
Moment Method for Parameter of Geometric Distribution 

𝑋 ~ 𝐺𝑜𝑒 𝑝    , 𝒇𝒊𝒓𝒔𝒕 𝒄𝒂𝒔𝒆: 𝑓 𝑥; 𝑝 = 𝑝 𝑞𝑥   𝐸 𝑋 =  
1−𝑝

𝑝
  ,  

𝑚𝑘 =  
 𝑥𝑖

𝑘

𝑛
      , 𝑀𝑘 = 𝐸 𝑋𝑘     , →   𝑚𝑘 =  𝑀𝑘   

𝑚1 =  
 𝑥𝑖

1

𝑛
=  𝑋   ,     𝑀1 = 𝐸 𝑋 =  

1−𝑝

𝑝
  

𝑚1 =    𝑀1  

𝑋   =  
1−𝑝

𝑝
   →  𝑋  𝑝 = 1 − 𝑝  →  𝑝 𝑚𝑜𝑚𝑒𝑛𝑡 =  

1

1+  𝑋  
  

 

𝑋 ~ 𝐺𝑜𝑒 𝑝    , 𝐬𝐞𝐜𝐨𝐧𝐝 𝐜𝐚𝐬𝐞: 𝑓 𝑥; 𝑝 = 𝑝 𝑞𝑥−1  𝐸 𝑋 =  
1

𝑝
  ,  

𝑚𝑘 =  
 𝑥𝑖

𝑘

𝑛
      , 𝑀𝑘 = 𝐸 𝑋𝑘     , →   𝑚𝑘 =  𝑀𝑘   

𝑚1 =  
 𝑥𝑖

1

𝑛
=  𝑋   ,     𝑀1 = 𝐸 𝑋 =  

1

𝑝
  

𝑚1 =    𝑀1  

𝑋   =  
1

𝑝
   →  𝑋  𝑝 = 1  →  𝑝 𝑚𝑜𝑚𝑒𝑛𝑡 =  

1

  𝑋  
  

 

Note: In all distributions, it is not a requirement: Moment Method equal to the m.l.e Method. 

For example, in Beta distribution, or in some cases we cannot use m.l.e. method. 

Q// Is m.l.e  𝑝 =  
1

𝑋 
  unbiased estimator for p in Geo. distriution? 𝑝 =  

𝑛

 𝑥𝑖
 



H.W: Is m.l.e  𝑝 =  
1

1+𝑋 
 =  

𝑛

𝑛+ 𝑥𝑖
  unbiased estimator for p in Geo. distribution? f(x; p) = p qx. 

Exponential Family 
Q// Is Geometric distribution Geo(p) belongs to exponential family? 

1) 𝑓 𝑥;  𝑝 =   𝑝 𝑞𝑥    , 𝑥 = 0, 1, ….  

𝑓 𝑥;  𝑝 = exp⁡(ln 𝑓 𝑥;  𝑝 ) 

= 𝑒𝑥𝑝 ln 𝑝 + 𝑥 ln 1 − 𝑝    

𝐴 𝜃 =  ln 1 − 𝑝   , 𝐵 𝑥 = 𝑥 , 𝐶 𝜃 = ln 𝑝 ,   𝐷 𝑥  = 0 

⸫ 𝑓 𝑥;  𝑝  𝑜𝑓 Geometric distribution belongs to exponential family. 

In arssn;  

𝑓 𝑥1, 𝑥2 , … , 𝑥𝑛 ;  𝑝 = 𝑒𝑥𝑝 𝑛ln 𝑝 + ln 1 − 𝑝  𝑥𝑖   

∴   𝐵 𝑋𝑖 =   𝑥𝑖   𝑖𝑠 𝑠𝑢𝑓𝑓. 𝑒𝑠𝑡. 𝑓𝑜𝑟 𝑝.  

2) 𝑓 𝑥;  𝑝 =   𝑝 𝑞𝑥− 1   , 𝑥 =  1, 2, ….  

𝑓 𝑥;  𝑝 = exp⁡(ln 𝑓 𝑥;  𝑝 ) 

= 𝑒𝑥𝑝 ln 𝑝 +  𝑥 − 1 ln 1 − 𝑝    

= 𝑒𝑥𝑝  𝑙𝑛  
𝑝

1−𝑝
 + 𝑥 ln(1 − 𝑝)   

𝐴 𝑝 =  ln 1 − 𝑝   , 𝐵 𝑥 = 𝑥 , 𝐶 𝜃 = 𝑙𝑛  
𝑝

1−𝑝
   , 𝐷 𝑥  = 0 

⸫ 𝑓 𝑥;  𝑝  𝑜𝑓 Geometric distribution belongs to exponential family. 

In arssn;  

𝑓 𝑥1, 𝑥2 , … , 𝑥𝑛 ;  𝑝 = 𝑒𝑥𝑝  𝑛𝑙𝑛  
𝑝

1−𝑝
 + ln 1 − 𝑝  𝑥𝑖   

∴   𝐵 𝑋𝑖 =   𝑥𝑖   𝑖𝑠 𝑠𝑢𝑓𝑓. 𝑒𝑠𝑡. 𝑓𝑜𝑟 𝑝  



5) Negative Binomial Distribution  

Independent Bernoulli trials are performed until (r) successes appear, define the r.v. X is the 

number of failure trials before getting the r–th success trial, then a r.v. X defined to have (N.B.) 

dist. if the p.d.f. of X given by: 
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Where the parameters (r) and (p) satisfy [r = 1, 2, ….,  0 < p < 1]. 

x: No. of failure trials before getting the r–th success.        
r: No. of successes cases (fixed number). 

Clearance: Let a coin tossed nine times, in ninth toss we get success trials, success trials (get 3 

Heads). What is the probability of the following result? 
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Properties of the Negative Binomial Distribution 
Let X be a r.v. has Negative Binomial Distribution, X ~ N.B(r, p), then; 
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3) The cumulative dist. function (c.d.f.) of X ~ N.B(r, p). 
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4) The moment generating function (m.g.f.) of X ~ N.B(r, p).  

𝑀𝑋 𝑡 =
𝑝

1 − 𝑞𝑒𝑡

𝑟

Cumulates 
The arithmetic mean, variance, etc. can be found through this important method. 

