} \frac{2^{x}}{\sqrt{x}} d x=\int_{1}^{1} 2^{x^{\prime \prime}} \cdot x^{-1 / 2} d x=2 \int_{1}^{1} 2^{x} d u=\left[\frac{2^{++11}}{\ln 2}\right]_{1}^{2}=\left(\frac{1}{\ln 2}\right)\left(2^{3}-2^{2}\right)=\frac{4}{\ln 2}
$$

53. Let $\mathrm{u}=\cos \mathrm{t} \Rightarrow \mathrm{du}=-\sin \mathrm{tdt} \Rightarrow-\mathrm{du}=\sin \mathrm{tdt} \mathrm{t}=0 \Rightarrow \mathrm{u}=1, \mathrm{t}=\frac{\pi}{2} \Rightarrow \mathrm{u}=0$;
$\int_{0}^{-2} 7^{\cos } \sin \mathrm{tdt}=-\int_{1}^{\infty} 7^{*} \mathrm{du}=\left[-\frac{7^{*}}{\ln 7}\right]_{1}^{0}=\left(\frac{-1}{\ln 7}\right)\left(7^{0}-7\right)=\frac{6}{\ln 7}$
54. Let $\mathrm{u}=\tan \mathrm{t} \Rightarrow \mathrm{du}=\sec ^{2} \mathrm{t} \mathrm{dt} ; \mathrm{t}=0 \Rightarrow \mathrm{u}=0, \mathrm{t}=\frac{2}{4} \Rightarrow \mathrm{u}=1$;
$\int_{0}^{n / 4}\left(\frac{1}{3}\right)^{\operatorname{man}} \sec ^{2} \mathrm{tdt}=\int_{0}^{1}\left(\frac{1}{3}\right)^{2} \mathrm{du}=\left[\frac{\left(\frac{5}{2}\right)^{2}}{\ln (5)}\right]_{0}^{1}=\left(-\frac{1}{\ln 3}\right)\left[\left(\frac{1}{5}\right)^{1}-\left(\frac{1}{5}\right)^{0}\right]=\frac{2}{\sqrt{n} 3}$
55. Let $u=x^{2 x} \Rightarrow \ln u=2 x \ln x \Rightarrow \frac{1}{4} \frac{d u}{d x}=2 \ln x+(2 x)\left(\frac{1}{x}\right) \Rightarrow \frac{4}{4}=2 u(\ln x+1) \Rightarrow \frac{1}{2} d u=x^{2 x}(1+\ln x) d$ $x=2 \Rightarrow u=2^{4}=16, x=4 \Rightarrow u=4^{8}=65,536 ;$
$\int_{2}^{4} \mathrm{x}^{22}(1+\ln \mathrm{x}) \mathrm{dx}=\frac{1}{2} \int_{16}^{55555} \mathrm{du}=\frac{1}{2}[\mathrm{u}]_{15}^{\text {E5s5 }}=\frac{1}{2}(65,536-16)=\frac{65,520}{2}=32,760$
56. Let $\mathrm{u}=\ln \mathrm{x} \Rightarrow \mathrm{du}=\frac{1}{\mathrm{x}} \mathrm{dx} ; \mathrm{x}=1 \Rightarrow \mathrm{u}=0, \mathrm{x}=2 \Rightarrow \mathrm{u}=\ln 2$;
$\int_{1}^{p} \frac{r^{n}}{x} \mathrm{dx}=\int_{0}^{\mathrm{L}} 2^{\mathrm{n}} \mathrm{du}=\left[\frac{2}{\ln 2}\right]_{0}^{m x}=\left(\frac{1}{\ln 2}\right)\left(2^{\operatorname{ln2}}-2^{0}\right)=\frac{2^{m-2}-1}{\ln 2}$
57. $\int 3 x^{5} d x=\frac{3 x^{-5} \mid}{\sqrt{3+1}}+C$
58. $\int \mathrm{x}^{(\sqrt{2-1})} \mathrm{dx}=\frac{\mathrm{x}^{7}}{\sqrt{2}}+C$
59. $\int_{0}^{3}(\sqrt{2}+1) \mathrm{x}^{2} \mathrm{dx}=\left[\mathrm{x}^{(\sqrt{2}+1)}\right]_{0}^{3}=3^{\left(x^{2}+1\right)}$
60. $\int_{1}^{e} x^{\ln 2 \mid-1} \mathrm{dx}=\left[\frac{x^{-}}{\ln 2}\right]_{1}^{*}=\frac{\frac{3}{2-}^{-\alpha}-1^{-2}}{\ln 2}=\frac{2-1}{\ln 2}=\frac{1}{\ln 2}$
61. $\int \frac{\log a x}{x} d x=\int\left(\frac{\ln x}{\ln 10}\right)\left(\frac{1}{x}\right) d x ;\left[u=\ln x \Rightarrow d u=\frac{1}{2} d x\right]$
$\rightarrow \int\left(\frac{\ln x}{\ln 10}\right)\left(\frac{1}{2}\right) d x=\frac{1}{\ln 10} \int u d u=\left(\frac{1}{\ln 10}\right)\left(\frac{1}{2} u^{2}\right)+C=\frac{\ln x y}{2 \log 10}+C$
62. $\int_{1}^{4} \frac{\log x}{x} d x=\int_{1}^{4}\left(\frac{\ln x}{\ln 2}\right)\left(\frac{1}{x}\right) d x ;\left[u=\ln x \Rightarrow d u=\frac{1}{x} d x ; x=1 \Rightarrow u=0, x=4 \Rightarrow u=\ln 4\right]$
$\rightarrow \int_{1}^{1}\left(\frac{\ln x}{n^{2}}\right)\left(\frac{1}{x}\right) d x=\int_{0}^{\ln 4}\left(\frac{1}{\ln 2}\right) u d u=\left(\frac{1}{\ln 2}\right)\left\lceil\frac{1}{2} u^{2}\right\rceil_{n}^{\ln 4}=\left(\frac{1}{\ln 2}\right)\left\lceil\frac{1}{2}(\ln 4)^{2}\right\rceil=\frac{(\ln 4)^{2}}{\ln 2}=\frac{(\ln 4)^{2}}{\ln 4}=\ln 4$
63. $\int_{1}^{4} \frac{\ln 2 \log x}{x} d x-\int_{1}^{4}\left(\frac{\ln 2}{x}\right)(\ln x) d x-\int_{1}^{4} \frac{\ln x}{x} d x-\left[\frac{1}{2}(\ln x)^{2}\right]_{1}^{4}-\frac{1}{2}\left[(\ln 4)^{2} \quad(\ln 1)^{2}\right]-\frac{1}{2}(\ln 4)^{2}$ $=\frac{1}{2}(2 \ln 2)^{2}=2(\ln 2)^{2}$
64. $\int_{1}^{*} \frac{2 \ln 10(\log x)}{x} d x=\int_{1}^{0} \frac{(\ln 101 / 2 \ln x)}{(\ln 10)}\left(\frac{1}{x}\right) \mathrm{dx}=\left[(\ln x)^{2}\right]_{1}^{0}=(\ln \mathrm{e})^{2}-(\ln 1)^{2}=1$
65. $\int_{1}^{*} \frac{2 \ln 10(\cos n-1)}{x} d x=\int_{1}^{0} \frac{(\ln 101 / 2 \ln x)}{(\ln 109}\left(\frac{1}{x}\right) d x=\left[(\ln x)^{2}\right]_{1}^{0}=(\ln e)^{2}-(\ln 1)^{2}=1$
66. $\int_{0}^{2} \frac{\log (x+2)}{x+2} d x=\frac{1}{\ln 2} \int_{0}^{2}[\ln (x+2)]\left(\frac{1}{x+2}\right) d x=\left(\frac{1}{\ln 2}\right)\left[\frac{\ln (x+2) y}{2}\right]_{0}^{2}=\left(\frac{1}{\ln 2}\right)\left[\frac{\ln 4 y}{2}-\frac{(\ln 2 y}{2}\right]$

