Ministry of Higher Education and Scientific research

Department of Mathematics

College of Education

Salahaddin University-Erbil

Subject: Distribution Theory

Course Book – (MSc)

Lecturer's name: Kurdistan I. Mawlood

Academic Year: 2023/2024

Course Book

1. Course name	Distribution Theory
2. Lecturer in charge	Kurdistan I. Mawlood
3. Department/ College	Statistics /College of Administration and Economics
4. Contact	e-mail: kurdistan.mawlood@su.edu.krd
5. Time (in hours) per week	Theory: 3
	Practical: 0
6. Office hours	(3 hours), Wednesday 9 -12
7. Course code	
8. Teacher's academic	
profile	
9. Keywords	Mean, variance, moment generating function, coefficient of
	skewness. Coefficient of kurtosis, Parameters, estimators, point
	estimation, properties of estimator and methods of estimation.

10. Course overview:

The general purpose of this course is to study the basic concepts of Distribution Theory This course is divided into two parts. The first part deals with properties of distribution functions, and the second part deals with estimation (point estimation and confidence intervals), properties of an estimator, methods for finding estimators

11. Course objective:

students will learn the basic probability theory which is the starting point of the rest of their study on statistics. Random variables and its moments will be discussed. Studentswill be familiar with many common distributions, continuous or discrete, univariate or multivariate, that provide rich families for modeling real data. Based on these discussions students then will learn various properties of random sample along with some convergence concepts.

12. Student's obligation

Students have the obligation to participate in course examinations and other assessed

performances. Examination frauds and copying of assignments or material are not

allowed. Students are anticipated to attend classes and to submit assignments on the

due date. Students are also expected to participate in tutorials. Students have

representatives in the groups they can come to meetings to show their support, they

.. have the right to report incidents of discrimination.

13. Forms of teaching

Different forms of teaching will be used to reach the objectives of the course: power

point presentations for the head titles, definitions and summary of conclusion,

classification of material and any other illustrations. There will be classroom discussions

and the lecture will give enough background to translate, solve, analyse, and evaluate

problems.

14. Assessment scheme

During the study, there will be three Exams, all exams are closed book.

Grading:

Exam I 25%

Paper, home works and daily activities 25%

Exam III 50%

15. Student learning outcome:

At the end of this course, students are expected to be able to understand and find reasonable properties of estimators, provide a method for using sample data to construct estimates of population characteristics, and to use sample data to decide between two competing claims, or hypotheses, about a population. **16. Course Reading List and References:**

- Introduction to Mathematical Statistics, 5th edition; Hogg and Craig, 1995.
- Introduction to Probability Theory and Statistical Inference, 3rd edition; Larson, 1982.
- Statistical inference / George Casella, Roger L. Berger.-2nd edition 2002.
- Principles of Statistical Inference, D.R. Cox, 2006.
- An introduction to Probability and Mathematical Statistics, Rohatgi, V. K., 1976.
- Theory of Point Estimation, E.L. Lehmann George Casella 2nd edition 1998.
- Six sigma distribution Modeling, Andrew D. Sleeper 2007.

17. The Topics:Lecturer's name

Ministry of Higher Education and Scientific research

Basic Definitions	Lecturer's name
Order Statistics	ex: (2 hrs)
• Estimation (properties of an estimator)	
Unbiased estimator	ex: 18/12/2023
Biased Part & Unbiased in Limit	
Mean Square Error	
Consistent estimator	
Score function	
Fisher Information	
• Sufficiency (method 1)	
 Sufficiency (method 2 conditional) 	
 Sufficiency (method 3 factorization) 	
Jointly Sufficient	
Completeness	
Efficiency (Relative Efficiency)	
Cramer-Rao Lower Bound	
Methods of Estimation	
Moments Method	
Maximum Likelihood method	
Minimum Variance method	
 The probability density functions 	
Discrete Uniform Distribution	
Bernoulli Distribution	
Binomial Distribution	
 Categorical Distribution 	
 Multinomial Distribution 	
Poisson Distribution	
Geometric Distribution	
 Negative Binomial Distribution 	
Hyper geometric Distribution	
 Continuous Uniform Distribution 	
 Normal Distribution 	
Beta Distribution	
Gamma Distribution	
 Invers Gamma Distribution 	
Weibull Distribution	
 Rayleigh Distribution 	
Dirichlet Distribution	
Pareto Distribution	
18. Practical Topics (If there is any)	

19. Examinations:
1. Compositional:
1 - Let X_1, X_2, \dots, X_n be a random sample of size n from uniform
distribution $Uni(\mathrm{O}, heta)$, find the distribution of sample median.
2 - Let the random variable X has Binomial distribution with parameter $oldsymbol{ heta}$,
$\theta = \frac{x}{n}$ a consistent estimator for the parameter θ .
3 - Let X_1, X_2, \dots, X_n be a random sample of size n from Normal distributi
$N(\rho, \sigma^2)$ show that the family of X is complete
IV(O, O), show that the family of X is complete.
4 - In a random sample of size n from Geometric distribution $\mathit{Geom}(heta)$,
show that $T = \Sigma x_i$ is sufficient estimator for θ
5- Let X_1, X_2, \dots, X_n be a random sample of size n from Gamma distribution $\Gamma(2, \theta)$,
Find <i>GRLB</i> for $\phi(\theta) = \ln \theta$.
2. True or false type of exams:
3. Multiple choices:
20. Extra notes:

21. Peer review

پيداچوونەوەى ھاوەڵ