بانکی پرسیارهکان (Question Bank) کورسی یهکهم – دکتوراه له بابهتی (Distribution Theory) سائی خویندنی 2024-2023

Q1// Let X be a r.v. has Geometric distribution.

- 1) State when we use it in real life (with example)
- 2) What do represent a random variable and a parameter in a Geometric distribution?
- 3) Explain what it means by memory less property for the Geometric distribution, and express it mathematically, then prove this property for this distribution.
- 4) Find the mode of the Geometric distribution for the two forms.

 $\mathbb{Q}2//\mathbb{Q}$ a) Is the Negative Binomial distribution N.Bin(r, p) belongs to exponential family? Then find the Fisher information in a rssn by using exponential family method.

b) Let X~Exp(1/
$$\theta$$
). Is $\hat{\theta} = \frac{n-1}{\sum_{i=1}^{n} X_i}$ unbiased estimator for θ ?

Q3// Let X be a r.v. has Poisson distribution.

- 1) State when we use it in real life (with example)
- 2) What do represent a random variable and a parameter in a Poisson distribution?
- 3) What would be the distribution of X in the time interval (0, T)? Write the probability mass function of it, and the mean and the variance of it (only).
- 4) From (3): How the exponential distribution is derived from the Poisson distribution in this period?

Q4// **a**) What do the parameters (α, β) describe in a Gamma distribution? (with example) **b**) Let X ~ Gamma(2, 1/ θ) and $T = \frac{2n-1}{\sum_{i=1}^{n} X_i}$ an estimator for θ . Find (M.V.B) for the variance of unbiased estimator of θ , then show that if T is unbiased estimator for θ . Then find the variance of T and compared it with (M.V.B).

Q5// a) What is/are the purpose(s) of using beta distribution? State when we use it in real life (with example).

b) In a rssn from Beta(α , β). Estimate the parameters α and β using moment method.

Q6// a) What are the inflection points in the normal distribution? What do they represent? Explain them with a graph.

b) Let $X_1, X_2, ..., X_n$ be a rssn from normal distribution $N(\mu, \tau)$. If μ is known, and only τ is unknown, and $=\frac{1}{\sigma^2}$. Find Bayes estimator for parameter (τ) , using informative prior probability.

Q7// for the following distribution:

- 1) Categorical distribution. 2) Binomial distribution. 3) Negative Binomial distribution.
- a) Define random variables (Notation).
- **b)** Write the complete p.m.fs.

- c) What do the random variables and parameters mean for each distribution?
- **d)** State when we use them in real life (with example).
- e) Show how they relates to the other distributions.
- f) Find the moment generating function (m.g.f.) of Binomial and Negative Binomial distribution.

Q8// Let $X_1, X_2, ..., X_r$ are independent random variables each having $Geo(\theta)$. Show that $\sum_{i=1}^r X_i$ is a complete estimator for θ .

Q9// Let $X_i \sim \text{Ber}(\theta)$, and $X_1, X_2, ..., X_n$ be a r.s. of size (n) generated from X, can we apply Rao Black well theorem to $E(X_i | \sum_{i=1}^n X_i)$, find the distribution of $p(X_1 | \sum_{i=1}^n X_i)$ and then find $E(X_1 | \sum_{i=1}^n X_i)$ and $Var E(X_i | \sum_{i=1}^n X_i) < Var(X_i)$.

Q10// Show and drive C.D.F of the Gamma distribution may be obtained from the C.D.F. of the Poisson distribution.

Q11// Prove the following m.l.e. property. If there is an efficient estimator then the m.l.e. method will produce it.

Q12// Use the minimum variance method to obtain an estimator for a parameter θ of binomial population Bin(m, θ).

Q13// Define the exponential-family ad its pdf, then show that if the Poisson distribution belongs to this family. Given a r.v. X has Poisson dist. Write the pdf of it, and the mean, the variance and mgf of it. Find the mode of this dist

Q14// In a random sample of size (n) from normal distn N(θ , $\sigma 2$). Is $S^2 = \frac{\sum (X_i - X)^2}{n}$ unbiased estimator for the parameter (σ^2).

Q15// Let X be a r.v. has the Binomial distribution:

- a) Define random variables (Notation).
- **b)** Write the complete p.m.f of X.
- c) What do the random variable and parameters represent in this distribution?
- **d)** What are the properties of this distribution? Give an example for this distribution).
- e) Find the mode of this distribution.
- **f**) Find Bayes estimator for θ by using informative prior.

Q16//

- **a)** Find the moment generating function (m.g.f.) of X for the **second form** of the negative Binomial distribution.
- **b**) Let $X_1, X_2, ..., X_n$ be a rssn from Negative Binomial distⁿ N.Bin(r, p), find the m.l.e for p of the **first form**.
- c) Let (r-1) is number of success before the last success from (x+r-1) in Negative Binomial distribution, then show that; $\hat{p} = \frac{r-1}{x+r-1}$ unbiased estimator for p.

Q17// In a rss(n) from uniform distribution C.U(0, θ). Let $Y_1, Y_2, ..., Y_n$ are an order statistics of this sample. Is an estimator Y_1 unbiased estimator for θ ?

Q18//

- a) What are the uses of the Beta distribution? (Give two examples of this distribution).
- **b**) Find the mode of the beta distribution

Q19// Let $X_1, X_2, ..., X_n$ be a rssn from Normal distribution $N(\theta, \sigma^2)$, Find Bayes estimator for parameter (σ^2) , if you know $(\theta \text{ known})$, using informative prior probability.

Q20// Let $X_1, X_2, ..., X_n$ be a rssn from Weibull distribution Wei (α, β) .

- a) Find the moment generating function (m.g.f.) of X.
- **b)** Find m.l.e for parameter α (if β known).

Q21// Let X be a r.v. has the Negative Binomial distribution: (First Form)

- a) Define random variables (Notation).
- **b**) Write the complete p.m.f of X.
- c) What do the random variable and parameters represent in this distribution?
- **d)** State when we use them in real life (with example).
- e) Show that $\frac{r+X}{r}$ is an unbiased estimator for 1/p.
- **f)** Find the mode of this distribution.

Q22// Let $X_1, X_2, ..., X_n$ are independent random variables each having $Poi(\theta)$.

- a) Explain how the Poisson distribution relates to other distributions.
- **b)** Show that $\sum_{i=1}^{n} X_i$ is a complete estimator for θ .
- c) Find Bayes estimator for parameter (θ) , using non-informative prior probability.

Q23// Find Bayes estimator for parameters of; **1**) $\text{Exp}(1/\theta)$, **2**) $N(\theta, \sigma^2)$, using non informative prior probability.

Q24// In a rssn, find m.v.e. for the parameters of; 1) Ber(θ). 2) N(θ , σ^2).

Q25// Estimate the parameter by using moment method for:

- 1) Ber(θ).
- **2**) Exp $(1/\theta)$.
- 3) $Geo(\theta)$.

Q26// Let $X_1, X_2, ..., X_n$ be a rssn from normal distn $N(\theta, \sigma 2)$,

1) find m.l.e for parameters θ and σ^2 . 2) If S^2 is m.l.e. for σ^2 , then find m.l.e. for σ .

Q27// In a rssn from Geometric distn Geo(θ), with p.d.f; $f(x;\theta) = \theta(1-\theta) x$, x = 0,1,2,..., find the m.l.e for θ :

Q28// Let $X_1, X_2, ..., X_n$ denote a random sample from Poisson distn Poi(θ), find the m.l.e for θ .

Q29// let $X_1, X_2, ..., X_n$ be a random sample of size (n) rssn taken from C.U(0,1). let $Y_1 < Y_2 < ... < Y_n$ be the order statistics of this sample. **Find** the p.d.f. of Y_1 and Y_n , the j.p.d.f. of Y_1 and Y_n

Q30// In a random sample of size (n) taken from exponential distⁿ Exp(θ). Show that;

- **1.** $T_1 = \overline{X}$ is unbiased estimator for the parameter (θ) .
- **2.** $T_2 = \frac{n}{n+1} \overline{X}^2$ is unbiased estimator for the parameter (θ^2) .

Q31// Let $X_1, X_2, ..., X_n$ be a rssn from Poisson distⁿ, show that $\hat{\theta} = \overline{X}$ is consistent estimator for θ .

Q32// Show that $\hat{\theta} = Y_n$ is consistent estimator for θ from C.U(0, θ), (by theorem).

Q33// Let $X_1, X_2, ..., X_n$ be a rssn from Bernoulli dist n Ber(θ). Show that $\hat{\theta} = \sum X_i$ is sufficient estimator for the parameter θ .

Q34// Let $X_1, X_2, ..., X_n$ be a rssn from a dist n with p.d.f.:

$$f(x;\theta) = e^{2\theta - x}$$
 , $x \ge 2 \theta$

Show that Y_1 is sufficient estimator for the parameter θ .

Q35// Let $X_1, X_2, ..., X_n$ be a rssn from Poisson dist n Poi (θ) , show that $\hat{\theta} = \sum X_i$ is sufficient estimator for θ ?

Q36// from Exp(1/ θ). Is $\sum_{i=1}^{n} X_i$ sufficient estimator for θ ? (by factorization theorem).

Q37// Let $X_1, X_2, ..., X_n$ be a rssn from Gamma distⁿ $\Gamma(\alpha, 1/\theta)$, find the jointly sufficient estimators for the parameters (α, θ) .

Q38// Let $X_1, X_2, ..., X_n$ be a rssn from normal distⁿ N(θ , σ^2), show that $\sum X_i$, $\sum X_i^2$ are the jointly sufficient estimators for the parameters (θ , σ^2) respectively.

Q39// Let $X_1, X_2, ..., X_n$ be a rssn from C.U($\theta_1 - \theta_2, \theta_1 + \theta_2$), and $Y_1 < Y_2 < ... < Y_n$ be the order statistics, show that Y_1 and Y_n are the jointly sufficient estimators for the parameters (θ_1, θ_2) respectively.

Q40// Let $X_1, X_2, ..., X_n$ be a rssn from Poisson distⁿ Poi(θ), show that if the distⁿ of X can be written in exponential form?

Q41// Let X and Y be two random variables with j.p.d.f.;

$$f(x,y) = \frac{2}{\theta^2} e^{-(x+y)/\theta} , \quad 0 < x < y < \infty$$
Show that: 1) $E(Y) = E(E(Y|X))$.

2) $Var(Y) \ge Var(E(Y|X))$.

Q42// Let X be a random variable from; 1) Bernoulli distⁿ. 2) Poisson distⁿ. 3) Normal distⁿ. Show that the family of X is complete.

Q43// Let $X_1, X_2, ..., X_n$ be a rssn from Poisson distⁿ poi (θ) . Show that $Y = \sum X_i$ is a complete sufficient estimator for θ . Find the unique continuous function of Y, which is the best estimator for θ (M.V.U.E).

Q44// Let $X_1, X_2, ..., X_n$ denote a random sample of size n > 2 from a distⁿ with p.d.f. $f(x;\theta) = \theta e^{-\theta x}$ $0 < x < \infty$, and $\theta > 0$. 1) Show that $Y = \sum X_i$ is a complete sufficient estimator for θ . 2) Prove that (n-1)/Y is the unique continuous function of Y which is the best estimator for θ (M.V.U.E).

Q45// Let $X_1, X_2, ..., X_n$ denote a random sample from a distⁿ which is N(0, θ). Then $Y = \sum X_i^2$ is a sufficient estimator for θ . Find the best estimator for θ^2 (M.V.U.E).

Ex: Let $X_1, X_2, ..., X_n$ be a rssn from exponential distⁿ Exp(θ);

- 1) If $T = \overline{X}$ is an efficient estimator for $\phi(\theta) = \theta$.
- 2) Find RCLB for each of $[\phi(\theta) = \ln \theta, \phi(\theta) = 2\theta]$.