$$
=\left(\frac{1}{\ln 2}\right)\left[\frac{4 \ln 2 \dot{y}}{2}-\frac{(\ln 2)^{i}}{2}\right]=\frac{3}{2} \ln 2
$$

$$
=\left(\frac{10}{\ln 10}\right)\left[\frac{4(\ln 10 j}{20}\right]=2 \ln 10
$$

 $=\ln 10$
$68 \int_{2}^{3} \frac{2 \log (x-1)}{x-1} d x=\frac{2}{\ln 2} \int_{2}^{3} \ln (x-1)\left(\frac{1}{x-1}\right) d x=\left(\frac{2}{\operatorname{Bn} 2}\right)\left[\frac{\ln (x-1) y}{2}\right]_{2}^{3}=\left(\frac{2}{\ln 2}\right)\left[\frac{\ln 2 y}{2}-\frac{\ln 1 y}{2}\right]=\ln ?$
69. $\int \frac{d x}{x \log \theta^{x}}=\int\left(\frac{\ln 10}{\ln \mathrm{x}}\right)\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}=(\ln 10) \int\left(\frac{1}{\ln \mathrm{x}}\right)\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx} ;\left[\mathrm{u}=\ln \mathrm{x} \Rightarrow \mathrm{du}=\frac{1}{\mathrm{x}} \mathrm{dx}\right]$
$\rightarrow(\ln 10) \int\left(\frac{1}{\ln x}\right)\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}=(\ln 10) \int \frac{1}{2} \mathrm{du}=(\ln 10) \ln |\mathrm{u}|+\mathrm{C}=(\ln 10) \ln |\ln \mathrm{x}|+\mathrm{C}$
70. $\int \frac{d x}{x(\log x x)^{\prime}}=\int \frac{d x}{x\left(\frac{1}{6}\right)^{\prime}}=(\ln 8)^{2} \int \frac{(\ln x)^{-2}}{x} d x=(\ln 8)^{2} \frac{(\ln x)^{2}}{-1}+C=-\frac{\ln 8 i}{\ln x}+C$
71. $\int_{1}^{\ln x} \frac{1}{1} d t=\left[\left.\ln |t|\right|_{1} ^{\ln x}=\ln |\ln x|-\ln 1=\ln (\ln x), x>1\right.$
72. $\int_{1}^{e^{*}} \frac{1}{1} \mathrm{dt}=\left[\left.\ln |\mathrm{t}|\right|_{i} ^{t}=\ln \mathrm{e}^{\mathrm{x}}-\ln 1=\mathrm{x} \ln \mathrm{e}=\mathrm{x}\right.$
73. $\int_{1}^{1 / \pi} \frac{1}{1} d t=\left[\left.\ln |t|\right|_{1} ^{V / x}=\ln \left|\frac{1}{v}\right|-\ln 1=(\ln 1-\ln |x|)-\ln 1=-\ln x, x>0\right.$
74. $\frac{1}{\ln x} \int_{1}^{x} \frac{1}{t} d t=\left[\frac{1}{\ln 2} \ln |t|\right]_{1}^{x}=\frac{\ln x}{\ln x}-\frac{\ln 1}{\ln 2}=\log _{3} x, x>0$
13. $\alpha=\sin ^{-1}\left(\frac{5}{15}\right) \Rightarrow \cos \alpha=\frac{12}{12}, \tan \alpha=\frac{5}{12}, \sec \alpha=\frac{13}{12}, \csc \alpha=\frac{13}{5}$, and $\cot \alpha=\frac{12}{5}$
14. $\alpha=\tan ^{-1}\left(\frac{4}{3}\right) \Rightarrow \sin \alpha=\frac{4}{3}, \cos \alpha=\frac{3}{5}, \sec \alpha=\frac{5}{4}, \csc \alpha=\frac{5}{4}$, and $\cot \alpha=\frac{3}{4}$
15. $\alpha=\sec ^{-1}(-\sqrt{5}) \Rightarrow \sin \alpha=\frac{2}{\sqrt{5}}, \cos \alpha=-\frac{1}{\sqrt{5}}, \tan \alpha=-2, \csc \alpha=\frac{\sqrt{5}}{2}$, and $\cot \alpha=-\frac{1}{2}$
16. $\alpha=\sec ^{-1}\left(-\frac{\sqrt{13}}{2}\right) \Rightarrow \sin \alpha=\frac{3}{\sqrt{13}}, \cos \alpha=-\frac{2}{\sqrt{13}}, \tan \alpha=-\frac{3}{2}, \csc \alpha=\frac{\sqrt{13}}{3}$, and $\cot \alpha=-\frac{2}{3}$
17. $\sin \left(\cos ^{-1} \frac{\sqrt{2}}{2}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
18. $\sec \left(\cos ^{-1} \frac{1}{2}\right)=\sec \left(\frac{\pi}{5}\right)=2$
19. $\tan \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\tan \left(-\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}$
20. $\cot \left(\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)=\cot \left(-\frac{\pi}{3}\right)=-\frac{1}{\sqrt{3}}$
21. $\csc \left(\sec ^{-1} 2\right)+\cos \left(\tan ^{-1}(-\sqrt{3})\right)=\csc \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)+\cos \left(-\frac{\pi}{3}\right)=\csc \left(\frac{7}{5}\right)+\cos \left(-\frac{7}{5}\right)=\frac{2}{\sqrt{3}}+\frac{1}{2}=\frac{4+\sqrt{3}}{2 \sqrt{3}}$
22. $\tan \left(\sec ^{-1} 1\right)+\sin \left(\csc ^{-1}(-2)\right)=\tan \left(\cos ^{-1} \frac{1}{1}\right)+\sin \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\tan (0)+\sin \left(-\frac{\pi}{6}\right)=0+\left(-\frac{1}{2}\right)=-\frac{1}{2}$
23. $\sin \left(\sin ^{-1}\left(-\frac{1}{2}\right)+\cos ^{-1}\left(-\frac{1}{2}\right)\right)=\sin \left(-\frac{\pi}{6}+\frac{2 \pi}{3}\right)=\sin \left(\frac{\pi}{2}\right)=1$
$24 \cot \left(\sin ^{-1}\left(-\frac{1}{2}\right)-\sec ^{-1} \gamma\right)=\operatorname{cost}\left(-\frac{\pi}{6}-\cos ^{-1}\left(\frac{1}{2}\right)\right)=\operatorname{cnt}\left(-\frac{\pi}{6}-\frac{\pi}{3}\right)=\operatorname{cost}\left(-\frac{\pi}{2}\right)=0$
25. $\sec \left(\tan ^{-1} 1+\csc ^{-1} 1\right)=\sec \left(\frac{4}{4}+\sin ^{-1} \frac{1}{4}\right)=\sec \left(\frac{4}{4}+\frac{4}{2}\right)=\sec \left(\frac{4}{4}\right)=-\sqrt{2}$
26. $\sec \left(\cot ^{-1} \sqrt{3}+\csc ^{-1}(-1)\right)=\sec \left(\frac{\pi}{6}+\sin ^{-1}\left(\frac{1}{4}\right)\right)=\sec \left(\frac{\pi}{2}-\frac{\pi}{3}-\frac{\pi}{2}\right)=\sec \left(-\frac{\pi}{3}\right)=2$
27. $\sec ^{-1}\left(\sec \left(=\frac{\pi}{2}\right)\right) \equiv \sec ^{-1}\left(\frac{2}{V^{5}}\right) \equiv \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \equiv \frac{\pi}{2}$
28. $\cot ^{-1}\left(\cot \left(-\frac{\pi}{4}\right)\right)=\cot ^{-1}(-1)=\frac{3 \pi}{4}$
29. $\alpha=\tan ^{-1} \frac{x}{2}$ indicates the diagram