𝑚. 𝑔. 𝑓.  →  𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋  =  
𝑝

1−𝑞𝑒 𝑡 
𝑟
  

𝑔 𝑡  = ln 𝐸 𝑒𝑡𝑋   5) Additive Property  

i- Let X1, X2,…., Xn be r.v.’s and independent, such that Xi ~ N.B(ri, p) , 
 i = 1, 2, …, n ,then; 
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6) Mode of Negative Binomial Distribution 
𝑓(𝑚)

𝑓(𝑚−1)
> 1  ,

𝑓(𝑚)

𝑓(𝑚+1)
> 1  

Y = [x] greatest integer less than or equal x. e.g: m = [1.3] = 1.3 – 0.3 = 1 

 

Note: lim
𝑟 → ∞

𝑁. 𝐵𝑖𝑛   →   𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

Maximum Likelihood Estimation 
Let X1, X2, …, Xn be a rssn from Negative Binomial distn N.Bin(r, p), find the m.l.e for θ. 
Sol: ∵ X ~ N.Bin(r, θ) 

𝑓 𝑥;  𝑝, 𝑟 =   𝑥+𝑟−1
𝑥

  𝑝𝑟𝑞𝑥    , 𝑥 = 0, 1, ….  

L(p) =   𝑥𝑖+𝑟−1
𝑥𝑖

  𝑝𝑛 𝑟(1 − 𝑝) 𝑥𝑖𝑛
𝑖=1  

ln 𝐿 𝑝 = ln   𝑥𝑖+𝑟−1
𝑥𝑖

  + 𝑛 𝑟 ln 𝑝 +  𝑥𝑖 ln 1 − 𝑝 𝑛
𝑖=1   

𝜕 ln 𝐿 𝑝 

𝜕 𝑝
=  

𝑛 𝑟

𝑝
− 

 𝑥𝑖

 1−𝑝 
 =  

𝑛𝑟 −𝑛𝑟𝑝 −𝑝  𝑥𝑖  

𝑝 1−𝑝 
         ,

𝜕 ln 𝐿 𝑝 

𝜕 𝑝
= 0  

→   
𝑛𝑟 − 𝑛𝑟𝑝 − 𝑝   𝑥𝑖  

𝑝  1 − 𝑝  
 = 0 

→   
𝑛𝑟 − 𝑝 (𝑛𝑟 +  𝑥𝑖  )

𝑝  1 − 𝑝  
 = 0 

→   𝑛𝑟 = 𝑝 𝑛𝑟 +  𝑥𝑖     →   𝑝 =  
𝑛𝑟

𝑛𝑟 + 𝑥𝑖
 =  

𝑟

𝑟+𝑥 
  is m.l.e. estimator for probability of success 

but this is a biased estimator. Its inverse (r + x)/r, is an unbiased estimator for 1/p. H.W 



Ex: let (r -1) is number of success before the last success from (x + r – 1), then show that; 

𝑝  =  
𝑟−1

𝑥+𝑟−1
 unbiased 𝑜𝑟  𝑝  =  

𝑟

𝑥+𝑟
 biased?   

Q// Is negative Binomial distribution N.Bin(r, p) belongs to exponential family? 

𝑓 𝑥;  𝑝, 𝑟 =   𝑥+𝑟−1
𝑥

  𝑝𝑟𝑞𝑥    , 𝑥 = 0, 1, ….  

𝑓 𝑥;  𝑝, 𝑟 = exp⁡(ln 𝑓 𝑥;  𝑝, 𝑟 ) 

= 𝑒𝑥𝑝 ln 𝑥𝑖+𝑟−1
𝑥

  + 𝑟 ln 𝑝 + 𝑥 ln 1 − 𝑝    

𝐴 𝑝 =  ln 1 − 𝑝   , 𝐵 𝑥 = 𝑥 , 𝐶 𝑝 = 𝑟 ln 𝑝 ,   𝐷 𝑥  = ln 𝑥𝑖+𝑟−1
𝑥

  

⸫ 𝑓 𝑥;  𝑝, 𝑟  𝑜𝑓 Negative Binomial distribution belongs to exponential family 

Now in a rss(n) ; (for Sufficiency) 

𝐿 𝜃 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 ;  𝑝, 𝑟 = 𝑒𝑥𝑝 𝐴 𝜃   𝐵 𝑥𝑖 
𝑛
𝑖=1 + 𝑛 𝐶 𝜃 +   𝐷 𝑥𝑖 

𝑛
𝑖=1    

          = 𝑒𝑥𝑝 𝐴 𝜃   𝐵 𝑥𝑖 
𝑛
𝑖=1 + 𝑛 𝐶 𝜃  . 𝑒𝑥𝑝  𝐷 𝑥𝑖 

𝑛
𝑖=1    

          = 𝑔 𝜃 , 𝜃 . ℎ(𝑥1, 𝑥2 , … , 𝑥𝑛 ) 

   ∴  𝐵 𝑥𝑖  𝑖𝑠 𝑠𝑢𝑓𝑓. 𝑒𝑠𝑡.  𝑓𝑜𝑟 𝑛
𝑖=1   θ and u(θ)                                                                   

 ln 𝐿 𝜃 =  𝐴 𝜃   𝐵 𝑥𝑖 
𝑛
𝑖=1 + 𝑛 𝐶 𝜃 +  𝐷 𝑥𝑖 

𝑛
𝑖=1                                                                   

∂ln 𝐿 𝜃  

𝜕 𝜃
=  𝐴′ 𝜃  𝐵 𝑥𝑖 

𝑛
𝑖=1 + 𝑛 𝐶′(𝜃)  

∂2ln 𝐿 𝜃  

𝜕 𝜃2
=  𝐴′′  𝜃  𝐵 𝑥𝑖 

𝑛
𝑖=1 + 𝑛 𝐶 ′′  𝜃   

− 𝐸  
∂2ln 𝐿 𝜃  

𝜕 𝜃2  =  −  𝐴′ ′ 𝜃 𝐸  𝐵 𝑥𝑖 
𝑛
𝑖=1 + 𝑛 𝐶 ′′  𝜃    →  𝐹𝑖𝑠ℎ𝑒𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑟𝑠𝑠(𝑛)  



6) Poisson Distribution 

Is the limiting form of the binomial distribution when (n → ∞) and (p → 0). So that (n p) is finite 

quantity such as (λ). In general if (n ≥ 50) and (λ ≤ 5), it can be taken to be a case of Poisson 

distribution such events are known as rare events. 

