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Statistical Distributions

1) Discrete Uniform Distribution

Suppose X is a discrete uniform r.v., over the integer set {a, a+1, …, b}.

Assumptions:

1) X ∈ {a, a +1, …, b}

2) The values in the range are equally likely, i.e., each of n values in the range of r.v. X has 

probability 
1

𝑛
(all outcomes have equal probability).  X ~ (a, b) Probability Mass Function:

𝑝.𝑚. 𝑓 = 𝑝 𝑥 = 𝑝 𝑋 = 𝑥 =
1

𝑏 − 𝑎 + 1
, 𝑥 = 𝑎, 𝑎 + 1,… , 𝑏

𝐿𝑒𝑡; 𝑛 = 𝑏 − 𝑎 + 1

∴ 𝑝 𝑥 =
1

𝑛
, 𝑥 = 𝑎, 𝑎 + 1,… , 𝑏



In a special case, a r.v is defined to have a discrete uniform distribution. If the p.m.f. of X is 

given by:
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Where the parameter (n) is positive integer: X ~ D.U(1, n). Each point of X has the same 

probability of appearing.

Properties of Uniform Distribution

1) If X has a uniform dist., then the c.d.f of X 

F(x) is defined as;
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2) The mean and the variance of uniform distribution 

∴ 𝐸 𝑋 =
𝑏 − 𝑎 + 1 + 2𝑎 − 1

2
=

𝑎 + 𝑏

2
= 𝑴𝒆𝒅𝒊𝒂𝒏

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣 𝑋 = 𝑛 + 1
𝑏 − 𝑎

12
=

ሻ𝑛 + 1 (𝑛 − 1

12

=
𝑛2 − 1

12
=

𝑏 − 𝑎 + 1 2 − 1

12

3) The moment generating function (m.g.f.) of uniform distribution  

𝑀𝑥 𝑡 = 𝐸 𝑒𝑡𝑋 = 

𝑥=𝑎

𝑏

𝑒𝑡𝑥
1

𝑛
=

1

𝑛


𝑥=𝑎

𝑏

𝑒𝑡𝑥

∴ 𝑀𝑥 𝑡 =
𝑒𝑎𝑡

𝑛

1 − 𝑒𝑛𝑡

1− 𝑒𝑡

= ൞

𝑒𝑎𝑡

𝑛

1 − 𝑒𝑛𝑡

1 − 𝑒𝑡
, 𝑡 ≠ 0

1 , 𝑡 = 0



4) Mode of uniform distribution  

∵
𝑓 𝑚

𝑓 𝑚+1
= 1 𝑎𝑛𝑑

𝑓 𝑚

𝑓 𝑚−1
= 1 ,

∵ p(each of n values in the range of r.v. X) has probability = 
1

𝑛
(equally likely)

∴ 𝑜𝑛 𝑚𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 𝑖𝑠 𝑚𝑜𝑑𝑒 𝑚𝑢𝑙𝑡𝑖 − 𝑚𝑜𝑑𝑒 .

5) A median of a distribution of one r.v X of the continuous or discrete type,

is the value of X that satisfies the following conditions:
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median = mean in D.U. dist.



1. Bernoulli Distribution

If a r.v. X in a single trial has only two outcomes, either (x = 0) or (x = 1), which are success

and failure, or Yes and No, good and bad, defective and non-defective ….etc. , with;

p(success) = p , p(failure) = 1 – p = q

The p.m.f. of  X;
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Where (p) is the parameter of distribution, that satisfies (0 < p < 1), 

where;

p: probability of success,    p(S) = p(x = 1).

1 – p = q: probability of failure,   p(F) = p(x = 0)  

(p + q) = p + (1 – p) = 1.

X ~ Ber (1, p),   
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Properties of Bernoulli Distribution

a) The mean and the variance of X
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b) The cumulative dist. function (c.d.f.) of X ~ Ber(1, p)
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c) The moment generating function (m.g.f.) when X ~ Ber(1, p)
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The Mode 

A mode is that value of X that gives the greatest probability. In other words, is the value of X

that maximizes the p.d.f. , such that:-

1) If X is discrete r.v. , then we substitute values of X in p.m.f. p(x) directly, then the value that

gives the greatest probability is the mode of distribution.

2) If X is continuous r.v., then we must take the second derivative of p.d.f., then if this

derivative is less than zero then the value of X is the mode of distribution.

d)  The Mode of X ~ Ber(1, p) (Mo)
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The Median

A median of a distribution of one r.v X of the continuous or discrete type, is the value of X

that satisfies the following conditions:
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for a discrete r.v.

e)  The Median of X ~ Ber(1, p) (Me)

∵ 𝑥 = 0,1 , 𝑀𝑒 =
0 + 1

2
=
1

2

∵ ½ is not within range, ⸫ Bernoulli distribution does not have median.



Related Distributions

1) Binomial Dist. 2) Geometric Dist. 3) Negative Binomial Dist. 4) Beta Dist.

5) Catagorical Dist.

Estimation Theory for Bernoulli Distribution

Methods of Estimation

1. Moments Estimation Method

n

X
m

k
i

k


 Mk = E(Xk)

kk Mm 

𝑚1 =
σ 𝑋𝑖

𝑛
= ത𝑋 ,    𝑀1 = 𝐸 𝑋 = 𝑝

𝑀1 = 𝑚1 → ⸫ Ƹ𝑝 = ത𝑋 → Proportion of success is estimator for probability of success.