30. $\alpha=\tan ^{-1} 2 \mathrm{x}$ indicates the diagram

31. $\alpha=\sec ^{-1} 3 y$ indicates the diagram

32. $\alpha=\sec ^{-1} \frac{y}{5}$ indicates the diagram

33. $\alpha=\sin ^{-1} \mathrm{x}$ indicates the diagram

34. $\alpha=\cos ^{-1} \mathrm{x}$ indicates the diagram

35. $\alpha=\tan ^{-1} \sqrt{x^{2}-2 x}$ indicates the diagram

$$
=\sin \alpha=\frac{\sqrt{x^{i}-2 x}}{x-1}
$$

36. $\alpha=\tan ^{-1} \frac{x}{\sqrt{x^{1}+1}}$ indicates the diagram

37. $\alpha-\sin ^{-1} \frac{2 y}{3}$ indicates the diagram

38. $\alpha=\sin ^{-1} \frac{y}{5}$ indicates the diagram

39. $\alpha=\sec ^{-1} \frac{\pi}{4}$ indicates the diagram

40. $\alpha=\sec ^{-1} \frac{\sqrt{x^{1}+4}}{x}$ indicates the diagram

41. $\lim _{x \rightarrow 1^{-}} \sin ^{-1} x=\frac{\pi}{2}$
42. $\lim _{x \rightarrow-1^{+}} \cos ^{-1} x=\pi$
43. $\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}$
44. $\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}$
45. $\lim _{x \rightarrow \infty} \sec ^{-1} \mathrm{x}=\frac{\pi}{2}$
46. $\lim _{x \rightarrow-\infty} \sec ^{-1} x=\lim _{x \rightarrow-\infty} \cos ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$
47. $\lim _{x \rightarrow \infty} \csc ^{-1} x=\lim _{x \rightarrow \infty} \sin ^{-1}\left(\frac{1}{x}\right)=0$
48. $\lim _{x \rightarrow} \csc ^{-1} x=\lim _{x} \sin ^{-1}\left(\frac{1}{x}\right)=0$
49. $y=\cos ^{-1}\left(x^{2}\right) \Rightarrow \frac{d y}{d x}=-\frac{2 x}{\sqrt{1-(x)^{1}}}=\frac{-2 x}{\sqrt{1-x^{2}}}$
50. $y=\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x \Rightarrow \frac{d y}{d x}=\frac{1}{|x| \sqrt{x^{\prime}-1}}$
51. $y-\sin ^{-1} \sqrt{2} t \rightarrow \frac{d y}{a}-\frac{\sqrt{2}}{\sqrt{1-(\sqrt{2})^{1}}}-\frac{\sqrt{2}}{\sqrt{1-2 t}}$
52. $y-\sin ^{-1}(1-t) \rightarrow \frac{y y}{d t}-\frac{-1}{\sqrt{1-(1-t y}}-\frac{-1}{\sqrt{2}-t}$
53. $y=\sec ^{-1}(2 s+1) \Rightarrow \frac{d y}{4}=\frac{2}{|2 s+1| \sqrt{|2 s+1| \gamma-1}}=\frac{2}{|2 s+1| \sqrt{4 x^{1}+4 s}}=\frac{1}{|2 s+1| \sqrt{x}+x}$
54. $y=\sec ^{-1} 5 s \Rightarrow \frac{d y}{4}=\frac{5}{|5 v| \sqrt{(5 x y-1}}=\frac{1}{\mid \sqrt{25 x}-1}$
55. $y=\csc ^{-1}\left(x^{2}+1\right) \Rightarrow \frac{d y}{4 x}=-\frac{2 x}{\left|x^{i}+1\right| \sqrt{\left(x^{\prime}+1\right)^{\prime}-1}}=\frac{-2 x}{\left(x^{i}+1\right) \sqrt{x^{4}+2 x^{\prime}}}$
56. $y=\csc ^{-1}\left(\frac{x}{2}\right) \Rightarrow \frac{d y}{d x}=-\frac{(t)}{\left|\frac{5}{f}\right| \sqrt{\left(\frac{t}{5}\right)^{1}-1}}=\frac{-1}{|x| \sqrt{\frac{1}{4}-4}}=\frac{-2}{|x| \sqrt{x^{i}-4}}$
57. $y=\sec ^{-1}\left(\frac{1}{t}\right)=\cos ^{-1} t \Rightarrow \frac{d y}{d t}=\frac{-1}{\sqrt{1-t}}$

58. $y=\cot ^{-1} \sqrt{t}=\cot ^{-1} t^{1 / 2} \Rightarrow \frac{d y}{A}=-\frac{(t))^{-1}}{1+\left(t^{1}\right)^{2}}=\frac{-1}{2 \sqrt{4}(1+9)}$
59. $y=\cot ^{-1} \sqrt{t-1}=\cot ^{-1}(t-1)^{1 / 2} \Rightarrow \frac{d y}{d}=-\frac{(t)(1-1)^{-1}}{1+\mid\left(1-\left.1 y^{1}\right|^{1}\right.}=\frac{-1}{2 \sqrt{1-1}(1+1-1)}=\frac{-1}{2 \sqrt{1-1}}$
60. $y=\ln \left(\tan ^{-1} x\right) \Rightarrow \frac{d x}{a x}=\frac{\left(\frac{1}{1+x}\right)}{\operatorname{un}^{2} x}=\frac{1}{(\operatorname{un}+x)\left(1+x^{1}\right)}$
61. $y=\tan ^{-1}(\ln x) \Rightarrow \frac{d y}{d x}=\frac{(-)}{1+(\ln x)^{4}}=\frac{1}{x\left[1+(\ln x)^{4}\right]}$
62. $y=\csc ^{-1}\left(e^{t}\right) \Rightarrow \frac{d y}{d t}=-\frac{d}{\mid \sqrt{(N)^{2}-1}}=\frac{-1}{\sqrt{e^{3}-1}}$
63. $y=\cos ^{-1}\left(e^{-1}\right) \Rightarrow \frac{d y}{d t}=-\frac{e^{-}}{\sqrt{1(a-1)^{1}}}=\frac{a^{-}}{\sqrt{1-e^{-2}}}$
64. $\mathrm{y}=\mathrm{s} \sqrt{1-\mathrm{s}^{2}}+\cos ^{-1} \mathrm{~s}=\mathrm{s}\left(1-\mathrm{s}^{2}\right)^{1 / 2}+\cos ^{-1} \mathrm{~s} \Rightarrow \frac{4 \mathrm{~s}}{\mathrm{4}}=\left(1-\mathrm{s}^{2}\right)^{1 / 2}+\mathrm{s}\left(\frac{1}{2}\right)\left(1-\mathrm{s}^{2}\right)^{-1 / 2}(-2 \mathrm{~s})-\frac{1}{\sqrt{1-x}}$
$=\sqrt{1-\mathrm{s}^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-s^{2}}}=\sqrt{1-\mathrm{s}^{2}}-\frac{z+1}{\sqrt{1-s^{2}}}=\frac{1-\frac{x}{2}-\frac{1}{2}-1}{\sqrt{1-\frac{x}{x}}}=\frac{-z}{\sqrt{1-s^{2}}}$

