Questions Bank of Circuit Analysis

Q2. In the AC bridge shown (R=10³ Ω and C=10⁻⁷ F) if the bridge is balanced at a frequency f_0 , then find f_0 .

Q3. Determine v_o for each network for the input shown.

Q4. Determine the currents I_1 , I_2 , and I_{D2} for the network of the given circuit.

Q5. /The arms of the four arm bridge (abcd), supplied with sinusoidal voltage , have the following values:

Arm (ab) : Aresistance of $(R_1=200 \Omega)$ in parallel with a capacitance $(C_1=1 \mu F)$

Arm (bc): Pure resistance (R_3 =400 Ω)

Arm (cd): Pure resistance (R_4 =1000 Ω)

Arm (da) : A resistance (R₂) in series with a capacitor (C₂= 2μ F)

Determine the value of R_2 and the frequency at which the bridge will balance .

The detector is connected between b and d, and supply voltage between a and c

Q6. For the circuit (277 rad/s) of Fig.

- a. Calculate I, VR, VL, and VC in phasor form.
- b. Calculate the total power factor.
- c. Calculate the average power delivered to the circuit.
- d. Draw the phasor diagram.
- e. Obtain the phasor sum of VL, and VC.

- **Q7.** Answer the following questions:
 - 1- If the applied voltage lags the current in a series RLC circuit, is the frequency above or below resonance?
 - 2- Draw the I_{rms} as function of w for RL,RC and Resistor only circuit.
 - 3- At low frequencies the capacitive reactance considered as:
 - a) Short circuit b) open circuit c) none of these
 - 4- In the resonance circuit the larger resistance, the resonant current is ------.a) Smaller b) larger c) not affected
 - - a) Low frequency b) high frequency c) resonance frequency

Q8. Calculate the value of C or L in the unknown Z arm that is necessary to balance this AC bridge.

Q9. Choose the correct answer:

(12 marks)

1- When the semiconductor has equal number of free electrons and holes, it is called......
 (a-Doped semiconductor b- intrinsic semiconductor

c- extrinsic semiconductor d- P-type semiconductor

- 2- N-type semiconductor can be produced by introducing ------ into pure silicon crystal. (a-Arsenic b-Gallium c-Boron d- indium)
- 3- The current and voltage in a ----- are not in phase, the voltage lags by 90° .
- (a-inductor b-Resistor c-Capacitor d-Diode)
- 4- Half wave rectifier is an example of -----.(a- Clipper b- amplifier c- clamper d- both a and c)
- 5- In the p-n junction of semiconductor you can see only ------ in the depletion region.
 (a-holes b- free electrons c- mobile charge carrier d- ions)

6- If the applied voltage is in phase with the current in a series RLC circuit, then the frequency is-----.

```
(a-below resonance b- above resonance c- zero d- at resonance )
```

- 7- The forward current in the semiconductor diode is due to -----.
 - (a-Resistance b-majority carrier c-minority carrier d-capacitance at junction)
- 8- When the AC source, capacitor and inductor all are connected in parallel under high frequency limit, which of the following statement is true ?
 - a- Inductor works like short circuit and capacitor works like open circuit.
 - b- Inductor works like open circuit and capacitor works like short circuit.
 - c- Both are work like open circuit.
 - d- Both are work like short circuit

Q10. For the given circuit, find V_R , V_C , V_L and I in vector notation and then draw the phasor diagram.

Q11. An AC bridge is shown in figure, working at 1000 Hz. Arm (ab) is 0.2 μ F pure capacitance, arm (bc) is 500 Ω pure resistance, arm (cd) contains an unknown impedance and arm (da) has 300 Ω resistance in parallel with 0.1 μ F capacitor.

Find R and C or L constants of arm (cd) considering it as a series circuit.

Q12. For the given circuit determine:

a) Find $(\frac{V_{20}}{V_{10}})$, the ratio of the maximum output voltage V_{20} to the maximum input voltage V_{10} .

b) Suppose $r = 15 \Omega$, $R = 10 \Omega$ and L = 250 mH. Find the frequency at which $\frac{V_{20}}{V_{10}} = \frac{1}{2}$

Q13. For the given Hay's bridge at balance show that:

Q14. Write the output wave form for the following circuits.

Q15. Use Thevenin's theorem to find the Voltage across the resistor R_2 in the circuit below.