2. Maximum Likelihood Estimation 

Properties of Maximum Likelihood Estimation 

The m.l.e for Bernoulli parameter X ~ Ber(p),

Let X1, X2, …, Xn denote a random sample from Bernoulli distn Ber(p), then the m.l.e for p.

∵ X ~ Ber(p) 

𝑓 𝑥; 𝑝 = 𝑝𝑥 1 − 𝑝 1−𝑥 , 𝑥 = 0 , 1

∵ 𝑋′𝑠 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝.

𝐿 𝑝 = 𝑓 𝑥1, 𝑥1, … , 𝑥1; 𝑝 = П 𝑓 𝑥𝑖; 𝑝

= 𝑝𝛴𝑥𝑖(1 − 𝑝ሻ𝑛−𝛴𝑥𝑖

ln 𝐿(𝑝ሻ = 𝛴𝑥𝑖 ln 𝑝 + (𝑛 − 𝛴𝑥𝑖ሻ ln(1 − 𝑝ሻ

𝜕 ln 𝐿(𝑝ሻ

𝜕𝑝
=

𝛴𝑥𝑖
𝑝

−
𝑛 − 𝛴𝑥𝑖
1 − 𝑝

,
𝜕 ln 𝐿(𝑝ሻ

𝜕𝑝
= 0

𝛴𝑥𝑖
𝑝^

−
𝑛 − 𝛴𝑥𝑖
1 − 𝑝^

= 0

1 − 𝑝^ 𝛴𝑥𝑖 − 𝑝^(𝑛 − 𝛴𝑥𝑖ሻ

𝑝^(1 − 𝑝^ሻ
= 0



𝛴𝑥𝑖 − 𝑝^𝛴𝑥𝑖 − 𝑛𝑝^ + 𝑝^𝛴𝑥𝑖𝑖= 0

𝛴𝑥𝑖 −  𝑛𝑝^ = 0  

𝛴𝑥𝑖 =  𝑛𝑝^               𝑝^𝑚 .𝑙 .𝑒 =  
𝛴𝑋𝑖

𝑛
= X  

𝜕2 ln𝐿(𝑝)

 𝜕𝑝2
=  −  

𝛴𝑥𝑖
𝑝2

 −  
𝑛 − 𝛴𝑥𝑖
(1 − 𝑝)2

 <  0 

⸫ p^ =   X    is m.l.e for p  → proportion of success (which gives the greatest value . 

𝑝Ƹ𝑚 .𝑙 .𝑒= 
σ X𝑖

𝑛
 = X  → proportion of success is an estimator for probability of success 

H.W: Find Bayes estimator for parameter of Ber(p), using non informative and informative

prior probability.



Properties of Estimator 

1. Unbiasedness 

If   E(𝑝^) = p   , then an estimator is unbiased estimator for p. 

E(X ) = E ( 
σX𝑖

𝑛
 ) = 

𝑛

𝑛
 E(X) = p    , X~ Ber(p)  , E(X) = p 

⸫ X     𝑖𝑠 unbiased estimator for p. 

2. Unbiased in Limit 

An estimator ̂   is said to be unbiased in limit for θ iff: 

 


)ˆ(lim E
n

 

3. Consistency (Limiting Property) 

Any statistics that equal to the parameter or converges stochastically to the parameter θ is called 

consistent statistics. 

A consistent estimator: That the estimator gets closer to the parameter value as n increases 

without limit. 



Definition 1: An estimator ̂  of the parameter θ of f(x; θ) is called consistent estimator for θ, iff; 
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Theorem: Let ̂  be an unbiased estimator for population parameter θ of f(x;θ), then ̂  is said 

to be consistent estimator for θ iff; 

   1.  lim
𝑛→∞

𝐸 𝜃  = 𝜃  → unbiased in limit           ,  

   2.  lim
𝑛→∞

𝑣 𝜃  = 0  → There is no error 

lim
𝑛→∞

𝐸(𝑝Ƹ) = 𝑝   with probability 



Mean Square Error 

One way of measuring the accuracy of an estimator is via its mean square error. The mean 

square error of an estimator ̂  is defined as: 
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The Score Function 
The score function is the partial derivative of Ln the function f(x;θ) with respect to the parameter 

θ,  is defined as; 

);(
);(

1
);(ln);( 
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or;  𝑆𝑐𝑜𝑟𝑒 𝑓𝑢𝑛 = 𝑆(𝑥;  𝜃) =
𝜕 ln 𝐿(𝜃)

𝜕𝜃
 

Properties 

1) The mean of the score is zero, E(S(X; θ)) = zero (under Regularity Condition) 

Proof: 
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2) The variance of the score is known as the Fisher Information (F.I), which is measure the 

information in the sample S  about the parameter θ, and can be written as; 

𝑉(𝑆(𝑥;𝜃ሻ =  𝐸  𝑆(𝑥;  𝜃ሻ − 𝐸 𝑆(𝑥;  𝜃ሻ  
2
   

= 𝐸 𝑆(𝑥;  𝜃ሻ 
2
−  (𝐸(𝑆(𝑥;  𝜃ሻ)2  , E(S) = 0 

                                         = 𝐸 𝑆(𝑥;  𝜃ሻ 
2

   → Information 

𝐹. 𝐼 = 𝐼(𝜃ሻ = 𝐸  
𝜕 ln 𝐿(𝜃ሻ

𝜕𝜃
 

2

 

If Fisher Information multiply by (n), we get;   n I(θ)   → F.I in a rss(n) 



The Rao- Cramer Inequality 
Let X1, X2, …, Xn be a rssn from a distn with p.d.f. f(x ; θ), and let T = u(X1, X2, …, Xn) be an 

unbiased estimator for )( , then the variance of T satisfies the inequality; 
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Notes: 

1) We do not use (n) in case using the likelihood function in law. 