$=\frac{x \mid y-1}{\mid \sqrt{x} x^{2}-1}$
65. $y=\tan ^{-1} \sqrt{x^{2}-1}+\csc ^{-1} x=\tan ^{-1}\left(x^{2}-1\right)^{1 / 2}+\csc ^{-1} x \Rightarrow \frac{d x}{d x}=\frac{(t)\left(x^{2}-1\right)^{-1}(2 x)}{1+\left[\left(x^{2}-1\right)^{4}\right]}-\frac{1}{|x| \sqrt{x^{1}-1}}$
$=\frac{1}{x \sqrt{x^{2}}-1}-\frac{1}{|x| \sqrt{x^{x}-1}}=0$, for $\mathrm{x}>1$
66. $y=\cot ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1} x=\frac{\pi}{2}-\tan ^{-1}\left(x^{-1}\right)-\tan ^{-1} x \Rightarrow \frac{4}{4 x}=0-\frac{x^{-2}}{1+\left(x^{-}-\right)^{1}}-\frac{1}{1+x^{2}}=\frac{1}{x^{1}+1}-\frac{1}{1+x^{2}}=0$
67. $y=x \sin ^{-1} x+\sqrt{1-x^{2}}=x \sin ^{-1} x+\left(1-x^{2}\right)^{1 / 2} \Rightarrow \frac{y y}{\alpha}=\sin ^{-1} x+x\left(\frac{1}{\sqrt{1-x}}\right)+\left(\frac{1}{2}\right)\left(1-x^{2}\right)^{-1 / 2}(-2 x)$
$=\sin ^{-1} x+\frac{x}{\sqrt{1-x}}-\frac{x}{\sqrt{1-x}}=\sin ^{-1} x$
68. $y=\ln \left(x^{3}+4\right)-x \tan ^{1}\left(\frac{1}{2}\right) \Rightarrow \frac{y}{4}=\frac{\frac{2}{x}}{x^{2}+4}-\tan ^{1}\left(\frac{1}{2}\right)-x\left[\frac{(f)}{1+\left(\frac{y}{2}\right)^{\prime}}\right]=\frac{2 x}{x^{2}+4}-\tan ^{1}\left(\frac{1}{2}\right)-\frac{2 x}{4+x}$

- $\tan ^{-1}\binom{\frac{x}{2}}{2}$

71. $\int \frac{1}{\sqrt{9-x^{\prime}}} d x=\sin ^{-1}\left(\frac{x}{3}\right)+C$
72. $\int \frac{1}{\sqrt{1-4 x^{i}}} d x=\frac{1}{2} \int \frac{2}{\sqrt{1-(2 x)^{2}}} d x=\frac{1}{2} \int \frac{d u}{\sqrt{1-w^{i}}}$, where $u=2 x$ and $d u=2 d x$

$$
=\frac{1}{2} \sin ^{-1} u+C=\frac{1}{2} \sin ^{-1}(2 x)+C
$$

73. $\int \frac{1}{17+x^{1}} d x=\int \frac{1}{(\sqrt{17})^{1}+x^{1}} d x=\frac{1}{\sqrt{17}} \tan ^{-1} \frac{x}{\sqrt{17}}+C$
74. $\int \frac{1}{9+3 x^{1}} d x=\frac{1}{3} \int \frac{1}{(\sqrt{3})^{1}+x^{i}} d x=\frac{1}{3 \sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C=\frac{\sqrt{3}}{9} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C$
75. $\int \frac{d x}{x \sqrt{25 x^{i}-2}}=\int \frac{d u}{u \sqrt{u^{i}-2}}$, where $u=5 x$ and $d u=5 d x$

$$
=\frac{1}{\sqrt{2}} \sec ^{-1}\left|\frac{\pi}{\sqrt{2}}\right|+C=\frac{1}{\sqrt{2}} \sec ^{-1}\left|\frac{s_{x}}{\sqrt{2}}\right|+C
$$

76. $\int \frac{d x}{x \sqrt{5 x^{\prime}-4}}=\int \frac{d u}{u \sqrt{u}-4}$, where $u=\sqrt{5} x$ and $d u=\sqrt{5} d x$

$$
=\frac{1}{2} \sec ^{-1}\left|\frac{u}{2}\right|+C=\frac{1}{2} \sec ^{-1}\left|\frac{\sqrt{5 x}}{2}\right|+C
$$

77. $\int_{0}^{1} \frac{4 \mathrm{ds}}{\sqrt{4-x^{\prime}}}=\left[4 \sin ^{-1} \frac{x}{2}\right]_{0}^{1}=4\left(\sin ^{-1} \frac{1}{2}-\sin ^{-1} 0\right)=4\left(\frac{\pi}{6}-0\right)=\frac{2 \pi}{3}$
78. $\int_{0}^{3 \sqrt{2} / 4} \frac{d}{\sqrt{9-4 a^{2}}}=\frac{1}{2} \int_{0}^{3 \sqrt{2} / 4} \frac{d u}{\sqrt{9-u^{i}}}$, where $u=2 s$ and $d u=2 d s ; s=0 \Rightarrow u=0, s=\frac{3 \sqrt{2}}{4} \Rightarrow u=\frac{3 \sqrt{2}}{2}$

$$
=\left[\frac{1}{2} \sin ^{-1} \frac{\pi}{3}\right]_{0}^{3 \sqrt{2} / 2}=\frac{1}{2}\left(\sin ^{-1} \frac{\sqrt{2}}{2}-\sin ^{-1} 0\right)=\frac{1}{2}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{8}
$$

79. $\int_{0}^{2} \frac{d \mathrm{~d}}{8+2 \mathrm{I}^{\mathrm{t}}}=\frac{1}{\sqrt{2}} \int_{0}^{2 \sqrt{2}} \frac{d \mathrm{u}}{8+\mathrm{u}^{\mathrm{T}}}$, where $\mathrm{u}=\sqrt{2} \mathrm{t}$ and $\mathrm{du}=\sqrt{2} \mathrm{dt} ; \mathrm{t}=0 \Rightarrow \mathrm{u}=0, \mathrm{t}=2 \Rightarrow \mathrm{u}=2 \sqrt{2}$

$$
=\left[\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{8}} \tan ^{-1} \frac{u}{\sqrt{8}}\right]_{0}^{2 \sqrt{2}}=\frac{1}{4}\left(\tan ^{-1} \frac{2 \sqrt{2}}{\sqrt{8}}-\tan ^{-1} 0\right)=\frac{1}{4}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=\frac{1}{4}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{16}
$$

80. $\int_{-2}^{2} \frac{d t}{4+3 T^{2}}=\frac{1}{\sqrt{3}} \int_{-2 \sqrt{3}}^{1-\frac{d}{4+t}}$, where $\mathrm{u}=\sqrt{3} \mathrm{t}$ and $\mathrm{du}=\sqrt{3} \mathrm{dt} ; \mathrm{t}=-2 \Rightarrow \mathrm{u}=-2 \sqrt{3}, \mathrm{t}=2 \Rightarrow \mathrm{u}=2 \sqrt{3}$

$$
=\left[\frac{1}{\sqrt{3}} \cdot \frac{1}{2} \tan ^{-1} \frac{1}{2}\right]_{-2 \sqrt{3}}^{2 \sqrt{3}}=\frac{1}{2 \sqrt{3}}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1}(-\sqrt{3})\right]=\frac{1}{2 \sqrt{3}}\left[\frac{\pi}{3}-\left(-\frac{\pi}{3}\right)\right]=\frac{\pi}{3 \sqrt{3}}
$$

