Ministry of Higher Education and Scientific research

Department: Chemistry

College: Education

University: Salahaddin

Subject: Nuclear Chemistry

Course Book: Stage 3; First semester

Lecturer's name: Khozan A. Haji

Academic Year: 2023-2024

1. Course name	Nuclear Chemistry		
2. Lecturer in charge	Dr.Khozan A. Haji		
3. Department/ College	Chemistry/ Education		
4. Contact	e-mail:khozan.haji@su.edu.krd		
5. Time (in hours) per week	Theory: 4		
6. Office hours	Thursday 10.5am – 12.5 pm or by appointment		
7. Course code			
8. Teacher's academic	I graduated from the College of Education, Department of		
profile	Chemistry in 1997 and got a bachelor's degree BSc in chemistry. After that. I then started to study MSc/Analytical Chemistry in 1998 at Salahaddin University. After finishing my MSc study in 2000, I worked in Collage of Education / Chemistry department, as an assistant lecturer. The teaching experience is practical in the analytical Physical, Industrial &Organic Chemistry. Finally, I received my PhD- Physical Chemistry in the same University in 2015. My academic and research program interest focus on Kinetic		
	study; I have more than 4 published articles and going to nublish some other articles		
9. Kevwords	Kinetic study, chalcones, spectrophotometry, bromination.		
	rate of reaction.		

Course Book

10. Course overview:

This course covers the nuclear reactions brought about by absorption of slow neutrons or by radioactive decay, and the chemical effects produced in a system by the absorption of ionizing radiation, alpha-, and beta-particles and gamma- and x-rays. Sources of radiation, collision of high energy radiation with electrons in matter, differences between photochemistry and radiation chemistry (solvent-oriented), the formation of ions and free radicals along the radiation tracks and the diffusion and chemical reaction kinetics of ions and free radicals are described at an introductory level. Nuclear reactors, accelerators, medical radioisotopes and other applications of nuclear technologies are also described.

11. Course objective:

To know the changes that occur inside the nucleus due to the emission of alpha or beta rays, or even neutrons, and the interactions that occur due to high-energy photons such as X-rays and gamma rays with matter.

12. Student's obligation

The student attendance in class two hours a week, preparation of the home works examinations and participate in the discussion in the classroom.

13. Forms of teaching

Different forms of teaching will be used to reach the objectives of the course: Direct questions, Quizzes, Discussion and conclusions. Power point presentations

14. Assessment scheme

Exams: There will be one closed book exams given throughout the semester. The test will be to take 90 minutes. Which carry out 40 degrees, they considered = 40%.

Final Exam: The Final Exam is Comprehensive in all course outlines. Carry out 60% degrees of the grade.

15. Student learning outcome:

The student learns the dangers of using radioactive materials and also their use in various fields such as energy, medicine, industry, agriculture and others

16. Course Reading List and References:

- 1- A. Mozumder, "Fundamentals of radiation chemistry
- 2- G. Friedlander, "NUCLEAR AND RADIOCHEMISTRY
- 3- W. D. LOVELAND, "Modern Nuclear chemistry"

17. The Topics:	Lecturer's name
. First week	Dr.Khozan A. Haji
Structure of Atom, Cathode rays – The discovery of electron	2 hours
MEASUREMENT OF e/m FOR ELECTRONS	
DETERMINATION OF THE CHARGE ON AN ELECTRON	
Mass of Electron, POSITIVE RAYS.	
Second week	
Neutrons, RUTHERFORD'S ATOMIC MODEL – THE NUCLEAR ATOM, COMPOSITION OF THE NUCLEUS.	
Third week	
RADIOACTIVITY, TYPES OF RADIATIONS, ALPHA RAYS, BETA RAYS, GAMMA RAYS.	
Fourth week	
DETECTION AND MEASUREMENT OF RADIOACTIVITY, Cloud Chamber, Ionisation Chamber, Geiger-Muller Counter.	
Fifth week	
TYPES OF RADIOACTIVE DECAY,	

Ministry of Higher Education and Scientific research

Sixth week					
RADIOACTIVITY, TYPES OF RADIATIONS, PROPERTIES OF RADIATIONS.					
Seventh week					
DETECTION AND MEASUREMENT					
OF RADIOACTIVITY					
Eighth week					
TYPES OF RADIOACTIVE DECAY					
THE GROUP DISPLACEMENT LAW					
Ninth week					
RADIOACTIVE DISINTEGRATION					
SERIES					
RATE OF RADIOACTIVE DECAY					
Tenth week					
HALF-LIFE					
RADIOACTIVE DATING					
Eleventh week					
NUCLEAR REACTIONS					
NUCLEAR FISSION REACTIONS					
NUCLEAR FUSION REACTIONS					
Twelfth week					
NUCLEAR EQUATIONS					
ARTIFICIAL RADIOACTIVITY					
Thirteenth week					
NUCLEAR ISOMERISM					

Ministry of Higher Education and Scientific research

winnish y of fligher Luucation and Scientific	research				
Fourteenth week					
MASS DEFECT					
Fifteenth week					
NUCLEAR BINDING ENERGY					
19. Examinations:					
Q1: Choose the best answer.					
(27M)					
1-The reaction of ${}^{3}H$ and ${}^{2}H$	to form ${}^{4}He$ and	l a neutron is a	an example		
of					
a) a fission reaction	b) a fusion read	ction			
c) a,b	c) a,b d) neither a fission or fusion reaction				
2- Which of these points is not true for nuclear reactions?					
a) One element may be co	nverted into anot	her.			
b) Rate of reaction is influ	enced by externa	l factors.			
c) Proceed by redistribution	on of nuclear part	icles.			
d) Often accompanied by	release or absorp	tion of enorm	ous		
amount of energy.					
3- Most nuclear reactions are	studied by induc	cing a collision	n between		
two nuclei where one of the	reacting nuclei is	at rest () while the		
other nucleus () is in moti	on.				
a) nuclei, electron	b) projecti	le, target			
c) target, projectile.	d) proton,	neutron			
4- A pair of nuclei having same	me number of pro	otons and neut	trons but		
different half-lives are called	·				
a)isotopes b)nuclear is	somers c)is	sotones	d)isobars		
5- The Betatron accelerator i	s able to give any	energy withi	n the range		
between:					
a) 1 to 5 MeV	b) 5 to 15 M	ЛеV			
c) 15 to 25 MeV d) 10 to 300 MeV					
6- ${}^{14}_{7}N$ when struck by an α -particle first forms an intermediate					
unstable compound nucleus,-	, which at on	ice cleaves to	form		
stables ${}^{17}_{8}O$.					
a) ${}^{18}_{8}O$ b) ${}^{16}_{8}O$	c) ${}^{18}_{0}F$	d) ¹⁹ _o F			

Q5: Find the mass defect and binding energy (by J) per nucleon of a copper-63 nucleus if the actual mass of a copper-63 nucleus is

62.91367 amu. The mass of a proton is 1.00728 amu and a neutron is 1.00867 amu. (23M)

 $1J=6.24 \times 10^{18} \text{ eV}$, $1amu=1.66 \times 10^{-24} \text{g}$, $c = 3 \times 10^{10} \text{ cm/sec}$, $h = 6.626 \times 10^{-34} \text{ J. s}$,

20. Extra notes:

21. Peer review