 



2) In general case, if T is unbiased estimator for ϕ(θ) of f(x; θ). 
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3) Special case of Rao- Cramer Inequality: If T unbiased estimator for θ, E(T) = θ; 
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SV
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       ,𝑉(𝑌ሻ ≥   
1

𝐹.𝐼
   , F.I = V(Score Function = S) 

4) ∵ X’s are independent  

L(θ) = f(𝑥1 ,  𝑥2, …, 𝑥𝑛 ;  𝜃) =   𝑓(𝑥𝑖 ;𝜃ሻ = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛
𝑖=1  

5) As more information increases, the variance decreases, and when the variance decreases, the 

estimator becomes more efficient, but Fisher increases. 



4) Efficiency 

How do we know that the estimator is an efficient estimator? 

Defn: Let T be unbiased estimator for θ of 𝑓(𝑥𝑖 ;𝜃ሻ and The ratio of the RCLB to the actual 

variance of any unbiased estimator for θ is called the efficiency; 

.1

10,
)(

forestimatorefficientcalledisTeffif
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TV
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Defn: Let T be an unbiased estimator for )( , then we say that T is an efficient estimator for θ 

iff; (The variance is as low as possible). 

RCLBTV )(  

𝑒𝑓𝑓(𝑇ሻ = 𝑒𝑓𝑓(𝑝Ƹ = 𝑋ത = 
σ𝑋𝑖

𝑛
) =  

1

𝐹 .𝐼

𝑉(𝑇)
 =  

1

𝐹 .𝐼

𝑉(𝑝 )
 



for Bernoulli distribution X~ Ber(p) 

𝑓(𝑥;𝑝ሻ =  𝑝𝑥(1 − 𝑝)1−𝑥  

ln 𝑓(𝑥;𝑝ሻ = 𝑥 ln𝑝 + (1 − 𝑥ሻln(1 − 𝑝)   

𝜕 ln 𝑓(𝑥 ;𝑝)

𝜕 𝑝
 = 

𝑥

𝑝
 - 

1−𝑥

1−𝑝
 = 

𝑥 −𝑝

𝑝(1−𝑝)
 

F.I. in a rssn = n E 
𝜕 ln 𝑓(𝑥 ;𝑝)

𝜕 𝑝
 

2
 

                    = n 
𝐸(𝑋 −𝑝)2

𝑝2(1−𝑝)2
 

                    = 
𝑛  𝑝  (1−𝑝)

𝑝2(1−𝑝)2
 = 

𝑛  

𝑝  (1−𝑝)
 

1

𝐹.𝐼
 = 

𝑝  (1−𝑝)

𝑛
 

⸫ eff(T = 𝑝Ƹ) = 

1

𝐹 .𝐼

𝑉(𝑝 )
 = 

𝑝  (1−𝑝)/𝑛

𝑝  (1−𝑝)/𝑛
 = 1 

∴ 𝑝Ƹ =  
σ𝑋𝑖

𝑛
 is an efficient est.  for 𝑝 



5) Sufficiency 
Sufficiency estimator is containing all the information in the data about the parameter θ.  

(e.g. 𝑋ത =  
σ𝑥𝑖

𝑛
) The information in (σ𝑥𝑖) is the same as the information in (𝑋ത). 

First Method (Fisher Information) 

Let X1, X2, …, Xn be a rssn from the distn with p,d.f. f(x ; θ), an estimator ̂  is sufficient estimator  

for the parameter θ if the Fisher information in ̂  is equal to the Fisher information in a rss(n). 

F.I in a rss(n) = F.I in T = 𝜃  

For Bernoulli distribution. Let X1, X2, …, Xn be a rssn from Bernoulli distn Ber(θ). Show that 

 iX̂ is sufficient estimator for the parameter θ. 
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Second Method (Conditional) 

Let X1, X2, …, Xn be a rssn from the distn with p,d.f. f(x ; θ), and ̂  be an estimator for θ, an 

estimator ̂  is sufficient estimator  for the parameter θ if the conditional p.d.f. of (X1, X2, …, Xn) 

given ̂  does not contain the parameter θ:  

)ˆ(

);,...,,(
)ˆ|,...,,( 21

21





g

xxxf
xxxf n
n   

Note: If the range depends on the parameter, in this case we can’t find F.I; therefore, we use the 

second method (Conditional). 

 

Third Method: Factorization Theorem 
Let ̂  be an estimator for the parameter of f(x;θ) such that the range does not depend on θ. Then 

the necessary and sufficient condition for an estimator ̂  to be sufficient estimator, if there are 

two non-negative functions, such that: 

𝑓(𝑥1,  𝑥2,  … ,  𝑥𝑛 ;  𝜃ሻ = 𝑔 𝜃 ,  𝜃 .ℎ(𝑥1,  𝑥2,  … ,  𝑥𝑛ሻ 

Theorem:  

Let ̂  be sufficient estimator for the parameter θ, and )ˆ(u  be a one-to-one transformation, then 

)ˆ(u is sufficient estimator for θ. 