81. $\int_{-1}^{-\sqrt{2} / 2} \frac{d y}{y \sqrt{4 y^{2}-1}}=\int_{-2}^{-\sqrt{2}} \frac{d u}{u \sqrt{u^{1}-1}}$, where $u=2 y$ and $d u=2 d y ; y=-1 \Rightarrow u=-2, y=-\frac{\sqrt{2}}{2} \Rightarrow u=-\sqrt{2}$

$$
=\left[\left.\sec ^{-1}|u|\right|_{-2} ^{-\sqrt{2}}=\sec ^{-1}|-\sqrt{2}|-\sec ^{-1}|-2|=\frac{\pi}{1}-\frac{\pi}{2}=-\frac{\pi}{12}\right.
$$

82. $\int_{-2 / 3}^{-\sqrt{2} ; 3} \frac{d y}{y \sqrt{y^{j}-1}}=\int_{-2}^{-\sqrt{2}} \frac{d}{u \sqrt{u}-1}$, where $u=3 y$ and $d u=3 d y ; y=-\frac{2}{3} \Rightarrow u=-2, y=-\frac{\sqrt{2}}{5} \Rightarrow u=-\sqrt{2}$

$$
=\left[\sec ^{-1}|u|\right]_{-2}^{-\sqrt{2}}=\sec ^{-1}|-\sqrt{2}|-\sec ^{-1}|-2|=\frac{\pi}{4}-\frac{\pi}{3}=-\frac{\pi}{12}
$$

83. $\int \frac{3 d}{\sqrt{1-4(x-1 y}}=\frac{3}{2} \int \frac{d u}{\sqrt{1-u}}$, where $u=2(r-1)$ and $d u=2 d r$

$$
=\frac{3}{2} \sin ^{1} \mathrm{u}+\mathrm{C}=\frac{2}{2} \sin ^{1} 2(\mathrm{r}-1)+\mathrm{C}
$$

84. $\int \frac{6 d r}{\sqrt{4-(z+1 y}}=6 \int \frac{d u}{\sqrt{4-u^{\prime}}}$, where $u=r+1$ and $d u=d r$

$$
=6 \sin ^{-1} \frac{x}{2}+C=6 \sin ^{-1}\left(\frac{x+1}{2}\right)+C
$$

85. $\int \frac{d \mathrm{~s}}{2+(\mathrm{x}-1 y}=\int \frac{\mathrm{de}}{2+\mathrm{u}}$, where $\mathrm{u}=\mathrm{x}-1$ and $\mathrm{du}=\mathrm{dx}$

$$
=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\mu}{\sqrt{2}}+\mathbf{C}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x-1}{\sqrt{2}}\right)+\mathbf{C}
$$

86. $\int \frac{d x}{1+(1 \mathrm{i}+1)^{\prime}}=\frac{1}{3} \int \frac{d u}{1+u^{1}}$, where $u=3 \mathrm{x}+1$ and $\mathrm{du}=3 \mathrm{dx}$

$$
=\frac{1}{3} \tan ^{2} u+C=\frac{1}{3} \tan ^{1}(3 x+1)+C
$$

87. $\int \frac{d x}{(2 x-1) \sqrt{(2 x-1)^{2}-4}}=\frac{1}{2} \int \frac{d u}{x \sqrt{u^{2}-4}}$, where $u=2 x-1$ and $d u=2 d x$

$$
-\frac{1}{2} \cdot \frac{1}{2} \sec ^{-1}\left|\frac{1}{2}\right|+C-\frac{1}{4} \sec ^{-1}\left|\frac{2 x-1}{2}\right|+C
$$

88. $\int \frac{d x}{(x+3) \sqrt{(x+3)^{i}-25}}=\int \frac{d}{u \sqrt{u^{i}-25}}$, where $u=x+3$ and $d u=d x$

$$
=\frac{1}{5} \sec ^{-1}\left|\frac{u}{5}\right|+C=\frac{1}{5} \sec ^{-1}\left|\frac{x+3}{5}\right|+C
$$

89. $\int_{-\infty / 2}^{\sim / 2} \frac{2 \cos \theta d \theta}{1+\sin \theta \mid}=2 \int_{-1}^{1} \frac{d u}{1+u^{2}}$, where $\mathrm{u}=\sin \theta$ and $\mathrm{du}=\cos \theta \mathrm{d} \theta ; \theta=-\frac{\pi}{2} \Rightarrow \mathrm{u}=-1, \theta=\frac{\pi}{2} \Rightarrow \mathrm{u}=1$

$$
-\left[2 \tan ^{-1} u\right]_{-1}^{1}-2\left(\tan ^{-1} 1-\tan ^{-1}(-1)\right)-2\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]-n
$$

90. $\int_{\text {न/6 }}^{r / 4} \frac{\cos ^{d} x d x}{1+(\cot x y}=-\int_{\sqrt{3}}^{1} \frac{d u}{1+w}$, where $u=\cot x$ and $d u=-\csc ^{2} x d x ; x=\frac{\pi}{6} \Rightarrow u=\sqrt{3}, x=\frac{\pi}{4} \Rightarrow u=1$

$$
=\left[-\tan ^{-1} \mathrm{u}\right]_{\sqrt{3}}^{1}=-\tan ^{-1} 1+\tan ^{-1} \sqrt{3}=-\frac{\pi}{4}+\frac{\pi}{3}=\frac{\pi}{12}
$$

91. $\int_{0}^{\ln \sqrt{5}} \frac{\mathrm{c}^{2} d \mathrm{~d}}{1+\mathrm{e}^{2}}=\int_{1}^{\sqrt{5}} \frac{\text { du }}{1+u^{1}}$, where $u=e^{x}$ and $d u=e^{x} d x ; x=0 \Rightarrow u=1, x=\ln \sqrt{3} \Rightarrow u=\sqrt{3}$

$$
=\left[\tan ^{-1} u\right]_{1}^{\sqrt{3}}=\tan ^{-1} \sqrt{3}-\tan ^{-1} 1=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
$$

92. $\int_{1}^{u^{* \prime}} \frac{4 d}{1\left(1+\mathrm{h}^{\prime} \mathrm{t}\right)}=4 \int_{0}^{\operatorname{n}^{/ 4}} \frac{d \mathrm{~m}}{1+\mathrm{u}^{\mathrm{j}}}$, where $\mathrm{u}=\ln \mathrm{t}$ and $\mathrm{du}=\frac{1}{\mathrm{t}} \mathrm{dt} ; \mathrm{t}=1 \Rightarrow \mathrm{u}=0, \mathrm{t}=\mathrm{e}^{-/ 4} \Rightarrow \mathrm{u}=\frac{\mathrm{z}}{4}$

$$
=\left[4 \tan ^{-1} u\right]_{0}^{\pi / 4}=4\left(\tan ^{-1} \frac{\pi}{4}-\tan ^{-1} 0\right)=4 \tan ^{-1} \frac{\pi}{4}
$$