Applications 
1- The number of deaths from a disease such as heart attack. 

2- The number of customers entering a service station per hour. 

3- The number of defective material per packing manufactured. 

4- The number of railroad accidents in same unit of time. 

5- The number of telephone calls received at a particular switchboard per hour. 

6- The number of cars passing a traffic intersection per minute. 

7- The number of insurance claims in same unit of time. 

8- The number of errors a typist makes per page. 

9- The number of customers to arrive in a bank per hour. 



Definition: A r.v. X is defined to have a Poisson distribution if the p.m.f of given by: 














wo

x
x

e

xXpxp

x

.0

....,2,1,0,
!)();(







 

Where the parameter (λ > 0) is a constant integer of function of any positive real number R+. 

[λ = np], (λ: rate of failure) 

Remark: Poisson: n large & p small 

                Binomial: n small & p large

  

Properties of a Poisson Distribution X ~ poi(λ) 

1- The number of successes (events) that occur in a certain time interval is independent of the 

number of successes that occur in another time interval. 

2-  Mean and variance of  Poisson Distribution  X ~ poi(λ) 𝑚𝑒𝑎𝑛 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜆

3- The moment generating function (m.g.f) of X ~ poi(λ) 

𝑀𝑋 𝑡 =  𝑒𝜆(𝑒 𝑡−1)  



4-  The c.d.f. of X ~ Poi(λ) 
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5- The additive property 

Let X1, X2, … , Xn be a Poisson distribution with λ1, λ2, …., λn and X’s are independent. Then  

Y = X1 +  X2 + … + Xn has a Poisson distribution  𝑋𝑖
𝑛
𝑖=1 ~ 𝑃𝑜𝑖  𝜆𝑖

𝑛
𝑖=1    . 



Maximum Likelihood Estimation 
Ex: Let X1, X2, …, Xn denote a random sample from Poisson distn Poi(λ), find the m.l.e for λ. 

Sol:  

         ∵  X ~ Poi(λ)  

𝑓 𝑥; 𝜆 =  
𝑒−𝜆𝜆𝑥

𝑥!
        , 𝑥 = 0 , 1, … … 

∵ 𝑋′𝑠  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝. 

𝐿 𝜆 = 𝑓 𝑥1, 𝑥1 , … , 𝑥1;  𝜆 =  П 𝑓 𝑥𝑖 ; 𝜆  

          =  
𝑒−𝑛𝜆𝜆𝛴𝑥 𝑖

 (𝑥𝑖)!
  

ln 𝐿(𝜆) =  − 𝑛 𝜆 + 𝛴𝑥𝑖 ln 𝜆 −  (𝑥𝑖)!  
𝜕 ln 𝐿(𝜆)

 𝜕𝜆
=  −𝑛 +

𝛴𝑥𝑖

𝜆
                          ,       

𝜕 ln 𝐿(𝜆)

 𝜕𝜆
 =   0 

−𝑛 +
𝛴𝑥𝑖

𝜆 
= 0 

𝛴𝑥𝑖

𝜆 
= 𝑛 

𝛴𝑥𝑖 =  𝑛𝜆   

𝜆 𝑚.𝑙.𝑒 =  
𝛴𝑋𝑖

𝑛
= X  

𝜕2 ln 𝐿(𝜆)

 𝜕𝜆2
=  − 

𝛴𝑥𝑖

𝜆2
  <  0 

⸫ 𝜆  =   X    is m.l.e for  . 

 



Ex: In a random sample of size (n). Is XT   unbiased estimator for λ of Poisson(λ). 

  ∵  X ~ Poi(λ)  

𝑓 𝑥; 𝜆 =  
𝑒−𝜆𝜆𝑥

𝑥!
        , 𝑥 = 0 , 1, … …   , 𝐸 𝑋 =  𝜆  

𝐸 𝑇 =  𝑋  = 𝐸  
 𝑋𝑖

𝑛
𝑖=1

𝑛
 =  

𝑛 𝐸(𝑋)

𝑛
 =  𝜆   , →  𝑋  𝑖𝑠 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡. 𝑓𝑜𝑟 𝜆 

 

H.W: 𝟏) Is 𝑋  is consistent estimator for 𝜆. 

2) Is  iX  sufficient estimator for 𝜆? 

3) Let X be a random variable from Poisson distn poi(𝜆).  Show that the family of X is complete. 

Ex: Let X1, X2, …, Xn be a rssn from Poisson distn poi(θ). Show that  iXY is a complete 

sufficient estimator for θ. Find the unique continuous function of Y, which is the best estimator 

for θ (M.V.U.E). 

Ex: Let X1, X2, …, Xn be a rssn from Poison distn Poi(θ), is XT   an efficient estimator for 

 )( ? 



Rao-Blackwell Theorem 

Let X has a p.d.f. f(x;θ), and u be an unbiased estimator for parameter θ, and T be a sufficient 

estimator for θ, then; 

𝟏) 𝐸 𝐸 𝑈 𝑇  = 𝐸 𝑈            , 𝐸 𝑈 =  𝜃 

𝟐) 𝑉𝑎𝑟 𝐸 𝑈 𝑇  ≤ 𝑉𝑎𝑟(𝑈)  ,     Var(U) → M.V.L.B → M.V.U.E 
 

For Poisson distribution 𝑋~ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 ; 

𝐸( 𝑋𝑖   𝑋𝑖)
𝑛
𝑖=1  =   

                               = 𝐸  𝑋 =  𝜆  

 𝑌 = ( 𝑋𝑖   𝑋𝑖)
𝑛
𝑖=1 ~ 𝐵𝑖𝑛   𝑋𝑖

𝑛
𝑖=1 ,

1

𝑛
    ,  

1

𝑛
 =  

𝜆𝑖

 𝜆𝑖
 

𝐸 𝑌 =  
 𝑋𝑖

𝑛
𝑖=1

𝑛
 = 𝑋      ,, 𝑉𝑎𝑟 𝑌 = 𝑉𝑎𝑟 𝑋  =  

𝜆

𝑛
 

Q// Let Xi ~Poi(θ), and X1, X2, …, Xn be a r.s. of size (n) generated from X, can we apply Rao 

Black well theorem to 𝐸( 𝑋𝑖   𝑋𝑖)
𝑛
𝑖=1 , and then find 𝑉𝑎𝑟 𝐸( 𝑋𝑖   𝑋𝑖)

𝑛
𝑖=1 , 

𝑉𝑎𝑟 𝐸( 𝑋𝑖   𝑋𝑖)
𝑛
𝑖=1 < 𝑉𝑎𝑟 𝑋𝑖 . 