Note: 1) 𝑋ത is one to one transformation to  iX . XnX i   . 

2) If we have more than one parameter, we use factorization theorem (third method) for 

sufficiency. 

 



for Bernoulli distribution 
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In case 𝑇 =  𝜃 =  𝑋   then we make up 𝑛X  instead of σ𝑋𝑖  , because 𝑛X  = σ𝑋𝑖  in any  

method. 

Exponential Family 
Let X has a p.d.f. f(x;θ), then the family of f(x;θ) is belong to exponential class of distribution iff 

it can be expressed as: 

                        𝑓(𝑥;  𝜃ሻ = 𝑒𝑥𝑝(ln𝑓(𝑥;  𝜃ሻሻ 

                                        = 𝑒𝑥𝑝 𝐴(𝜃ሻ 𝐵(𝑥ሻ + 𝐶(𝜃ሻ + 𝑆(𝑥ሻ      … . (1)    

               𝑜𝑟;                   = 𝑔(𝜃ሻ ℎ(𝑥ሻ 𝑒𝐴(𝜃ሻ 𝐵(𝑥ሻ                              … . (2) 

Such that: A(θ) B(x) must have to be for exponential class. Then a r.v. is said to have exponential 

family. 



Q// Is Bernoulli distribution belongs to exponential family? 
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𝐴(𝜃ሻ = ln
𝜃

1− 𝜃
 , 𝐵(𝑥ሻ =  𝑥  ,𝐶(𝜃ሻ = ln(1 − 𝜃ሻ   , 𝐷(𝑥ሻ = 0                                                                    

⸫ Bernoulli distribution belongs to exponential family 



2. Binomial Distribution 
In (n) trials, let the probability of an event occurring in each trial be equal to (p), and let all trials 

be independent, then the total number of success in (n) independent Bernoulli trials is a r.v. X 

having a binomial distribution with p.m.f. is given by; 
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where (n) and (p) are positive parameters, such that (0 ≤ p ≤ 1), n: No. of trials (positive integer), 

i.e., X ~ b(n, p).  

𝐶𝑥
𝑛 : A combination is the number of ways to choose a sample of x elements from a set of n distinct 

objects where order does not matter. 

x: the number of successful trials.                p: probability of success in a single trial. 

n – x: Number of failures in (n) trials.          q: probability of failure.   p + q = 1 

Remarks: 

a) The binomial dist. reduces to Bernoulli dist. if (n = 1). 

b) Binomial experiment it must have four properties: 

    1. There must be a fixed number of trials. 

    2. Each trial must have two possible outcomes. 

    3. All trials must have the same probability of success. 

    4. The trials must be independent of each other. 



Properties of the Binomial Distribution 
1) Let X be a r.v. with X ~ b(n, p), then; The mean and the variance of X. 
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2) The moment generating function (m.g.f.) of X ~ bin(n, p) 
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3) The Cumulative Dist. Function (C.D.F.) of X ~b(n, p). 
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4) Addition Property 

   

If X ~ b(n, p), then 
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5) The mode of Binomial Distribution 
If the mode of distribution of X is unique? 

Mode of X(Bin) = m = [(n + 1) p] 

Mode[Y] = greater integer less than or equal. 

 

If the mode is an integer, it has two modes. 

However, if the mode contains a fraction, then it has one mode 

Let: ε = fraction  → then; m = (n + 1) p + ε 

If ε = 0  then mode = (m , m -1) → [(𝑛 +  1ሻ𝑝, (𝑛 +  1ሻ𝑝 − 1] 

Mode integer = (m1, m2) 

Mode fraction = (m) 

Ex:  x = 6.1 → mode = 6  

        x = 6.99 → mode = 6 

      if   x = 6 (integer) → mode = 6 , 5 

Ex: Let;  p = 0.7  , n = 5 

m = (n + 1)p = 6(0.7) = 4.2  → ε = 0.2 

⸫ m = 4 

Ex: Let;  p = 0.3  , n = 19 

m = (n + 1)p = 6 

⸫ m = 6 , 5 



5) The median of Binomial Distribution 
The median of Bin. Dist. is; me = [np] if an integer (when me is an integer) 

Proof: We have the following empirical relation between mean, mode and median: 

             Mean – Mode = 3(Mean – Median) 

Or;         μ – mo = 3(μ – me) 

In this case,  mo = (n + 1) p – ε , → ε = 0    

me = 𝜇 −  
𝜇  −𝑚𝑜

3
  

      = 
2𝜇  + 𝑚𝑜

3
   → = 

2𝑋ത + 𝑚𝑜

3
   for sample 

Take the case (np) is an integer; 

me = 
2𝑛𝑝  + (𝑛+1ሻ𝑝

3
=  

2𝑛𝑝  + 𝑛𝑝+𝑝

3
= 𝑛𝑝 + 

𝑝

3
≅ 𝑛𝑝  

 



3. Poisson: The binomial distribution converges towards the Poisson distribution as the number 

of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson 

distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial 

distribution if n is sufficiently large and p is sufficiently small. When p is very small and (n) large 

then the Bin(n, p) distribution → λ = np become Poisson distribution, Bin(n, p)  ~ Poi (np). 