93. $\int \frac{y d y}{\sqrt{1-y^{t}}}=\frac{1}{2} \int \frac{d}{\sqrt{1-u^{2}}}$, where $u=y^{7}$ and $d u=2 y d y$ $-\frac{1}{2} \sin ^{-1} u+C-\frac{1}{2} \sin ^{-1} y^{2}+C$
94. $\int \frac{\sec ^{\prime} y d y}{\sqrt{1-\tan ^{2} y}}=\int \frac{d u}{\sqrt{1-u^{2}}}$, where $u=\tan y$ and $d u=\sec ^{2} y d y$

$$
=\sin ^{-1} u+C=\sin ^{-1}(\tan y)+C
$$

1. (a) x^{2}
2. (a) $3 x^{2}$
3. (a) x^{-3}
4. (a) $-\mathrm{x}^{-2}$
5. (a) $\frac{-1}{x}$
6. (a) $\frac{1}{x^{2}}$
7. (a) $\sqrt{x^{3}}$
8. (a) $\mathrm{x}^{4 / 3}$
9. (a) $\mathrm{x}^{2 / 3}$
10. (a) $\mathbf{x}^{1 / 2}$
11. (a) $\cos (\pi x)$
(b) $-3 \cos x$
(b) $\sin \left(\frac{\pi}{2}\right)$
12. (a) $\tan x$
13. (a) $-\cot \mathrm{x}$
14. (a) $-\csc x$
15. (a) $\sec \mathrm{x}$
(b) $\frac{x^{3}}{\frac{3}{3}}$
(b) $\frac{x^{\prime}}{8}$
(b) $-\frac{x^{-2}}{3}$
(b) $-\frac{x^{2}}{4}+\frac{x^{2}}{3}$
(b) $\frac{5}{x}$
(b) $\frac{-1}{4 x}$
(b) \sqrt{x}
(b) $\frac{1}{2} x^{2 / 3}$
(b) $\mathbf{x}^{1 / 3}$
(b) $\mathrm{x}^{-1 / 2}$
(b) $2 \tan \left(\frac{1}{3}\right)$
(b) $\cot \left(\frac{3 x}{2}\right)$
(b) $\frac{1}{5} \csc (5 \mathrm{x})$
(b) $\frac{4}{3} \sec (3 \mathrm{x})$
16. $\int(x+1) d x=\frac{x^{2}}{2}+x+C$
17. $\int\left(3 t^{2}+\frac{1}{2}\right) d t=t^{3}+\frac{t^{1}}{4}+C$
(c) $\frac{x^{3}}{3}-x^{2}+x$
(c) $\frac{x^{2}}{8}-3 x^{2}+8 x$
(c) $-\frac{2-3}{3}+x^{2}+3 x$
(c) $\frac{x-x}{2}+\frac{x}{2}-x$
(c) $2 x+\frac{5}{4}$
(c) $\frac{x^{4}}{4}+\frac{1}{2 x}$
(c) $\frac{2}{3} \sqrt{x^{3}}+2 \sqrt{x}$
(c) $\frac{3}{4} x^{4 / 3}+\frac{3}{2} x^{2 / 3}$
(c) $\mathrm{x}^{-1 / 3}$
(c) $\mathrm{x}^{-3 / 2}$
(c) $\frac{-\cos (\mathrm{ma})}{\pi}+\cos (3 \mathrm{x})$
(c) $\left(\frac{2}{\pi}\right) \sin \left(\frac{\pi x}{2}\right)+\pi \sin x$
(c) $-\frac{2}{3} \tan \left(\frac{3 \text { a }}{2}\right)$
(c) $\mathrm{x}+4 \cot (2 \mathrm{x})$
(c) $2 \csc \left(\frac{\pi x}{2}\right)$
(c) $\frac{2}{\pi} \sec \left(\frac{\pi}{2}\right)$
18. $\int(5-6 x) d x=5 x-3 x^{2}+C$
19. $\int\left(\frac{t}{2}+4 t^{3}\right) d t=\frac{t^{3}}{6}+t^{4}+C$
20. $\int\left(2 x^{3}-5 x+7\right) d x=\frac{1}{2} x^{4}-\frac{5}{2} x^{2}+7 x+C$
21. $\int\left(1-x^{2}-3 x^{5}\right) d x=x-\frac{1}{3} x^{3}-\frac{1}{2} x^{6}+C$
22. $\int\left(\frac{1}{2}-x^{2}-\frac{1}{2}\right) d x=\int\left(x^{-2}-x^{2}-\frac{1}{3}\right) d x=\frac{x^{-2}}{1}-\frac{x^{3}}{2}-\frac{1}{3} x+C=-\frac{1}{x}-\frac{x^{2}}{2}-\frac{x}{3}+C$
23. $\left.\int\left(\left.\frac{1}{5} \quad \frac{2}{x^{3}} \right\rvert\, 2 x\right) d x-\int\left(\left.\frac{1}{5} \quad 2 x^{-3} \right\rvert\, 2 x\right) d x-\frac{1}{5} x \quad\left(\frac{2 x}{-2}\right)\left|\frac{2 x^{2}}{2}\right| C-\frac{5}{x}\left|\frac{1}{x^{2}}\right| x^{2} \right\rvert\, C$
24. $\int x^{-1 / 3} d x=\frac{x^{1 / 3}}{3}+C=\frac{3}{2} x^{2 / 3}+C$
25. $\int x^{-5 / 4} \mathrm{dx}=\frac{\mathrm{x}^{-4}}{-\frac{1}{4}}+\mathrm{C}=\frac{-4}{\sqrt[4]{x}}+\mathrm{C}$
26. $\int(\sqrt{x}+\sqrt[3]{x}) d x=\int\left(x^{1 / 2}+x^{1 / 3}\right) d x=\frac{x^{21}}{\frac{1}{4}}+\frac{x^{43}}{4}+C=\frac{2}{3} x^{3 / 2}+\frac{3}{4} x^{4 / 3}+C$
27. $\int\left(\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}}\right) d x=\int\left(\frac{1}{2} x^{1 / 2}+2 x^{-1 / 2}\right) d x=\frac{1}{2}\left(\frac{x^{11}}{\dagger}\right)+2\left(\frac{x^{11}}{\dagger}\right)+C=\frac{1}{3} x^{3 / 2}+4 x^{1 / 2}+C$
28. $\int\left(8 y-\frac{2}{y^{14}}\right) d y=\int\left(8 y-2 y^{-1 / 4}\right) d y=\frac{8 y^{2}}{2}-2\left(\frac{2^{24}}{\frac{1}{4}}\right)+C=4 y^{2}-\frac{8}{3} y^{3 / 4}+C$
29. $\int\left(\frac{1}{7}-\frac{1}{y^{1 / 4}}\right) d y=\int\left(\frac{1}{7}-y^{-5 / 4}\right) d y=\frac{1}{7} y-\left(\frac{y^{-1}}{-\frac{1}{2}}\right)+C=\frac{y}{7}+\frac{4}{y^{1 / 4}}+C$
30. $\int 2 x\left(1-x^{-3}\right) d x=\int\left(2 x-2 x^{-2}\right) d x=\frac{2 x^{1}}{2}-2\left(\frac{x^{-}}{-1}\right)+C=x^{2}+\frac{2}{x}+C$
31. $\int x^{-3}(x+1) d x=\int\left(x^{-2}+x^{-3}\right) d x=\frac{x^{-2}}{-1}+\left(\frac{x^{-1}}{-2}\right)+C=-\frac{1}{x}-\frac{1}{2 x^{x}}+C$

32. $\int \frac{4+\sqrt{1}}{\mathrm{p}^{2}} \mathrm{dt}=\int\left(\frac{4}{\mathrm{t}^{2}}+\frac{\mathrm{t}}{\mathrm{p}}\right) \mathrm{dt}=\int\left(4 \mathrm{t}^{-3}+\mathrm{t}^{-5 / 2}\right) \mathrm{dt}=4\left(\frac{\mathrm{~L}}{-2}\right)+\left(\frac{\mathrm{r}^{2}}{-t}\right)+\mathrm{C}=-\frac{2}{\mathrm{t}^{2}}-\frac{2}{3 \mathrm{t}^{2}}+\mathrm{C}$
33. $\int-2 \cos t d t=-2 \sin t+C$
34. $\int-5 \sin t d t=5 \cos t+C$
35. $\int 7 \sin \frac{\theta}{3} \mathrm{~d} \theta=-21 \cos \frac{\theta}{3}+\mathrm{C}$
36. $\int 3 \cos 5 \theta \mathrm{~d} \theta=\frac{3}{3} \sin 5 \theta+\mathrm{C}$
37. $\int-3 \csc ^{2} \mathrm{xdx}=3 \cot \mathrm{x}+\mathrm{C}$
38. $\int-\frac{\operatorname{sen}^{2} x}{3} d x=-\frac{\max }{3}+C$
39. $\int \frac{\cos \theta \operatorname{coc} \theta}{2} \mathrm{~d} \theta=-\frac{1}{2} \csc \theta+C$
40. $\int \frac{2}{5} \sec \theta \tan \theta \mathrm{~d} \theta=\frac{2}{5} \sec \theta+\mathrm{C}$
41. $\int\left(4 \sec x \tan x-2 \sec ^{2} x\right) d x=4 \sec x-2 \tan x+C$
42. $\int \frac{1}{2}\left(\csc ^{2} \mathrm{x}-\csc \mathrm{x} \cot \mathrm{x}\right) \mathrm{dx}=-\frac{1}{2} \cot \mathrm{x}+\frac{1}{2} \csc \mathrm{x}+\mathrm{C}$
43. $\int\left(\sin 2 x-\csc ^{2} x\right) d x=-\frac{1}{2} \cos 2 x+\cot x+C$
44. $\int(2 \cos 2 x-3 \sin 3 x) d x=\sin 2 x+\cos 3 x+C$
45. $\int \frac{1+\operatorname{tas} 4 t}{2} d t-\int\left(\frac{1}{2}+\frac{1}{2} \cos 4 t\right) d t-\frac{1}{2} t+\frac{1}{2}\left(\frac{\sin 4}{4}\right)+C-\frac{1}{2}+\frac{\sin 4 t}{8}+C$
46. $\int \frac{1-\cos 6 t}{2} \mathrm{dt}=\int\left(\frac{1}{2}-\frac{1}{2} \cos 6 \mathrm{t}\right) \mathrm{dt}=\frac{1}{2} \mathrm{t}-\frac{1}{2}\left(\frac{\sin 6}{6}\right)+\mathrm{C}=\frac{1}{2}-\frac{\sin 61}{12}+\mathrm{C}$
47. $\int\left(1+\tan ^{2} \theta\right) \mathrm{d} \theta=\int \sec ^{2} \theta \mathrm{~d} \theta=\tan \theta+C$
48. $\int\left(2+\tan ^{2} \theta\right) \mathrm{d} \theta=\int\left(1+1+\tan ^{2} \theta\right) \mathrm{d} \theta=\int\left(1+\sec ^{2} \theta\right) \mathrm{d} \theta=\theta+\tan \theta+\mathrm{C}$
49. $\int \cot ^{2} \mathrm{xdx}=\int\left(\csc ^{2} \mathrm{x}-1\right) \mathrm{dx}=-\cot \mathrm{x}-\mathrm{x}+\mathrm{C}$
50. $\int\left(1-\cot ^{2} \mathrm{x}\right) \mathrm{dx}=\int\left(1-\left(\csc ^{2} \mathrm{x}-1\right)\right) \mathrm{dx}=\int\left(2-\csc ^{2} \mathrm{x}\right) \mathrm{dx}=2 \mathrm{x}+\cot \mathrm{x}+\mathrm{C}$
51. $\int \cos \theta(\tan \theta+\sec \theta) \mathrm{d} \theta=\int(\sin \theta+1) \mathrm{d} \theta=-\cos \theta+\theta+\mathrm{C}$
52. $\int \frac{\cos \theta}{\sec \theta-\sin \theta} \mathrm{d} \theta=\int\left(\frac{\cos \theta}{\operatorname{cs} \theta-\sin \theta}\right)\left(\frac{\sin \theta}{\sin \theta}\right) \mathrm{d} \theta=\int \frac{1}{1-\sin \theta} \mathrm{d} \theta=\int \frac{1}{\operatorname{cis} \theta} \mathrm{~d} \theta=\int \sec ^{2} \theta \mathrm{~d} \theta=\tan \theta+\mathrm{C}$
K.
$1 \quad \int_{-2}^{0}(7 x+5) d x=\left[x^{2}+5 x\right]_{-2}^{0}=\left(0^{2}+5(0)\right)-\left((-7)^{2}+5(-7)\right)=6$

53. $\int_{0}^{4}\left(3 \mathrm{x}-\frac{x^{2}}{4}\right) \mathrm{dx}-\left[\frac{3 x^{2}}{2}-\frac{x^{4}}{16}\right]_{0}^{4}-\left(\frac{34 y}{2}-\frac{4^{4}}{16}\right)-\left(\frac{30 y}{2}-\frac{101^{4}}{16}\right)-8$
54. $\int_{-2}^{2}\left(x^{3}-2 x+3\right) d x=\left[\frac{x^{4}}{4}-x^{2}+3 x\right]_{-2}^{2}=\left(\frac{2^{4}}{4}-2^{2}+3(2)\right)-\left(\frac{(-2)^{4}}{4}-(-2)^{2}+3(-2)\right)=12$
55. $\int_{0}^{1}\left(x^{2}+\sqrt{x}\right) d x=\left[\frac{x^{3}}{3}+\frac{2}{3} x^{3 / 2}\right]_{0}^{1}=\left(\frac{1}{3}+\frac{2}{3}\right)-0=1$
56. $\int_{0}^{5} x^{3 / 2} d x=\left[\frac{2}{5} x^{5 / 2}\right]_{0}^{5}=\frac{2}{5}(5)^{5 / 2}-0=2(5)^{3 / 2}=10 \sqrt{5}$
57. $\int_{1}^{32} \mathrm{x}^{-6 / 5} \mathrm{dx}=\left[-5 \mathrm{x}^{-1 / 5}\right]_{1}^{32}=\left(-\frac{5}{2}\right)-(-5)=\frac{5}{2}$
58. $\int_{-2}^{-1} \frac{2}{x} \mathrm{dx}=\int_{-2}^{-1} 2 \mathrm{x}^{-2} \mathrm{dx}=\left[-2 \mathrm{x}^{-1}\right]_{-2}^{-1}=\left(\frac{-2}{-1}\right)-\left(\frac{-2}{-2}\right)=1$
59. $\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=(-\cos \pi)-(-\cos 0)=-(-1)-(-1)=2$
60. $\int_{0}^{\pi}(1+\cos x) d x=[x+\sin x]_{0}^{\pi}=(\pi+\sin \pi)-(0+\sin 0)=\pi$
61. $\int_{0}^{\sim / 3} 2 \sec ^{2} \mathrm{xdx}=[2 \tan \mathrm{x}]_{0}^{\pi / 3}=\left(2 \tan \left(\frac{\pi}{3}\right)\right)-(2 \tan 0)=2 \sqrt{3}-0=2 \sqrt{3}$
62. $\int_{\pi / 6}^{\alpha / \pi} \csc ^{2} \mathrm{xdx}=[-\cot \mathrm{x}]_{\pi / 6}^{5 z / 6}=\left(-\cot \left(\frac{5 \pi}{6}\right)\right)-\left(-\cot \left(\frac{\pi}{6}\right)\right)=-(-\sqrt{3})-(-\sqrt{3})=2 \sqrt{3}$
63. $\int_{\pi / 4}^{1 / 4} \csc \theta \cot \theta \mathrm{~d} \theta=[-\csc \theta]_{\pi / 4}^{3 \pi / 4}=\left(-\csc \left(\frac{3 \pi}{4}\right)\right)-\left(-\csc \left(\frac{\pi}{4}\right)\right)=-\sqrt{2}-(-\sqrt{2})=0$
64. $\int_{0}^{\sim / 3} 4 \sec u \tan u d u=[4 \sec u]_{0}^{\pi / 3}=4 \sec \left(\frac{\pi}{3}\right)-4 \sec 0=4(2)-4(1)=4$
65. $\int_{\pi / 2}^{0} \frac{1+\cos 2 \pi}{9} \mathrm{dt}=\int_{-/ 2}^{0}\left(\frac{1}{9}+\frac{1}{9} \cos 2 \mathrm{t}\right) \mathrm{dt}=\left[\frac{1}{9} \mathrm{t}+\frac{1}{4} \sin 2 \mathrm{t}\right]_{\pi / 2}^{0}=\left(\frac{1}{9}(0)+\frac{1}{4} \sin 2(0)\right)-\left(\frac{1}{9}\left(\frac{\pi}{9}\right)+\frac{1}{4} \sin 2\left(\frac{\pi}{9}\right)\right)$ $=-\frac{\pi}{4}$
66. $\int_{-\pi / 3}^{\pi / 3} \frac{1-\cos 2 \mathrm{t}}{2} \mathrm{dt}=\int_{-\pi / 3}^{\pi / 3}\left(\frac{1}{2}-\frac{1}{2} \cos 2 \mathrm{t}\right) \mathrm{dt}=\left[\frac{1}{2} \mathrm{t}-\frac{1}{4} \sin 2 \mathrm{t}\right]_{-\pi / 3}^{\pi / 3}$