H.W: How can you prove that 𝑌 = 𝑝( 𝑋𝑖   𝑋𝑖)
𝑛
𝑖=1 ~ 𝐵𝑖𝑛   𝑋𝑖

𝑛
𝑖=1 ,

1

𝑛
  



Mode of a Poisson Distribution X ~ poi(λ) 
If it is an integer;  m = [λ]   , m = λ-1  , (λ, λ-1) 

m = [λ] 

m = λ - ε 

⸫

   

 Poisson dist. has two modes.       
𝑓(𝑚)

𝑓(𝑚 −1)
 =  1   ,   λ > 0 



7) Hyper Geometric Distribution 
Suppose that (n) objects are to be drawn at random, one at a time from a collection of (N) objects, 

(k) of one kind and (N – k) of another kind. The one kind of object will be thought of as “success” 

and coded (1); the other kind is coded (0), then a r.v. X is defined to have a hyper geometric 

distribution if the p.m.f. of X given by; 
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Where; N, k, and n are parameters, such that N ≥ n , N ≥ k , and N, k, and n are all positive integer, 

X ~ H.G(N, k, n). 

Remark:   x = a, a + 1, a + 2, …… , b 

Where; 

                a = Max (0 , n – (N – k)) 

                b = Min (n , k) 

Where; N: size of population. 

x: No. of defective items in the sample. 

k : No. of defective items in the population. 

N – k: No. of non-defective items in the population. 

If  k < x  then 0k
xC . 

For (k < x ≤ n) → f(x) = 0 

This distribution would apply if X is the number of defective in a sample drawn without 

replacement from a batch of (n) objects there being (k) defective in the batch. 



Properties of the Hyper Geometric Distribution 
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2) Mean and variance of X ~ H.G(N, k, n). 
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The mean of the H.G distribution is obtained from the representation of H.G variable as a sum 

of the Bernoulli trials. 





Multivariate Hyper Geometric Distribution (Generalization) 

𝑓 𝑋 = 𝑥1 , 𝑋 = 𝑥2, … , 𝑋 = 𝑥𝑟 ; 𝑁, 𝑛, 𝑘 =  
 𝑘1
𝑥1

  𝑘2
𝑥2

 … 𝑘𝑟
𝑥𝑟

 

 𝑁
𝑛  

  

𝑁 =  𝑘1 + 𝑘2 + ⋯ + 𝑘𝑟 =  𝑁1 + 𝑁2 + ⋯ + 𝑁𝑟   

𝑛 =  𝑥1 + 𝑥2 + ⋯ + 𝑥𝑟     , (𝑟 𝑡𝑦𝑝𝑒𝑠) 

Ex: A box containing (N = 20) balls, (N1 = 8 Red, N2 = 5 Blue, N3 = 7 Green). Draw a sample 

from this box, (n = 6). What is the probability that it is 1 red, 4 blue, 1 green? 

Node: when n → ∞ then the H.G. distribution approaches the Binomial distribution. 

Note: Parameterization: It means we do something with the parameter. 



The Continuous Distribution 

1. Continuous Uniform Distribution 

• Used to model random variables that tend to occur “evenly” over a range of values. 

• Probability of any interval of values proportional to its width. 

• Used to generate (simulate) random variables from virtually any distribution. 

• Used as “non-informative prior” in many Bayesian analyses. 

 

Definition: A r.v. X is defined to have continuous uniform distribution iff the p.d.f. of X given 

by: 
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Where (a and b) are two parameters ( −∞ < a < b < ∞). 

Symbol:  X ~ C.U(a , b) 

Example: The daily sale of gasoline is uniformly distributed between 2,000 and 5,000 gallons. 

Remark: When (a = 0 and b = 1) is called Standard Uniform Distribution. 

Special case: when a = 0, b = θ; 

𝑓 𝑥; 𝜃 =  
1

𝜃
     , 0 < 𝑥 <  𝜃  

ab 
1



Properties of Continuous Uniform Distribution 

1-  f(x) is a p.d.f. of X ~ C.U(a , b). 
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2- The Cumulative distribution function (c.d.f.) of X ~ C.U(a , b). 
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3- The mean and the variance of  X ~ C.U(a , b). 

𝐸 𝑋 =
𝑎 + 𝑏

2
, 𝑉𝑎𝑟 𝑋 =

𝑏 − 𝑎 2

12



4- The moment generating function (m.g.f.) of  X ~ C.U(a , b). 

5) Mode and Median of Uniform Distribution 
Mode in uniform distn are multi-mode. The median: [- median = mean] 



Maximum Likelihood Estimation 
To find m.l.e. for  θ of uniform distn C.U(0, θ).  

𝑓 𝑥;  𝜃 =  
1

𝜃
      , 0 < 𝑥 <  𝜃  

𝐿 𝜃 =
1

𝜃𝑛
  

ln 𝐿 𝜃 =  −𝑛𝑙𝑛  𝜃   
𝜕 ln 𝐿 𝜃 

𝜕 𝜃
= − 

𝑛

𝜃
   ,

𝜕 ln 𝐿 𝜃 

𝜕 𝜃
= 0   →  𝜃 𝑜𝑟 𝑛 ≠ 0 (𝑇ℎ𝑖𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑜𝑔𝑖𝑐 ) 

The solution by the derivative is illogical. 

𝐿 𝜃  ≥ 𝐿 𝜃      𝑓𝑜𝑟 𝜃 ∈  Ω  , Ω = [0, ∞]  

Here we work with logic; 

𝑌1, 𝑌2, … , 𝑌𝑛  are an order statistics of the random sample of size (n). 

0 < 𝑌1  ≤ 𝑌2  ≤ ⋯ ≤ 𝑌𝑛 <  𝜃 

𝜃 ≥  𝑋𝑖     (𝑌1  ≤ 𝑌2  ≤ ⋯ ≤ 𝑌𝑛 ) 

𝜃 ≥  𝑀𝑎𝑥(𝑋𝑖) 

∴  𝜃 = 𝑌𝑛  𝑖𝑠 𝑚. 𝑙. 𝑒 𝑓𝑜𝑟 𝜃   (𝐹𝑜𝑟 𝑡ℎ𝑖𝑠 𝑟𝑒𝑎𝑠𝑜𝑛  𝑌𝑛 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓𝑡ℎ𝑒 (𝑌′𝑠).  

m.l.e. in general; 𝑏 =  𝑦𝑛  



To find unbiased to (Yn, Y1, Yn – Y1) from uniform distribution? 

H.W: In a rss(n) from uniform distn C.U(0, θ). Is an estimator Yn unbiased in limit estimator for 

θ. 

Ex: Let X1, X2, …, Xn be a rssn from C.U(0, θ), and Y1 < Y2 < …< Yn be the order statistics, show 

that Yn is sufficient estimator for the parameter (θ). 

Ex: Let X1, X2, …, Xn be a rssn from C.U(θ1 – θ2, θ1 + θ2), and Y1 < Y2 < …< Yn be the order 

statistics, show that Y1 and Yn are the jointly sufficient estimators for the parameters (θ1, θ2) 

respectively. 



2) Gamma, Exponential and Chi-Square Distribution 

Gamma Distribution: Gamma function and Generated distribution for it: 

Gamma distribution has important applications in waiting time and reliability analysis. This is 

used for the length of time it takes to do something or for the time between events. When we 

study lifetime of machines or devices or any other issue that involves time. That is, the time factor 

is one of the factors. [e.g.: 1) The length of time the machines have been operating in the factory. 

2) Study of machinery stops in a particular factory.]. Gamma distribution: the time required (r) 

occurrences to occur that follow the Poisson distribution. 

 

To define the family of gamma distributions, we first need to introduce a function that plays an 

important role in many branches of mathematics, i.e., the Gamma Function: 

Definition: For (x > 0) , (α > 0), the gamma function Γ(α) is defined by: 






0

1)( dxex x

 

 

Properties of the Gamma Function 
1. For any (α > 1), Γ (α) = (α – 1) Γ (α – 1). (α = positive integer) , e.g: Γ(6) = 5 Γ(5) 

2. For any (0), 1. If α = 1 → Γ(1) =1 , ⸫ 0! = 1 

3. For any positive integer (α), Γ (α) = (α – 1)! 



Gamma Distribution 

The time required for  𝑟𝛼  events to occur that follow the Poisson distribution. The Gamma 

distribution. The gamma distribution is derived from the gamma function. 

𝛤 𝛼 =  𝑦𝛼−1∞

0
𝑒−𝑦  𝑑𝑦  ,    

𝟏) 𝑙𝑒𝑡,   𝑦 =  
𝑥

𝛽
   →  𝑑𝑦 =  

1

𝛽
 𝑑𝑥  ,   𝑜𝑟;  𝟐) 𝑙𝑒𝑡, 𝑦 =  𝛽𝑦 → 𝑑𝑦 =  𝛽 𝑑𝑥     

𝛤 𝛼 =  
𝑥𝛼−1

𝛽𝛼−1

∞

0
𝑒

−
𝑥

𝛽  
1

𝛽
𝑑𝑥  ,  𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝛤 𝛼     

1 =     
1

𝛤 𝛼  𝛽𝛼

∞

0
𝑥𝛼−1𝑒

−
𝑥

𝛽  𝑑𝑥  

∴ 𝟏) 𝑓 𝑥;  𝛼, 𝛽 =  
1

𝛤 𝛼 𝛽𝛼
 𝑥𝛼−1𝑒− 𝑥/ 𝛽   , 𝑥 > 0  , 𝛼, 𝛽 > 0  

𝟐) 𝑓 𝑥;  𝛼, 𝛽 =  
𝛽𝛼

𝛤 𝛼 
 𝑥𝛼−1𝑒− 𝛽𝑥 =  

𝛽

𝛤 𝛼 
 (𝛽𝑥)𝛼−1𝑒− 𝛽𝑥   

are Gamma density function and has Gamma distribution. 

Properties of the Gamma Distribution (First Form) 

1.  f(x) is a p.d.f. of X. 

2.  The mean and the variance of X ~ Γ(α, β). 

The second form of Gamma dist. 

𝑓 𝑥;  𝛼, 𝛽 =  
𝛽𝛼

𝛤 𝛼 
 𝑥𝛼−1𝑒− 𝛽𝑥  , E(X) =  

𝛼

𝛽
  , 𝑉 𝑋 =  

𝛼

𝛽2
 



3.  The m.g.f. of X ~ Γ(α, β) 

The second form of Gamma dist. 

𝑓 𝑥;  𝛼, 𝛽 =  
𝛽𝛼

𝛤 𝛼 
 𝑥𝛼−1𝑒− 𝛽𝑥     ,    𝑀𝑥 𝑡 =  

1

 1− 
𝑡

𝛽
 
𝛼 =  

𝛽

𝛽−𝑡
 

𝛼
 

Another method for m.g.f. = 1 − 𝛽𝑡 − 𝛼

4. The c.d.f. of X ~ Γ(α, β). = 1- c.d.f of Poisson distribution

5. Additive Property

If X1, X2, …., Xn be (n) independent r.v’s , and has a distribution Γ(α, β),  i.e., Xi ~ Γ(αi, β) then 𝑌 =  𝑖=1
𝑛 𝑋𝑖

have a distribution Γ( 𝑖=1
𝑛 𝛼𝑖, β) ~ Γ(nα, β), and  𝑋 ~ 𝛤 𝑛 𝛼,

𝛽

𝑛
 .

6.  Mode of Gamma Distribution   

H.W:  𝑓 𝑥;  𝛼, 𝛽 =  
1

𝛤 𝛼 𝛽𝛼
 𝑥𝛼−1𝑒− 𝑥/𝛽  

𝑓 ′ 𝑥 =  
1

𝛤 𝛼 𝛽𝛼  − 
1

𝛽
 𝑥𝛼−1𝑒

−
𝑥

𝛽  + (𝛼 − 1)𝑥𝛼−2𝑒
−

𝑥

𝛽      ,   𝑓 ′ 𝑥 =  0   

− 
1

𝛽
 𝑥𝛼−1𝑒

−
𝑥

𝛽  +  𝛼 − 1 𝑥𝛼−2𝑒
−

𝑥

𝛽  =  0   

  𝛼 − 1 𝑥𝛼−2  =  
1

𝛽
 𝑥𝛼−1      ÷ 𝑥𝛼−1   

 
 𝛼−1 

𝑥
 = 

1

𝛽
     , → 𝑥 = 𝑚𝑜𝑑𝑒 =  𝛽  𝛼 − 1  ,     𝛼 ≥ 1 



Maximum Likelihood Estimation 
Let X ~ Γ(α, β). Find m.l.e of both parameters (α, β). 