According to rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05 such that np ≤ 1, 

or if n > 50 and p < 0.1 such that np < 5, or if n ≥ 100 and np ≤ 10.

   

 

Ex: p = 0.01 , 𝑛 =  200
1000

   → λ = np = 2 or 10. 

 4. Beta: The binomial distribution and beta distribution are different views of the same model 

of repeated Bernoulli trials. The binomial distribution is the PMF of k successes given n 

independent events each with a probability p of success. Mathematically, when α = k + 1 and β 

= n − k + 1, the beta distribution and the binomial distribution are related by a factor of n + 1: 

                                𝐵𝑒𝑡𝑎(𝑝;𝛼,𝛽ሻ = (𝑛 + 1ሻ𝐵𝑖𝑛(𝑘;𝑛, 𝑝)  

Beta distributions also provide a family of prior probability distributions for binomial 

distributions in Bayesian inference. 



Q// Is Binomial distribution belongs to exponential family? 

𝑓(𝑥;𝜃,𝑛ሻ =   
𝑛

𝑥
  𝑝𝑥  (1 − 𝜃ሻ𝑛  − 𝑥  

                      exp(ln𝑓(𝑥;𝜃,𝑛ሻ) = exp(𝑙𝑛 𝑛
𝑥
 + 𝑥𝑙𝑛(𝜃ሻ + (𝑛 − 𝑥ሻ ln(1 − 𝜃ሻ)  

= exp(𝑥 ln  
𝜃

1 − 𝜃
 + 𝑛 ln(1 − 𝜃ሻ +  𝑙𝑛  

𝑛

𝑥
 ) 

𝐴(𝜃ሻ = ln
𝜃

1− 𝜃
 , 𝐵(𝑥ሻ =  𝑥 =  σ 𝑥𝑖

𝑛
𝑖=1    

,𝐶(𝜃ሻ = ln(1 − 𝜃ሻ   , 𝐷(𝑥ሻ = 𝑙𝑛  
𝑛

𝑥
  

⸫ Binomial distribution belongs to exponential family. 

Let X1, X2, …, Xn be a rssn from Binomial distn Bin(m, θ), find the m.l.e for θ.
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H.W: Find estimator Ƹ𝑝 for Bin(m, θ) by using moments method.

Q// 𝑋 ~𝐵𝑖𝑛 (𝑚, 𝜃ሻ.  𝐼𝑠 𝜃  𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝜃 

lim
𝑛→∞

𝐸 𝜃    = lim
𝑛→∞

𝐸  
σ 𝑋𝑖
𝑛
𝑖=1

𝑛  𝑚
 =   lim

𝑛→∞

𝑛  𝐸(𝑋)

𝑛  𝑚
=  lim

𝑛→∞

𝑛  𝑚𝜃  

𝑛  𝑚
=  𝜃 

lim
𝑛→∞

𝑣 𝜃    = lim
𝑛→∞

𝑣  
σ 𝑋𝑖
𝑛
𝑖=1

𝑛  𝑚
  = lim

𝑛→∞

𝑛  𝑚  𝜃  (1−𝜃)

𝑛2𝑚2
= lim

𝑛→∞

 𝜃  (1−𝜃)

𝑛  𝑚
= 0     

,  ∴  𝜃   𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑒𝑠𝑡. 𝑓𝑜𝑟 𝜃. 



Let X1, X2, …, Xn be a rssn from Binomial distn Bin(m, θ), if 𝑇 =  𝜃 =  
σ 𝑋𝑖
𝑛
𝑖=1

𝑛  𝑚
  is an efficient 

estimator for  )( . 

Completeness 
Completeness means uniqueness of unbiased estimators. This means if we have more than one 

unbiased estimators for θ then these all are the same if the distribution is complete.   

Def: Let f(x ; θ) denote a family of probability density function, let u(x) be a continuous 

function of (X), then if [E{u(X)}= 0] implies (u(x) = 0) at each point of (X), we say that the 

family of p.d.f. is complete. 

Ex: assume that [f(x; θ)] is complete and let u1(x) and u2(x) be unbiased estimators for θ. 

i.e.,   E[u1(X)] = θ 

and   E[u2(X)] = θ 

E[u1(X)] - E[u2(X)] = 0 

E[u1(X) - u2(X)] = 0  

E[u (X)] = 0    → u(x) = 0   , ∀ 𝑥  
Because the distribution of X is complete. 

u1(x) - u2(x) = 0 

→ u1(x) = u2(x) 



Ex: Let X be a random variable from Binomial distribution X ~Bin(n, θ). Show that the family 

of X is complete. 

