Ministry of Higher Education and Scientific research

Department: Chemistry

College: Education

University: Salahaddin

Subject: Chemical Kinetics

Course Book: Stage 3; First semester

Lecturer's name: Khozan A. Haji

Academic Year: 2023-2024

Course Book

1. Course name	Chemical Kinetics
2. Lecturer in charge	Dr.Khozan A. Haji
3. Department/ College	Chemistry/ Education
4. Contact	e-mail:khozan.haji@su.edu.krd
5. Time (in hours) per week	Theory: 4
6. Office hours	Thursday 10.5am – 12.5 pm or by appointment
7. Course code	
8. Teacher's academic profile	I graduated from the College of Education, Department of Chemistry in 1997 and got a bachelor's degree BSc in chemistry. After that. I then started to study MSc/Analytical Chemistry in 1998 at Salahaddin University. After finishing my MSc study in 2000, I worked in Collage of Education / Chemistry department, as an assistant lecturer. The teaching experience is practical in the analytical Physical, Industrial &Organic Chemistry. Finally, I received my PhD-Physical Chemistry in the same University in 2015. My academic and research program interest focus on Kinetic study; I have more than 4 published articles and going to publish some other articles.
9. Keywords	Kinetic study, chalcones, spectrophotometry, bromination, rate of
	reaction.

10. Course overview:

The study of kinetics is important because it aims to collect adequate information about the reaction's behavior and the rate of reaction throughout the process.

This may necessitate a detailed study of how reactant or product concentrations change over time, as well as the effect of temperature on the rate of reaction. Accordingly, kinetic measurements play an important part in identifying the reaction's course, as well as the energy required for it and the mechanism in which it takes place.

11. Course objective:

The study of kinetics has aided in the knowledge and advancement of a variety of fields. In the field of industry, for example, it helped to understand how to manage the reaction rate to achieve a high-quality industry, develop special output, or raise the quantity. In the biological fields, it contributed to the understanding of the behavior of the reactions that occur inside the body of the organism. In the field of the pharmaceutical industries, the study of kinetics was of great importance in determining the time required to consume a particular medicine.

12. Student's obligation

The student attendance in class two hours a week, preparation of the home works examinations and participate in the discussion in the classroom.

13. Forms of teaching

Different forms of teaching will be used to reach the objectives of the course: Direct questions, Quizzes, Discussion and conclusions. Power point presentations

14. Assessment scheme

Exams: There will be two closed book exams given throughout the semester. Each test will be to take 90 minutes. Each exam carry out 7.5 degrees, they considered = 15%.

Final Exam: The Final Exam is Comprehensive in all course outlines. Carry out 50% degrees of the grade.

Theoretical grade = 65%

Practical grade = 35%

15. Student learning outcome:

The student will learn the phase rules, chemical equilibrium, finding the equilibrium constant for different reactions, in addition to learning the colligative properties of a mixtures

16. Course Reading List and References:

- 1- P.Atkins, and J.DE Paula. "ATKINS Physical Chemistry "6th edition.
- 2- IRA N. Levine. "Physical Chemistry" 6th edition.
- 3- A. Bahl, B.S. Bahl, and G.D. Tuli "Essential of physical Chemistry".
- 4- R.A. Alberty, and R.J. Silbey." Physical Chemistry" 2nd edition.

17. The Topics:	Lecturer's name
. 1 st week	Dr.Khozan A. Haji
Kinetic of simple reaction	2 hours
2 nd week	
Order of reactions	
Zero order and 1 st order	
3 rd week	
Order of reaction	
2 nd order and third order	
4 th week	
Complex reaction	
Reversible reaction	
Consecutive reaction	
5 th week	

Winistry of Higher Education and Scientific research	
Complex reaction	
Parallel reaction	
Chain reaction	
6 th week	
Mechanism of reaction	
Steady state approximation	
7 th week	
Mechanism of reaction	
Rate determining step approximation	
8 th week	
Arrhenius law	
9 th week	
Theories of Reaction Rates	
Collision theory	
10 th week	
Theories of Reaction Rates	
Activated complex theory	
11 th week	
Kinetic of catalysed reaction	
12 th week	
Enzyme kinetic	
13 th week	
Photochemistry	
Laws of photochemistry	

14 th week	
Photochemistry	
Photochemical reactions	
15 th week	
Adsorption	

19. Examinations:

A second order reaction, in which the initial concentration of both the reactants is the same, is pleted in 600 sec. How long will it take for the reaction to go to 75% completion?