$$
=\left(\frac{1}{2}\left(\frac{\pi}{3}\right)-\frac{1}{4} \sin 2\left(\frac{\pi}{3}\right)\right)-\left(\frac{1}{2}\left(-\frac{\pi}{3}\right)-\frac{1}{4} \sin 2\left(-\frac{\pi}{3}\right)\right)=\frac{\pi}{6}-\frac{1}{4} \sin \frac{2 \pi}{3}+\frac{\pi}{6}+\frac{1}{4} \sin \left(\frac{-2 \pi}{3}\right)=\frac{\pi}{3}-\frac{\sqrt{3}}{4}
$$

17. $\int_{-\pi / 2}^{\pi / 2}\left(8 y^{2}+\sin y\right) d y-\left[\frac{8 y^{2}}{3}-\cos y\right]_{-\pi / 2}^{\pi / 2}-\left(\frac{8(f)^{2}}{3}-\cos \frac{\pi}{2}\right)-\left(\frac{8\left(-\frac{2}{3}\right)^{2}}{3}-\cos \left(-\frac{\pi}{2}\right)\right)-\frac{2 \gamma^{2}}{3}$
18. $\int_{-n / 3}^{-\pi / 4}\left(4 \sec ^{2} \mathrm{t}+\frac{\pi}{1}\right) \mathrm{dt}=\int_{-n / 3}^{-\infty / 4}\left(4 \sec ^{2} \mathrm{t}+\pi \mathrm{t}^{-2}\right) \mathrm{dt}=\left[4 \tan \mathrm{t}-\frac{\pi}{1}\right]_{-\pi / 3}^{-\pi / 4}$

$$
=\left(4 \tan \left(-\frac{\pi}{4}\right)-\frac{\pi}{\left(-\frac{\pi}{2}\right)}\right)-\left(4 \tan \left(\frac{\pi}{3}\right)-\frac{\pi}{(-\pi)}\right)=(4(-1)+4)-(4(-\sqrt{3})+3)=4 \sqrt{3}-3
$$

19. $\int_{1}^{-1}(r+1)^{2} d r=\int_{1}^{-1}\left(r^{2}+2 r+1\right) d r=\left[r^{2}+r^{2}+r\right]_{1}^{-1}=\left(\frac{(-1)^{2}}{3}+(-1)^{2}+(-1)\right)-\left(\frac{1^{2}}{3}+1^{2}+1\right)=-\frac{8}{5}$
20. $\int_{-\sqrt{3}}^{\sqrt{3}}(t+1)\left(\mathrm{t}^{2}+4\right) \mathrm{dt}=\int_{-\sqrt{5}}^{\sqrt{3}}\left(\mathrm{t}^{3}+\mathrm{t}^{2}+4 \mathrm{t}+4\right) \mathrm{dt}=\left[\frac{\mathrm{t}^{3}}{4}+\frac{\mathrm{t}^{2}}{3}+2 \mathrm{t}^{2}+4 \mathrm{t}\right]_{-\sqrt{3}}^{\sqrt{3}}$

$$
=\left(\frac{(\sqrt{3})^{4}}{4}+\frac{(\sqrt{3})^{2}}{3}+2(\sqrt{3})^{2}+4 \sqrt{3}\right)-\left(\frac{(-\sqrt{3})^{4}}{4}+\frac{(-\sqrt{3})^{2}}{3}+2(-\sqrt{3})^{2}+4(-\sqrt{3})\right)=10 \sqrt{3}
$$

22. $\int_{1 / 2}^{1}\left(\frac{1}{v^{2}}-\frac{1}{v^{r}}\right) d v=\int_{1 / 2}^{1}\left(v^{-3}-v^{-4}\right) d v=\left[\frac{-1}{v^{r}}+\frac{1}{3 v^{r}}\right]_{1 / 2}^{1}=\left(\frac{-1}{21 \mid r}+\frac{1}{3\left(T^{r}\right.}\right)-\left(\frac{-1}{2(t)^{1}}+\frac{1}{3(t)^{2}}\right)=-\frac{5}{6}$
23. $\int_{1}^{\sqrt{5}} \frac{\mathrm{~m}^{1}+\sqrt{8}}{x} \mathrm{ds}=\int_{1}^{\sqrt{2}}\left(1+\mathrm{s}^{-3 / 2}\right) \mathrm{ds}=\left[\mathrm{s}-\frac{2}{\sqrt{2}}\right]_{1}^{\sqrt{2}}=\left(\sqrt{2}-\frac{2}{\sqrt{\sqrt{2}}}\right)-\left(1-\frac{2}{\sqrt{1}}\right)=\sqrt{2}-2^{3 / 4}+1$ $=\sqrt{2}-\sqrt{8}+1$
24. $\int_{0}^{4} \frac{1-\sqrt{u}}{\sqrt{u}} d u=\int_{9}^{1}\left(\mathrm{u}^{-1 / 2}-1\right) d u=[2 \sqrt{\mathrm{u}}-\mathrm{u}]_{9}^{4}=(2 \sqrt{4}-4)-(2 \sqrt{9}-9)=3$
25. $\int_{-4}^{-4}|x| d x=\int_{-4}^{1}|x| d x+\int_{1}^{1}|x| d x=-\int_{-4}^{1} x d x+\int_{1}^{4} x d x=\left[-\frac{x^{i}}{2}\right]_{-4}^{0}+\left[\frac{x^{\frac{1}{2}}}{2}\right]_{0}^{4}=\left(-\frac{g^{j}}{2}+\frac{(-4 y}{2}\right)+\left(\frac{4}{2}-\frac{0^{\frac{j}{2}}}{2}\right)$ $=16$
26. $\int_{1}^{\sim} \frac{1}{2}(\cos \mathrm{x}+|\cos \mathrm{x}|) \mathrm{dx}=\int_{1}^{-2} \frac{1}{2}(\cos \mathrm{x}+\cos \mathrm{x}) \mathrm{dx}+\int_{-12}^{-} \frac{1}{2}(\cos \mathrm{x}-\cos \mathrm{x}) \mathrm{dx}=\int_{1}^{-/ 2} \cos \mathrm{xdx}=[\sin \mathrm{x}]_{0}^{\pi / 2}$ $-\sin \frac{\pi}{2}-\sin 0-1$