Sol: 

∵ 𝑋~Bin(𝑛,𝜃ሻ 

𝑓(𝑥;𝜃,𝑛ሻ =   
𝑛

𝑥
  𝜃𝑥(1 − 𝜃)𝑛−𝑥  

Let u(x) be a continuous function of X, then; 

E[u(X)] = 0    for all θ ∈ Ω 

𝐸 𝑢(𝑌ሻ =  σ 𝑢(𝑥ሻ 𝑛
𝑥
  𝜃𝑥(1 − 𝜃ሻ𝑛−𝑥𝑛

𝑥=0 = 0  

 → 𝑢(0ሻ 𝜃0(1 − 𝜃ሻ𝑛−0 +  𝑢(1ሻ 𝑛 𝜃1(1 − 𝜃ሻ𝑛−1 + ⋯+  𝑢(𝑛ሻ 𝜃𝑛(1 − 𝜃ሻ𝑛−𝑛 = 0 

 → 𝑢(0ሻ (1 − 𝜃ሻ𝑛 +  𝑢(1ሻ 𝑛 𝜃1(1 − 𝜃ሻ𝑛−1 + ⋯+  𝑢(𝑛ሻ 𝜃𝑛 = 0 

∵  𝜃 > 0 →  𝜃 ≠ 0 ,𝑛 ≠ 0   

∴ 𝑢(0ሻ =  𝑢(1ሻ = ⋯  =  𝑢(𝑛ሻ  = 0     → 𝑢(𝑥ሻ = 0   ∀ 𝑥 

∴ 𝑓(𝑥;𝜃,𝑛ሻ is complete 



4) Geometric Distribution  
Independent Bernoulli trials are performed (repeated) until the first success appears (occurs). 

What is the distribution of the number of failures until the first success is observed? 

Let the random variable X be the number of failures before the first success is observed. Since 

the first success may occur on the first trial, or second trial or third trial, and so on, X is a random 

variable with range space {0,1,2,3,…}or{1,2,3,…} with no (theoretical) upper limit. Then a r.v. 

X is defined to have geometric distribution if the p.m.f. of X given by; 

The first form: 
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Where; the parameter (p) satisfies (0 ≤ p ≤ 1). 

X: the number of failed trials before getting the first success. 

 

Examples: 

1) Tossing a coin continuously until the first success (head) appears.  

2) Tossing a die continuously until the first success (number 4) appears. 

3) Drawing objects from a box respectively with replacement until getting the defective object. 



Properties of the Geometric Distribution 

1) The mean and the variance of X ~ Geo(p). 
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2) The moment generating function (m.g.f.) of X ~ Geo(p)  
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𝑀′
𝑋(𝑡ሻ = 𝑀′

𝑋(𝑡ሻ 𝑡=0 

𝑀𝑋(𝑡ሻ = 𝑝 (1 − 𝑞𝑒𝑡)−1 

𝑀′
𝑋(𝑡ሻ =  −𝑝 (1 − 𝑞𝑒𝑡ሻ−2 (− 𝑞𝑒𝑡ሻ 𝑡=0 = 𝑝 (1 − 𝑞𝑒0ሻ−2 (𝑞𝑒0ሻ 

              =  
𝑝𝑞

(1 − 𝑞ሻ2
=  

𝑝

𝑞
  

𝑀′ ′𝑋(𝑡ሻ =  𝑝 (1 − 𝑞𝑒𝑡ሻ−2 (𝑞𝑒𝑡ሻ − 2𝑝 𝑞𝑒𝑡(1 − 𝑞𝑒𝑡ሻ−3 (− 𝑞𝑒𝑡ሻ 𝑡=0 

= 𝑝 (1 − 𝑞ሻ−2 (𝑞ሻ + 2𝑝 𝑞(1 − 𝑞ሻ−3(𝑞ሻ 

=
𝑝𝑞

(1 − 𝑞ሻ2
+ 

2𝑝𝑞2

(1 − 𝑞ሻ3
 =

𝑞

𝑝
+ 

2𝑞2

𝑝2
=  

𝑝𝑞 + 2𝑞2 

𝑝2
= 𝐸(𝑋2) 

𝑣(𝑋ሻ = 𝐸(𝑋2ሻ −   𝐸(𝑋ሻ 
2

=  
𝑝𝑞 + 2𝑞2 

𝑝2
−   

𝑝

𝑞
 

2

=  
𝑝𝑞 + 2𝑞2 

𝑝2
−  

𝑞2

𝑝2
=  

𝑝𝑞 + 𝑞

𝑝2
   

=  
𝑞(𝑝 + 𝑞)

𝑝2
=  

𝑞

𝑝2
  



3) The cumulative dist. function (c.d.f.) of X ~Geo(p). 
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4) Mode of Geometric Distribution X ~Geo(p). 

𝑓(𝑥;𝑝ሻ = 𝑝 𝑞𝑥     , 𝑥 = 0,1,2,… .. 

𝑓(0;𝑝ሻ = 𝑝  

𝑓(1;𝑝ሻ = 𝑝 𝑞1 

𝑓(2;𝑝ሻ = 𝑝 𝑞2 

      ….         , →     𝑝 > 𝑝𝑞 > 𝑝𝑞
2

>  … . .    , ∴   mode = 0 



5) Memoryless (No memory) Property of Geometric Distribution 

Theorem: Suppose that X ~ Geo(p). Then for positive integers (s), (t), we have; 

𝑝(𝑋 > 𝑠 + 𝑡   𝑋 > 𝑠ሻ =  𝑝(𝑋 > 𝑡) 
If an event has not occurred by time (s), the probability that it will occur after an additional (t) 

time units is the same as the (unconditional) probability that it will occur after time (t) --- it forgot 

that it made it past time s!. (Reference: Mood and Graybill) 

Proof: 

𝑝(𝑋 > 𝑠 + 𝑡   𝑋 > 𝑠ሻ =  
𝑝(𝑋>𝑠+𝑡  ∩ 𝑋>𝑠ሻ

𝑝(𝑋>𝑠ሻ
  

                                        =  
𝑝(𝑋>𝑠+𝑡 ሻ

𝑝(𝑋>𝑠ሻ
  , (𝑡 positiveሻ  

                                  =  
1−𝐹(𝑠+𝑡ሻ

1−𝐹(𝑠ሻ
  

                                        =  
1−(1− 𝑞𝑠+𝑡+1)

1−(1− 𝑞𝑠+1)
 =  𝑞𝑡   , free of (s)  

Or;  𝑝(𝑋 > 𝑠 + 𝑡   𝑋 > 𝑠ሻ =  
𝑝(𝑋>𝑠+𝑡  ሻ

𝑝(𝑋>𝑠ሻ
 =  

σ 𝑝 𝑞𝑥∞
𝑥=𝑠+𝑡+1

σ 𝑝 𝑞𝑥∞
𝑥=𝑠+1

 ,  →  σ 𝑟𝑥∞
𝑥=𝑛 =  

𝑟𝑛

1− 𝑟
  , 0 < 𝑟 < 1 

                                      = 
(𝑞𝑠+𝑡+1) (1−𝑞) 

(𝑞𝑠+1) (1−𝑞) 
=  𝑞𝑡   

If, 𝑝(𝑋 ≥ 𝑠 + 𝑡   𝑋 ≥ 𝑠ሻ =  
𝑝(𝑋≥𝑠+𝑡  ሻ

𝑝(𝑋≥𝑠ሻ
 =  

σ 𝑝 𝑞𝑥∞
𝑥=𝑠+𝑡

σ 𝑝 𝑞𝑥∞
𝑥=𝑠

= 
(𝑞𝑠+𝑡) (1−𝑞) 

(𝑞𝑠) (1−𝑞) 
=  𝑞𝑡  = 𝑝(𝑋 ≥ 𝑡) 

Because,   𝑝(𝑋 ≥ 𝑡ሻ =  σ 𝑝 𝑞𝑥  ∞
𝑥=𝑡 =  𝑝

𝑞 𝑡

1− 𝑞
=  𝑞𝑡  



Maximum Likelihood Estimation for Parameter of Geometric Distribution  
Q// Find the value of p, which maximized p.d.f., or (for what value of p, the p.d.f. is maximum)  

In a rssn from Geometric distn Geo(p), with p.d.f ; f(x;p) = p(1 – p)x-1 , x = 1,2,….., find the m.l.e 

for p: 

Sol: X ~ Geo(p)  

First Case: 

𝑓(𝑥;𝑝ሻ =  𝑝 (1 − 𝑝)𝑥−1        , 𝑥 = 1,2,… ..  

∵ 𝑋′𝑠  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝. 

𝐿(𝑝ሻ = 𝑓(𝑥1, 𝑥1 ,… , 𝑥1;  𝑝ሻ =  П 𝑓(𝑥𝑖 ;𝑝ሻ 

          =  𝑝𝑛(1 − 𝑝)𝛴𝑥 𝑖−𝑛  

ln 𝐿(𝑝) =  𝑛 ln(𝑝ሻ + (𝛴𝑥𝑖 − 𝑛ሻln(1 − 𝑝)  

𝜕 ln 𝐿(𝑝)

 𝜕𝑝
=  

𝑛

𝑝
−  

(𝛴𝑥𝑖 − 𝑛ሻ

(1 − 𝑝)
                         ,       

𝜕 ln 𝐿(𝑝)

 𝜕𝑝
 =   0 

𝑛

𝑝
−  

(𝛴𝑥𝑖 − 𝑛ሻ

(1 − 𝑝)
= 0 

 
 𝑛(1 − 𝑝Ƹ) −  𝑝Ƹ(𝛴𝑥𝑖 − 𝑛ሻ

𝑝Ƹ(1 − 𝑝Ƹ)
= 0 

𝑛 −  𝑛𝑝Ƹ − 𝑝Ƹ𝛴𝑥𝑖  +  𝑛𝑝Ƹ = 0 

𝑛 − 𝑝Ƹ𝛴𝑥𝑖  = 0 

𝑝Ƹ𝛴𝑥𝑖 =  𝑛               𝑝Ƹ𝑚 .𝑙 .𝑒  =  
𝑛

𝛴𝑋𝑖
=   

1

X
 

𝜕2 ln 𝐿(𝑝)

 𝜕𝑝2
=  −

𝑛

𝑝2
−  

(𝛴𝑥𝑖 − 𝑛ሻ

(1 − 𝑝)2
     <  0 

⸫ 𝑝Ƹ =   1/ X    is m.l.e for p . 



Moment Method for Parameter of Geometric Distribution 

𝑋 ~ 𝐺𝑜𝑒(𝑝ሻ   ,𝒇𝒊𝒓𝒔𝒕 𝒄𝒂𝒔𝒆:𝑓(𝑥;𝑝ሻ = 𝑝 𝑞𝑥   𝐸(𝑋ሻ =  
1−𝑝

𝑝
  ,  

𝑚𝑘 =  
σ𝑥𝑖

𝑘

𝑛
      , 𝑀𝑘 = 𝐸(𝑋𝑘ሻ    ,→   𝑚𝑘 =  𝑀𝑘   

𝑚1 =  
σ𝑥𝑖

1

𝑛
=  𝑋ത  ,     𝑀1 = 𝐸(𝑋ሻ =  

1−𝑝

𝑝
  

𝑚1 =    𝑀1  

𝑋ത   =  
1−𝑝

𝑝
   →  𝑋ത 𝑝 = 1 − 𝑝  →  𝑝Ƹ𝑚𝑜𝑚𝑒𝑛𝑡 =  

1

1+  𝑋ത  
  

 

𝑋 ~ 𝐺𝑜𝑒(𝑝ሻ   , 𝐬𝐞𝐜𝐨𝐧𝐝 𝐜𝐚𝐬𝐞:𝑓(𝑥;𝑝ሻ = 𝑝 𝑞𝑥−1  𝐸(𝑋ሻ =  
1

𝑝
  ,  

𝑚𝑘 =  
σ𝑥𝑖

𝑘

𝑛
      , 𝑀𝑘 = 𝐸(𝑋𝑘ሻ    ,→   𝑚𝑘 =  𝑀𝑘   

𝑚1 =  
σ𝑥𝑖

1

𝑛
=  𝑋ത  ,     𝑀1 = 𝐸(𝑋ሻ =  

1

𝑝
  

𝑚1 =    𝑀1  

𝑋ത   =  
1

𝑝
   →  𝑋ത 𝑝 = 1  →  𝑝Ƹ𝑚𝑜𝑚𝑒𝑛𝑡 =  

1

  𝑋ത 
  

 

Note: In all distributions, it is not a requirement: Moment Method equal to the m.l.e Method. 

For example, in Beta distribution, or in some cases we cannot use m.l.e. method. 

Q// Is m.l.e  𝑝Ƹ =  
1

𝑋ത
  unbiased estimator for p in Geo. distriution? 𝑝Ƹ =  

𝑛

σ𝑥𝑖
 



H.W: Is m.l.e  𝑝Ƹ =  
1

1+𝑋ത
 =  

𝑛

𝑛+σ𝑥𝑖
  unbiased estimator for p in Geo. distribution? f(x; p) = p qx. 

Exponential Family 
Q// Is Geometric distribution Geo(p) belongs to exponential family? 

1) 𝑓(𝑥;  𝑝ሻ =   𝑝 𝑞𝑥    , 𝑥 = 0, 1,….  

𝑓(𝑥;  𝑝ሻ = exp(ln𝑓(𝑥;  𝑝ሻ) 

= 𝑒𝑥𝑝 ln𝑝 + 𝑥 ln(1 − 𝑝ሻ   

𝐴(𝜃ሻ =  ln(1 − 𝑝ሻ   , 𝐵(𝑥ሻ = 𝑥 ,𝐶(𝜃ሻ = ln𝑝 ,   𝐷(𝑥ሻ = 0 

⸫ 𝑓(𝑥;  𝑝ሻ 𝑜𝑓 Geometric distribution belongs to exponential family. 

In arssn;  

𝑓(𝑥1, 𝑥2 ,… , 𝑥𝑛 ;  𝑝ሻ = 𝑒𝑥𝑝(𝑛ln𝑝 + ln(1 − 𝑝ሻσ𝑥𝑖ሻ  

∴  σ𝐵(𝑋𝑖ሻ =  σ 𝑥𝑖   𝑖𝑠 𝑠𝑢𝑓𝑓. 𝑒𝑠𝑡. 𝑓𝑜𝑟 𝑝.  

2) 𝑓(𝑥;  𝑝ሻ =   𝑝 𝑞𝑥− 1   , 𝑥 =  1, 2,….  

𝑓(𝑥;  𝑝ሻ = exp(ln𝑓(𝑥;  𝑝ሻ) 

= 𝑒𝑥𝑝 ln𝑝 + (𝑥 − 1ሻ ln(1 − 𝑝ሻ   

= 𝑒𝑥𝑝  𝑙𝑛  
𝑝

1−𝑝
 + 𝑥 ln(1 − 𝑝)   

𝐴(𝑝ሻ =  ln(1 − 𝑝ሻ   , 𝐵(𝑥ሻ = 𝑥 ,𝐶(𝜃ሻ = 𝑙𝑛  
𝑝

1−𝑝
   , 𝐷(𝑥ሻ = 0 

⸫ 𝑓(𝑥;  𝑝ሻ 𝑜𝑓 Geometric distribution belongs to exponential family. 

In arssn;  

𝑓(𝑥1, 𝑥2 ,… , 𝑥𝑛 ;  𝑝ሻ = 𝑒𝑥𝑝  𝑛𝑙𝑛  
𝑝

1−𝑝
 + ln(1 − 𝑝ሻσ𝑥𝑖   

∴  σ𝐵(𝑋𝑖ሻ =  σ𝑥𝑖   𝑖𝑠 𝑠𝑢𝑓𝑓. 𝑒𝑠𝑡.𝑓𝑜𝑟 𝑝  



5) Negative Binomial Distribution  

Independent Bernoulli trials are performed until (r) successes appear, define the r.v. X is the 

number of failure trials before getting the r–th success trial, then a r.v. X defined to have (N.B.) 

dist. if the p.d.f. of X given by: 
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Where the parameters (r) and (p) satisfy [r = 1, 2, ….,  0 < p < 1]. 

x: No. of failure trials before getting the r–th success.        
r: No. of successes cases (fixed number). 

Clearance: Let a coin tossed nine times, in ninth toss we get success trials, success trials (get 3 

Heads). What is the probability of the following result? 
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