Questions Bank of Circuit Analysis

Q1. Sketch $\mathbf{v}_{\mathbf{0}}$ for the network of Fig. and determine the dc voltage available.

Q2. In the AC bridge shown $\left(\mathrm{R}=10^{3} \Omega\right.$ and $\left.\mathrm{C}=10^{-7} \mathrm{~F}\right)$ if the bridge is balanced at a frequency f_{0}, then find f_{0}.

Q3. Determine v_{o} for each network for the input shown.

(a)

(b)

Q4. Determine the currents I_{1}, I_{2}, and $I_{D 2}$ for the network of the given circuit.

Q5. /The arms of the four arm bridge (abcd), supplied with sinusoidal voltage, have the following values:

Arm (ab) : Aresistance of ($\mathrm{R}_{1}=200 \Omega$) in parallel with a capacitance $\left(\mathrm{C}_{1}=1 \mu \mathrm{~F}\right)$
Arm (bc): Pure resistance $\left(\mathrm{R}_{3}=400 \Omega\right)$
Arm (cd): Pure resistance ($\mathrm{R}_{4}=1000 \Omega$)
Arm (da) : A resistance (R_{2}) in series with a capacitor ($\mathrm{C}_{2}=2 \mu \mathrm{~F}$)
Determine the value of R_{2} and the frequency at which the bridge will balance .
The detector is connected between b and d, and supply voltage between a and c

Q6. For the circuit ($277 \mathrm{rad} / \mathrm{s}$) of Fig.
a. Calculate $\mathbf{I}, \mathbf{V} R, \mathbf{V} L$, and $\mathbf{V} C$ in phasor form.
b. Calculate the total power factor.
c. Calculate the average power delivered to the circuit.
d. Draw the phasor diagram.
e. Obtain the phasor sum of $\mathbf{V} L$, and $\mathbf{V} C$.

Q7. Answer the following questions:
1- If the applied voltage lags the current in a series RLC circuit, is the frequency above or below resonance?
2- Draw the $\mathrm{I}_{\mathrm{rms}}$ as function of w for RL,RC and Resistor only circuit.
3- At low frequencies the capacitive reactance considered as:
a) Short circuit
b) open circuit
c) none of these

4- In the resonance circuit the larger resistance, the resonant current is \qquad
a) Smaller
b) larger
c) not affected

5- In an RLC circuit with an ac power source, the impedance is a minimum at --:
a) Low frequency
b) high frequency
c) resonance frequency

Q8. Calculate the value of C or L in the unknown Z arm that is necessary to balance this AC bridge.

Q9. Choose the correct answer:
(12 marks)
1- When the semiconductor has equal number of free electrons and holes, it is called (a- Doped semiconductor b- intrinsic semiconductor c- extrinsic semiconductor d- P-type semiconductor
2- N-type semiconductor can be produced by introducing ------- into pure silicon crystal. (a- Arsenic b- Gallium c- Boron d- indium)
3- The current and voltage in a ---------- are not in phase, the voltage lags by 90°. (a-inductor b-Resistor c- Capacitor d- Diode)
4- Half wave rectifier is an example of ---------------. (a-Clipper b-amplifier c- clamper d- both a and c)
5- In the p-n junction of semiconductor you can see only ---------- in the depletion region. (a-holes b-free electrons c- mobile charge carrier d-ions)

6- If the applied voltage is in phase with the current in a series RLC circuit, then the frequency is---------------(a-below resonance b-above resonance c-zero d-at resonance)
7- The forward current in the semiconductor diode is due to -------------. (a-Resistance b- majority carrier c- minority carrier d- capacitance at junction)
8- When the AC source, capacitor and inductor all are connected in parallel under high frequency limit, which of the following statement is true ?
a- Inductor works like short circuit and capacitor works like open circuit.
b- Inductor works like open circuit and capacitor works like short circuit.
c- Both are work like open circuit.
d- Both are work like short circuit

Q10. For the given circuit, find $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{L}}$ and I in vector notation and then draw the phasor diagram.

Q11. An AC bridge is shown in figure, working at 1000 Hz . Arm (ab) is $0.2 \mu \mathrm{~F}$ pure capacitance, arm (bc) is 500Ω pure resistance, arm (cd) contains an unknown impedance and arm (da) has 300Ω resistance in parallel with $0.1 \mu \mathrm{~F}$ capacitor.
Find R and C or L constants of arm (cd) considering it as a series circuit.

Q12. For the given circuit determine:
a) Find $\left(\frac{V_{20}}{V_{10}}\right)$, the ratio of the maximum output voltage V_{20} to the maximum input voltage V_{10}.
b) Suppose $\mathrm{r}=15 \Omega, \mathrm{R}=10 \Omega$ and $\mathrm{L}=250 \mathrm{mH}$. Find the frequency at which $\frac{V_{2 o}}{V_{1 o}}=\frac{1}{2}$

Q13. For the given Hay's bridge at balance show that:
$L_{3}=\frac{C_{1} R_{2} R_{4}}{\left(1+w^{2} C_{1}^{2} R_{1}^{2}\right)} \quad$ and $\quad R_{3}=\frac{w^{2} C_{1}^{2} R_{1} R_{2} R_{4}}{\left(1+w^{2} C_{1}^{2} R_{1}^{2}\right)}$

Q14. Write the output wave form for the following circuits.

Q15. Use Thevenin's theorem to find the Voltage across the resistor R_{2} in the circuit below.