Inverse Gamma Distribution  

Theorem: Let;  X ~ Γ(α, β), ;   𝑌 =  
1

𝑋
 ~ Γ-1(α, β) 

Proof: 

𝑓 𝑥;  𝛼, 𝛽 =  
𝛽𝛼

Γ(α)
 𝑥𝛼−1 𝑒− 𝛽 𝑥   

𝑦 =  
1

𝑥
  → 𝑥 =  𝑦−1   , 𝑑𝑥 =  − 𝑦−2      ,    

𝑑𝑥

𝑑𝑦
 =  𝑦−2  

𝑔 𝑦;  𝛼, 𝛽 = 𝑓 𝑥;  𝛼, 𝛽   
𝑑𝑥

𝑑𝑦
    

                     =  
𝛽𝛼

Γ(α)
  

1

𝑦
 

𝛼−1
 𝑒− 𝛽  /𝑦  . 𝑦−2  

                     =  
𝛽𝛼

Γ(α)
 𝑦−(𝛼+1) 𝑒− 𝛽  /𝑦  → 𝑝. 𝑑. 𝑓. 𝑜𝑓 𝛤−1(α, 𝛽)  

Mean and Variance of Inverse Gamma Distribution  

When 𝑋 ~ Γ-1(α, β) 

𝐸 𝑋 =
𝛽

𝛼 − 1
Var(X) =  

𝛽2

𝛼 − 1 𝛼 − 2
−

𝛽2

𝛼 − 1 2 =
𝛽2

𝛼 − 1 2 𝛼 − 2



Three Parameters Gamma Distribution 

𝑓 𝑥;  𝛼, 𝛽, 𝛾 =  
𝛾 𝛽𝛼 𝛾 

𝛤  
𝛼
𝛾 

 𝑥𝛼−1𝑒− 𝛽  𝑥𝛼
 

Special Cases of Gamma Distribution 

First: Exponential Distribution  
An exponential r.v is a continuous r.v that measures the lifetime of some events. 

In this distribution the random variable can only take on positive values, and it’s Right-Skewed 

distribution with maximum at x = 0. 

The exponential distribution can be used to model; 

• The length of time between telephone calls. 

• The mileage you get from one car of benzene.  

• The length of time until a light bulb burns out. 

• The length of time between arrivals at a service station (inter-arrival times). 

• The lifetime of electronic components. 
 

When the number of occurrences of an event follows the Poisson distribution, the time between 

occurrences follows the exponential distribution (distances for a Poisson process). 



When (α = 1) in gamma distribution, then the gamma distribution reduces to the exponential 

distribution, then a random variable is exponentially distributed if its probability density 

function (p.d.f.) defined as;   
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Where β is a distribution parameter, and β > 0. 

 

 

or we can get exponential distribution from Gamma function. 

𝛤 1 =  𝑒−𝑦  𝑑𝑦
∞

0
  

Exponential pdf's

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

y

f(
y

)

f(y|th=1)

f(y|th=2)

f(y|th=5)

f(y|th=10)

1) The c.d.f. of X. X ~ Exp(1, β) 
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2) the mean and the variance of X. 𝑚𝑒𝑎𝑛 = 𝛽 ,𝑉𝑎𝑟 𝑋 = 𝛽2



3) The m.g.f. of X. 

The Memory less Property: (forgets about its past)(Luck of Memory) 

(Past history has no influence on the future)(The future is independent of the past): Let X 

is an Exponential random variable (as geometric r.v.) with parameter θ > 0. Then X has the 

memory less property, which means that for any two real numbers (a, b > 0); 

                            p(X > a + b | X > b) = p(X > a)  

𝑀𝑋 𝑡 = 1 − 𝛽𝑡 −1

Consider the following statements 

Relation between Exponential distribution and Poisson distribution 

Q// How does the exponential distribution come from the Poisson distribution? 

Maximum Likelihood Estimation 
In a rssn from exponential distn Exp(1/θ), find the m.l.e for θ. 



Second: Chi-Square Distribution 

When (α = r /2), and (β = 2), where (r) is positive integer, then the gamma distribution reduces 

to the Chi-Square Distribution, with (r: positive integer) degrees of freedom; 𝑋~ 𝜒(𝑟)
2 with p.d.f. 

and 𝜃 =  
1

2
  defined as;      














wo

rxex
rrxf

x
r

r

.0

0,0,
2)2/(

1

);(

2/1

2/
2

 

The mean and the variance of 𝑿~ 𝝌(𝒓)
𝟐  is; Mean = r       Variance = 2r

The m.g.f. of 𝑿~ 𝝌(𝒓)
𝟐 is; 
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The second form of 𝑿~ 𝝌(𝒓)
𝟐 is; When (α = r /2), and (β = 1/2), 

𝐸 𝑋 =  
𝛼

𝛽
=  

𝑟/2

1/2
= 𝑟  , 𝑣𝑎𝑟 𝑋 =  

𝛼

𝛽2
=  

𝑟/2

(
1

2
)2

= 2𝑟   , 𝑀𝑥 𝑡 =  
1

(1−2𝑡)𝑟/2
  

 

The c.d.f. of 𝑿~ 𝝌(𝒓)
𝟐  can’t be found by direct integration, then; 
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Inverse Chi-Square Distribution  

Theorem: Let;  𝑋~ 𝜒(𝑟)
2 , ;   𝑌 =  

1

𝑋
 ~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝜒(𝑟)

2  

=  
1

Γ(r/2)2𝑟/2
 𝑦−(𝑟

2
+1) 𝑒− 1 /2𝑦  → 𝑝. 𝑑. 𝑓. 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝜒(𝑟)

2
 

Mean and Variance of Inverse Chi-Square Distribution  

When 𝑋 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝜒 𝑟 
2  

𝑓 𝑥;  𝑟 =
2

𝑟
2

Γ  
r
2 

 𝑥− 𝑟
2

+1  𝑒− 
2
𝑥  → 𝑝. 𝑑. 𝑓. 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝜒 𝑟 

2  

𝑚𝑒𝑎𝑛 =  𝐸 𝑋 =  
𝛽

𝛼 − 1
=  

2
𝑟

2
 −1

  

Var(X) =  
𝛽2

 𝛼  − 1 2 𝛼  −  2 
=  

22

 
𝑟

2
 −  1 

2
 
𝑟

2
 −  2 

 

Mean and variance of Second form; 

Mean   = 
1

 𝛼−1  𝛽
=  

1

 
𝑟

2
 −  1 ×2

=  
1

𝑟 −  2
 

𝑉𝑎𝑟 𝑌 =  
1

 𝛼−1 2   𝛼−2 𝛽2
=  

1

 
𝑟

2
 −  1 

2
  

𝑟

2
 −  2  22

   



3. Beta Distribution 
Beta distribution, which is used to model percentages, proportions and in cases uncertainty, such 

as the proportion of lead in paint or the proportion of time that the FAX machine is under repair. 

The beta distribution is used as a prior distribution for Bernoulli, Binomial and Geometric 

proportions in Bayesian analysis. It is the special case of the Dirichlet distribution with only two 

parameters. Since the Dirichlet distribution is the conjugate prior of the multinomial distribution, 

the Beta distribution is the conjugate prior of the Binomial distribution. 

Other examples of events that may be modeled by Beta distribution include: 

1) The time it takes to complete a task. 

2) The proportion of defective items in a shipment. 

3) Batting averages in baseball. 

4) Percentage of people with a disease in a country. 

5) The distribution of activity times in project networks. 

 

Definition: A r.v X is defined to have Beta Distribution. If the p.d.f. of X is given by: 
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Where the shape parameters (α, β) are two positive integer, such that α , β > 0:   

X ~ Beta (α, β). 



Beta function;     
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Then the p.d.f. of X is given by: 
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Note: Special case: Beta (1, 1) → U (0, 1). 

 
The Beta(1, 1) distribution is identical to the standard uniform distribution. 

If X and Y are independently distributed Gamma(α, θ) and Gamma(β, θ) respectively, then 
𝑋

(𝑋+𝑌)
 

is distributed Beta (α, β). 



Properties of Beta Distribution 
1-  f(x) is a p.d.f. of X ~ Beta(α, β). 

2- The Cumulative distribution function (c.d.f.) of  X ~ Beta (α, β). 
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3- The mean and the variance of  X ~ Beta(α, β). 

𝑀𝑒𝑎𝑛 =
𝛼

𝛼 + 𝛽
, Var(X) =

𝛼𝛽

𝛼 + 𝛽 2 𝛼 + 𝛽 + 1

3- The moment generating function of  X ~ Beta(α, β). 

∴  𝑀𝑋 𝑡 =    
𝑡𝑘

𝑘!
  

𝛽(𝛼+𝑘,   𝛽)

𝛽(𝛼,   𝛽)
 =  1 +   

𝑡𝑘

𝑘!
  

𝛽(𝛼+𝑘,   𝛽)

𝛽(𝛼,   𝛽)
  ∞

𝑘=1
∞
𝑘=0   

= 1 +   
𝑡𝑘

𝑘!
   

𝛼+𝑟

𝛼 +  𝛽+ 𝑟
𝑘−1
𝑟=0     ∞

𝑘=1   



4- Mode of Beta Distribution  

→ 𝑥 = 𝑚𝑜𝑑𝑒 =   
 𝛼 − 1 

(𝛼 + 𝛽 − 2)
 ,     𝑓𝑜𝑟 𝛼 > 1, 𝛽 > 1 

Dirichlet Distribution (Peter Gustav Lejeune Dirichlet) 
The Dirichlet distribution is a generalization of the Beta distribution for multiple random 

variables. The Dirichlet distribution is over vectors whose values are all in the interval [0, 1] and 

the sum of values in the vector is (1). In other words, the vectors in the sample space of the 

Dirichlet distribution have the same properties as probability distributions. The Dirichlet 

distribution can be thought of as a “distribution over distributions”. 

The p.d.f. for a K-dimensional Dirichlet distribution (of order K ≥ 2)(number of categories 

(integer)) has a vector of parameters denoted 𝛼 (α1, ..., αK > 0) given by:  

𝑓 𝑥1 , 𝑥2, … , 𝑥𝐾 ;  𝛼1, 𝛼2, … , 𝛼𝐾   =  
𝛤  𝛼𝑖

𝐾
𝑖=1  

 𝛤(𝛼𝑖)
𝐾
𝑖=1

  𝑥𝑖
𝛼𝑖−1

𝐾

𝑖=1

 

 𝑥𝑖
𝐾
𝑖=1 = 1 𝑎𝑛𝑑 𝑥𝑖  ∈  0, 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈   1, … , 𝐾 . 

The Dirichlet p.d.f. looks similar to the multinomial distribution. 

- The Dirichlet density is proportional to:  𝑥𝑘
𝛼𝑘−1𝐾

𝑘=1 . 

- The multinomial mass is proportional to:  𝑥𝑘
𝜃𝑘𝐾

𝑘=1 . 
We conclude this analogy: Beta: Binomial :: Dirichlet: Multinomial. 



4. Weibull Distribution 
A random variable X is said to be distributed according to Weibull distribution if the p.d.f. is; 

𝑓 𝑡; 𝛼, 𝛽 =  𝛼 𝛽 𝑡𝛽−1𝑒−𝛼𝑡𝛽
  , 𝑡 > 0   , 𝛼, 𝛽 > 0 

α: scale parameter, is the characteristic life. β: Shape parameter [Determines the shape of the 

curve]. The (α, β) in Weibull dist. can represent decreasing, constant, or increasing failure rate. 

If (β = 1) → 𝑇 ~ 𝐸𝑥𝑝(𝛼) 

Q// when use Weibull distribution in real-life? 

Two main area this distribution be used are; 

1) Lifetime Testing.         2) Reliability. 

T → Failure density f(t) 

R(t) = p(T > t) = 1 – F(t) 

Note: In the Weibull distribution: the distribution of failure resulting from a strong cause. 



Reliability: 

Probability of non-failure up to time (T = t)  → p(T > t) 

𝑅 𝑡 = 𝑝 𝑇 > 𝑡 =   𝛼 𝛽 𝑠𝛽−1𝑒−𝛼𝑠𝛽
 𝑑𝑠

∞

𝑡
=  𝑒− 𝛼𝑡𝛽

  

 

 
𝑓 𝑡;  𝛼, 𝛽 = 𝑍 𝑡  . 𝑅(𝑡) 

𝐹 𝑡 = 1 − 𝑒−𝛼 𝑡   

𝑅 𝑡 = 𝑒−𝛼 𝑡   
 𝑓 𝑡;  𝛼 = 𝛼     𝑒−𝛼 𝑡  

Z(t)  R(t) 

Mean and Variance for Weibull Distribution 

𝐸 𝑋𝑟 =  
𝛤(

𝑟

𝛽
+1)

𝛼𝑟/𝛽
      , 𝑟 = 1,2,3, … . , 𝑛     

𝐸 𝑋1 = 𝑚𝑒𝑎𝑛 =  
𝛤(

1

𝛽
+1)

𝛼1/𝛽
      ,            𝐸 𝑋2 =  

𝛤(
2

𝛽
+1)

𝛼2/𝛽
 

𝑉𝑎𝑟 𝑋 =
𝛤(

2
𝛽

+ 1)

𝛼2/𝛽
−  

𝛤  
1
𝛽

+ 1 

𝛼
1
𝛽

 

2

=  

𝛤  
2
𝛽

+ 1 −  𝛤  
1
𝛽

+ 1  

2

𝛼2/𝛽
 



How to extract the Weibull distribution from the gamma function 

𝛤 𝛼 =   𝑥𝛼−1∞

0
𝑒− 𝑥  𝑑𝑥  

𝛤 1 =   𝑒− 𝑥∞

0
 𝑑𝑥  

𝑙𝑒𝑡; 𝑥 =  𝛼 𝑡𝛽   →   𝑑𝑥 =  𝛼𝛽𝑡𝛽−1𝑑𝑡 

𝛤 1 =   𝑒− 𝛼 𝑡𝛽∞

0
 𝛼𝛽𝑡𝛽−1𝑑𝑡 = 1  

𝑓 𝑡; 𝛼, 𝛽 =  𝛼 𝛽 𝑡𝛽−1𝑒−𝛼𝑡𝛽
   →   𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝐷𝑖𝑠𝑡. 

Maximum Likelihood Estimation (m.l.e) for Weibull Dist. 

𝑓 𝑡;  𝛼, 𝛽 = 𝑍 𝑡  . 𝑅(𝑡) 

𝑍 𝑡 =  𝛼𝛽𝑡𝛽−1  

If; 

1) 𝛽 = 1  →   𝑍 𝑡 =  𝛼 

2) 𝛽 = 2  →   𝑍 𝑡 =  2𝛼 𝑡 

3) 𝛽 = 3  →   𝑍 𝑡 =  3𝛼𝑡2 

H.W: Find Mode and Median of Weibull Distribution



4. Normal (Gaussian) Distribution 
The normal distribution is the cornerstone distribution of statistical inference. Many distributions 

can be approximated by a normal distribution. This distribution is considered the basis for the 

issue of monitoring the quality of production (quality control). The importance of this distribution 

is also highlighted by (the central limit theory), which proves that all probability distributions, 

whether discrete or continuous, approximate their distribution (according to certain conditions) 

to the normal distribution. Complex distributions may exist and therefore an approximation to a 

normal distribution can be used for them. In addition, all sampling distributions (Z, t, χ2 and F) 

are derived primarily based on this distribution (Which assumes sampling from a normal 

distribution). 

A r.v  X  is defined to be normal distribution, if the p.d.f.  of X is given by:- 
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Where the parameter µ & σ must satisfy [- ∞< µ < ∞, σ > 0], and π = 3.14285… , and e = 

2.71828…..,  X ~ N(μ, σ2). 



Uses: 1) Biological statistics: Used to model many phenomena (spatially biological phenomena). 

If we calculate the ratio of male to female births in a specific area over a number of years, we 

will find that the distribution of this ratio follows a distribution similar to the natural distribution. 

2) Organic measurements: Height and weight, for example, in a group of individuals with the 

same age, sex, and environment, are distributed in a distribution close to the normal distribution. 

3) Social phenomena: 

 

The special case of normal distribution, when (μ = 0, and σ2 = 1), then we called the resulting 

p.d.f. (Standard Normal Distribution), and denoted by;  Z ~ N(0 , 1). Let;     
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Properties of Normal Distribution 

1. f(x) is a p.d.f. of X:  

2. The mean and the variance of X ~ N (μ , σ2).  Mean = μ   ,   var(X) = σ2 .     

3. The m.g.f. of  X ~ N (μ , σ2) is 𝑴𝑿 𝒕 = 𝒆𝝁 𝒕+ 𝟏
𝟐
𝝈𝟐𝒕𝟐 

4. The c.d.f. of X ~ N (μ , σ2) 
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5. The c.d.f. of standard normal has been tabulated as follows;   X ~ N (0 , 1). 



6. If X ~ N (μ , σ2), then the r.v. 𝑍 =
𝑋− 𝜇

𝜎
 ~ 𝑁(0, 1) is called standard normal distribution. 

7. The inflection points are (μ ± σ). 

In the normal distribution, show the location of (σ) in an image. 

8. The normal distribution curve is a bell shaped, and symmetrical around the mean μ. 
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9. In normal distribution:     Mean = Mode = Median. 

10. If X ~ N (μ, σ2), then; 
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11. The area under the normal distribution curve lies in the following; 
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H.W: Is necessary a consistent estimator to be unbiased estimator? Give an example. 

In a random sample of size (n) from normal distn N(θ, σ2),   22 )(
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Maximum Likelihood Estimation 
Let X1, X2, …, Xn be a rssn from normal distn N(θ, σ2), find m.l.e for parameters θ and σ2.   



Moments Estimation Method 
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Non-Informative prior probability 

Find Bayes estimator for parameters of N(θ, σ2) , using non informative prior probability. 
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Informative prior probability 

Probability Distribution Normal  ~ N(θ, σ2) (θ known) → Informative Prior Probability 

Inverse Gamma ~ Γ-1(αo/2, βo/2) 

Probability Distribution Normal  ~ N(θ, σ2) (σ2 known)  → Informative Prior Probability 

Normal  ~ N(θo, 2
o )

H.W: Find for p(1/σ2)