⁸ °C, the half-life for the decomposition of a sample of gaseous ethanal (acetaldehyde) initially at pressure of 363 Torr was 410 s. When the partial pressure was 169 Torr, the half-life was 880 s. he order of the reaction. (5M)

mple of gaseous acetone is irradiated with monochromatic light having a wave length of 313nm. his wavelength decomposes the acetone the acetone according to the equation:

$$\rightarrow C_2H_6 + CO$$

ion cell used has a volume of 59cm³. The acetone vapor absorbs 91.5% of the incident energy. e experiment the following data are obtained: -

ure of reaction = 56.7 °C. Initial pressure =102.16 kPa. Final pressure =104.42 kPa. Time of = 7 hour. Incident energy = 48.1×10^{-4} J.s⁻¹. What is the quantum yield?

$$tm = 101.325 kPa, PV = nRT$$
)

The Arrhenius parameters for the gas-phase decomposition of cyclobutane, $[C_4H_{8(g)}\rightarrow 2C_2H_{4(g)}]$, $.00 \times 10^{15} \text{ s}^{-1}$ and Ea = 261 kJ mol⁻¹. What is the half-life of cyclobutane at (i) 20 °C, (ii) 500 °C? (5M)

(10M)

ate the energy associated with: a) One photon, b) one Einstein, of wave length 400nm. (5M)mechanism for the thermal decomposition of acetaldehyde is: $CH_3CHO \rightarrow \dot{C}H_3 + \dot{C}HO$ $\dot{C}H_3 + CH_3CHO \rightarrow CH_4 + \dot{C}H_2CHO$ $\dot{C}H_2CHO \rightarrow CO + \dot{C}H_3$ $\dot{C}H_3 + \dot{C}H_3 \rightarrow C_2H_6$ (10M)steady-state approximation, to obtain the rate of formation of CH_4 . this parallel reaction $A \xrightarrow{k_1} B$ if $\frac{[A]}{[A]_o} = e^{-(k_1 + k_2)t}$ Prove that $[B] = \frac{k_1[A]_0}{k_1 + k_2} (1 - e^{-(k_1 + k_2)t})$ (10M)constant= 6.626 × 10⁻³⁴ J.s , speed of light=3 × 10⁸ $\frac{m}{s}$ When the concentration of A in the reaction $[A \rightarrow B]$ was changed from 1.20 M to 0.60 M, the ncreased from 2.0 min to 4.0 min at 25°C. Calculate the order of the reaction and the rate tain reaction is first order; after 540 s, 32.5 % of the reactant remains. (5M) ate the rate constant for the reaction. ength of time would be required for 25 % of the reactant to be decomposed?

00-cm³ vessel containing hydrogen and chlorine was irradiated with light of 400nm. nents with a thermopile showed that 11×10^{-7} J of light energy was absorbed by the chlorine per During an irradiation of 1min the partial pressure of chlorine as determined by the absorption of the application of Beer's law, decreased from 0.012 to 9.16 × 10⁻³ mol/L. (corrected to 0°C). ne quantum yield? (10M)

Calculate the rate constant at 500 K for the second-order gas-phase reaction between Cl₂ and H₂ frequency factor, $A = 8.1 \times 10^{-10} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and activation energy $E_a=23 \text{ kJ mol}^{-1}$. (5M)

ate the energy associated with: a) One photon, b) one Einstein, of wave length 800nm.

(5M)

ین Directorate of Quality Assurance and Accreditation

بەر يۆ ەبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن

