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Statistical Distributions
1) Discrete Uniform Distribution

Suppose X is a discrete uniform r.v., over the integer set {a, a+1, ..., b}.

Assumptions:

1) Xe{a a+l, ..., b}

2) The values in the range are equally likely, 1.e., each of n values in the range of r.v. X has

probability% (all outcomes have equal probability). X ~ (a, b) Probability Mass Function:

1
pmf=pl)=pX=x)=,——— x=aatl..,
@1
Let; n=b—a+1 P
1 Unf===q=-=-1--rF—-=-—-—
~px)=—- ,x=aa+1,..,b “ [
n
>

xl xz x3 x4 oo x
The p.m.f of uniform distribution



In a special case, a r.v is defined to have a discrete uniform distribution. If the p.m.f. of X is

given by:
(1
p(x):<ﬁ x=12,...,n

0 oW

\

Where the parameter (n) is positive integer: X ~ D.U(1, n). Each point of X has the same
probability of appearing.

Properties of Uniform Distribution
1) If X has a uniform dist., then the c.d.f of X

F(x) is defined as; FO)=p(X<x)=3 pxy=3 L_ X
Xx=1 x=1" n
(0 . X <1
1/n , 1< x<?2
2/n ,2<xXx<3
F(x) =+
n—1 nN—1<x<n
n
1 X=n




2) The mean and the variance of uniform distribution

b—a+1+2a—1_ a+b

~ E(X) = > 5— = Median
. b—a nm+1)n-1)
Variance = v(X) = (n+1) 5= 5

n“-1 (b—a+1)?*-1
12 12

3) The moment generating function (m.g.f.) of uniform distribution
b b

1 1
M,(t) = E(e*¥) = Z et* —= — z et*
n n
x=a xX=a
eat 1_ent
o Mx(t) T n ( 1— et )

1 , t=20

eat 1_ent
= n(l—et> ’ t#0



4) Mode of uniform distribution

L fm) fm) _
“romen L0 Ty = b

+ p(each of n values In the range of r.v. X) has probability = % (equally likely)
~ on mode in this distribution, or all points in range is mode (multi — mode).

5) A median of a distribution of one r.v X of the continuous or discrete type,
Is the value of X that satisfies the following conditions:

1- p(X <m)= Y p(x) <
x<m > median = mean in D.U. dist.

NI~ N

2-p(X<m= % p(x) 2

X<m



1. Bernoulli Distribution

If a r.v. X In a single trial has only two outcomes, either (x = 0) or (x = 1), which are success
and failure, or Yes and No, good and bad, defective and non-defective ....etc. , with;

p(success) =p , p(failure)=1-p=q
The p.m.f. of X ZEIN

P~=q pP=q p<gq
P L
X 1— X B 1
p(X; p)=p(x):{P @-p) , x=0,1 { ‘
0 oW
Where (p) is the parameter of distribution, that satisfies (0 <p < 1), o 10 1o 1 «x

The p.m.f. of Ber. Distribution

where;

p: probability of success, p(S) =p(x =1).

1 —p = q: probability of failure, p(F) =p(x=0)
(p+ag)=p+(1-p=1

X ~ Ber (1, p), p , x=1
X ~ Ber ( 1 , p ) X ~ Ber(d, = p(X, =<1-p, x=0
No.of success probability of ( p) p( p) < P

trials success O o.wW




Properties of Bernoulli Distribution

a) The mean and the variance of X
1

mean=E(X)= X X p(x) = % x pX-pt ¥ =0+@pta®=p
x=0 x=0
var(X) = E(X %) = [E(X)]?
EX)) = 3 X2 pXa-p ¥ =0+ @2 pla® = p
x=0
s var(X) = p— p% = pL—p) = pg

b) The cumulative dist. function (c.d.f.) of X ~ Ber(1, p)

0 ,Xx<0
F(X) = p(X £X) =10 ,0<x<1
p+g=1 ,x=1




¢) The moment generating function (m.g.f.) when X ~ Ber(1, p)

My (t) = Eet® = Zetxp(X)— y etXpXa- pt=>*
Xx=0 x=0,1

- zo 1(pet>x(q>1‘x = (pe" ) (@) 70 + (pe Y (@)t = g + pét

X
My (t)=qg+ pet
M (0) = ux = pet‘ =p
t=0

M (0) = E(X?) = pe' ‘t_o = p

s var(X) = M (0) - [M% (0)]° = p — p% = p(L- p) = pq



The Mode

A mode is that value of X that gives the greatest probability. In other words, is the value of X
that maximizes the p.d.f. , such that:-

1) If X is discrete r.v. , then we substitute values of X in p.m.f. p(x) directly, then the value that
gives the greatest probability is the mode of distribution.

2) If X is continuous r.v., then we must take the second derivative of p.d.f., then if this
derivative is less than zero then the value of X Is the mode of distribution.

d) The Mode of X ~ Ber(1, p) (Mo)

0 , q>p
Mo =x=+<0,1 ,q=p
1 , g <p



The Median

A median of a distribution of one r.v X of the continuous or discrete type, is the value of X
that satisfies the following conditions:

1- p(X <m)= ¥ p(x) <
x<m .
> for a discrete r.v.

N~ N

2-p(X=<m)= X p(x) =

X<m

m
3-F(m)=p(X<m)= [ f(x)d x=% < for continuous r.v

— 00

e) The Median of X ~ Ber(1, p) (Me)

e —on o011
AR €T T T2

~ ¥4 1s not within range, .". Bernoulli distribution does not have median.



Related Distributions

1) Binomial Dist.  2) Geometric Dist.  3) Negative Binomial Dist.  4) Beta Dist.
5) Catagorical Dist.

Estimation Theory for Bernoulli Distribution

Methods of Estimation

1. Moments Estimation Method

mg = Z:ik M, = E(X¥)
mk = Mk
my =25 =%, M, =EX)=p

M,=m, —..P=2X - Proportion of success is estimator for probability of success.



2. Maximum Likelihood Estimation

Properties of Maximum Likelihood Estimation

The m.l.e for Bernoulli parameter X ~ Ber(p),

Let X, X,, ..., X, denote a random sample from Bernoulli dist" Ber(p), then the m.l.e for p.
X ~ Ber(p)

fp)=p*A-p*~~ , x=0,1

« X's are indep.
L(p) — f(x1;x1; ey X15 p) = Hf(xi;p)
— pZ'xi(l _ p)n—le-

InL(p) = Zx;In(p) + (n — Xx;) In(1 — p)

dinL(p) 2Xx; n-—2Xx; d1InL(p)
= — , = O
op p 1-p op
2x;  nm—2x;
ph 1 —ph _

(1—- pMZx; — p"(n—2Zx;) _ 0
p™(1—p")




2x; —p"2x; — np" + phix;; =0

2x;— np" =0
ZXL' N/
2x; = np”" P e = n =X
0°InL(p)  Zx; n-—2Zx <0
op:  p*  (A-p)?

~pr= X ism.l.eforp — proportion of success (which gives the greatest value .

A Xi _ o : : : s
Pmle= ZT = X - proportion of success is an estimator for probability of success

H.W: Find Bayes estimator for parameter of Ber(p), using non informative and informative
prior probability.



Properties of Estimator

1. Unbiasedness

If E(p”)=p ,then an estimator is unbiased estimator for p.
< 2Xiy _
ER)=E(=*)=-EX)=p ,X~Ber(p) , E(X) =p

+ X isunbiased estimator for p.

2. Unbiased in Limit
An estimator @ is said to be unbiased in limit for @ iff:

lim E(@) =6

Nn—oo

3. Consistency (Limiting Property)

Any statistics that equal to the parameter or converges stochastically to the parameter 4 is called

consistent statistics.
A consistent estimator: That the estimator gets closer to the parameter value as n increases

without limit.



Definition 1: An estimator & of the parameter 6 of f(x; 6) is called consistent estimator for 6, iff:

lim pq9—9‘<5):1 , Ve>0
N—0
or;
lim pQé = 6" > 5): 0
N—>0
P 0 -6 < 5)2 1- Lz)
(A)g . —> (Chebycheve inequality)
A V(&
p 60— 6 > 8) 8—2

Theorem: Let 8 be an unbiased estimator for population parameter 6 of f(x;6), then 8 is said
to be consistent estimator for 6 iff;
1. lim E(6) = 6 — unbiased in limit ,

n—->00

2. lim v(8) = 0 — There is no error

n—>0o0

lim E(p) = p with probability

n—00



Mean Square Error

One way of measuring the accuracy of an estimator is via its mean square error. The mean
square error of an estimator @ is defined as:

MSE (9) = E(d — )% =Var () + b? ()

Proof:
MSE(d) = E(0 — 6)?

_El-o07E®f

- Eld - E@)} + {EG) - 6}f

—e(@-e@f +E[E@) -0F +2€E(6 - E®))EOG) -9)

= Var(é) + b%(d) + zero
~. MSE(8) = Var(é) + b%(d)



The Score Function

The score function is the partial derivative of Ln the function f(x;0) with respect to the parameter
6, is defined as;
1 0

S(x;6) =%In f(x;0) = f(x:0) 00 f(x;0)

d1n L(0)

or; Score fun =S(x; 0) = Py
Properties

1) The mean of the score is zero, E(S(X; #)) = zero (under Regularity Condition)
Proof:

LN . : _ 1 0 . :
E(S(X;0))= Rjxs(x,ﬁ) f(x;0) dx = ij f.0) 20 f(x;0) f(x;0)dx

0 0 0
= — f(x;0) dx= — | f(x;0) dx = —(1) = zero
[ 5g 0 =25 [ 1060) dx = 50
X X

2) The variance of the score is known as the Fisher Information (F.I), which is measure the
information in the sample & about the parameter #, and can be written as;

V(S(x:0) = E (S(x; 0) — E(S(x; 9)))2
=E(S(x; 0))" — (E(S(x; 0))? ,E(S)=0
=F (S (x; 9))2 — Information

N (1LY1C) ?
1 =106)= (T)

If Fisher Information multiply by (n), we get; n1(¢) — F.Iin a rss(n)



The Rao- Cramer Inequality

Let X1, Xz, ..., Xy be a rssn from a dist" with p.d.f. f(x ; 8), and let T = u(Xy, X, ..

unbiased estimator for ¢(8), then the variance of T satisfies the inequality;

vm s GOF _@@F_ @)
(6 In f(x;0) jz Var(S) [82 In f(x:6) )

nkE _nE s

00 s

Notes:

1) We do not use (n) in case using the likelihood function in law.

a)F.I =V(S) = —nE(a In fx; 9))
} f(x; 0) for single

b) F.1 = V(S) = nE ( L“f(x 9))

)F.I=V(S)=—-E (32;1181;(9))
L(x; 0)
AF.I1=V(S)=E (6 LnL(Q))

°9

Xn) be an



2) In general case, if T is unbiased estimator for ¢(6) of f(x; 6).

(#'(0))
V(S)

Is called Rao—Cramer Lower Bound (RCLB)(Minimum variance bound (MVB)

3) Special case of Rao- Cramer Inequality: If T unbiased estimator for 8, E(T) = 6,

pO0)=0 —> ¢'0)=1 |
(RCLB = 1) ,V(¥) = — , F.I=V(Score Function = S)
V(S)

4) + X'’s are independent
L(6) = f(x1, x2, ..., xp; 0) = [[I-q f(x;;8) = Likelihood function

5) As more information increases, the variance decreases, and when the variance decreases, the
estimator becomes more efficient, but Fisher increases.



4) Efficiency

How do we know that the estimator Is an efficient estimator?

Def": Let T be unbiased estimator for 6 of f(x;; 8) and The ratio of the RCLB to the actual
variance of any unbiased estimator for 4 is called the efficiency;

off ~ RCLB
V(1)

If eff =1 = T i1s called efficient estimator for 6.

0<eff <1

Def": Let T be an unbiased estimator for @#(6) , then we say that T is an efficient estimator for 6
Iff; (The variance is as low as possible).

V(T) = RCLB

1 1

eff(T) = eff(p=X =27 = EL = _EI

% V(

~
~
—

)

)



for Bernoulli distribution X~ Ber(p)

flsp) = p*(1—p)™

In f(x;p) =xInp + (1 — x)Inffll — p)
dln f(x;p) _X 1-x _ x-p

dp p 1-p p(l-p)
N2
F.l.inarssn=n E(a ln;;x’p))
_ . E(X —p)?
p?(1-p)?
_np(d-p)__n
p2(1-p)?> p (1-p)
1 _p(d-p)
F.I n

1
s eff(T=p)=LL =2 =y
(T=P) =y = v azmm
XX

~p = =— isanefficientest. for p




5) Sufficiency
Sufficiency estimator is containing all the information in the data about the parameter 6.
(e.g. X = %} The information in (T x;) is the same as the information in (X).

First Method (Fisher Information)

Let X1, Xo, ..., X, be arssn from the dist" with p,d.f. f(x ; 8), an estimator & is sufficient estimator
for the parameter @ if the Fisher information in & is equal to the Fisher information in a rss(n).

Flinarss(n)=F.linT=8

For Bernoulli distribution. Let Xi, Xz, ..., X, be a rssn from Bernoulli dist" Ber(68). Show that
6 = > X; is sufficient estimator for the parameter 6.

- X — Ber(O)
f(x;0) =0"A -0 ,x=0,1

In f(x;8) =xIn(@) + A —x)In(A — &)
oln f(x;6) _ X a— x)

o6 e @— 0)
8% In f(x;0) —x @ — x)
o 02 T P2 @-— 0)2
o E[az In fgx;e)] _ E(>2<) L, E@-— xz)
oz, % a- o)
o @ — o) 1 1 1— 60 + 6 1

e @-6:=* o

a—09) e@a- o) o@d — 0)

NI = —n E [82 |na;gx;¢9)] _ 9(1n_ o) is F.l1.in a rss(n)




§ = X X, = x;, + x, + .. + x,

A ~ Ber (6) ., = E X, ~ Bn (n.f8)
fEE b . E-":] — C:ﬁl S:;—.—I:l . th‘—: X

n f(Zx;;6)=m0 Cl, + % x;In( ) + (n—-3%X x;)In (1 - &)
clh F{(Z x.: &) v+ Y x;  Am-3% x;)

¢ 8 & (1 — 8)
el f(T x,; 8) X x, (n-3 x;)

- g - (1 — &)°
_ { IE:]I]. fEE X, 5‘) .'I _ 7] E[:X:] n |:i"."—i"." E(..E:Ij

| &g’ ) g - (1 - 8)°
¥ ¥ ]
- —+ e

8 (1 -8) @& - &)
F .I in a rssm = F ] in 8 = ¥ A

§ = T X . w5 suff et for &



Second Method (Conditional)

Let X1, X3, ..., X, be a rssn from the dist" with p,d.f. f(x ; 8), and & be an estimator for 4, an
estimator & is sufficient estimator for the parameter @ if the conditional p.d.f. of (X1, Xo, ..., Xp)
given @ does not contain the parameter 6.

f (Xl » X2 5--43 Xn 5 o) Conditional p.d.f

f (X1, X9 ,....Xp | O) = -
(1’ 291 n|¢9) g(9) doesn’t depend on &

Note: If the range depends on the parameter, in this case we can’t find F.I; therefore, we use the
second method (Conditional).

Third Method: Factorization Theorem

Let & be an estimator for the parameter of f(x;0) such that the range does not depend on 6. Then
the necessary and sufficient condition for an estimator & to be sufficient estimator, if there are
two non-negative functions, such that:

f(xq, x5, o, x,,; 0) = g(@, 9).h(x1, X2y eeny Xp)
Theorem:

Let & be sufficient estimator for the parameter 0, and u(@) be a one-to-one transformation, then
u(@) is sufficient estimator for 6.
Note: 1) X is one to one transformationto > x;. = > Xj = nXx.

2) If we have more than one parameter, we use factorization theorem (third method) for
sufficiency.



for Bernoulli distribution
.+ X ~ Ber(0)

f(x;0)=6*1-0)'* ,x=0,

n CI
f (X, Xg 0o X5 0) =[] F(X:0) = 6% (1 — 9)" 2% }><A

i=1 C%xi
= C3y O % (L— )" , free of @
Cyx
=g(@=>x;60)x H(X) = . 0=>x is suff est for @

In caseT = 6 = X then we make up nX instead of Y X; ,becausenX =YX, in any
method.

Exponential Family
Let X has a p.d.f. f(x;0), then the family of f(x;6) is belong to exponential class of distribution iff

It can be expressed as:
f(x; 8) = exp(n f(x; 8))
= exp(A(H) B(x)+C(0) + S(x)) .. (1)

or; = g(0) h(x) e4@)BX) e (2)
Such that: A(6) B(x) must have to be for exponential class. Then ar.v. is said to have exponential
family.



Q// Is Bernoulli distribution belongs to exponential family?
f(x;0)=6"1-6)"
=exp(xIn(8) + L - x)In(L - 9))

0
= exp(xln (1_—9j +In(l- 49)j

A@®)=In—, B(x) = x ,C(0) =In(1—-6) , D(x) =0
.. Bernoulli distribution belongs to exponential family



2. Binomial Distribution

In (n) trials, let the probability of an event occurring in each trial be equal to (p), and let all trials
be independent, then the total number of success in (n) independent Bernoulli trials is a r.v. X
having a binomial distribution with p.m.f. is given by;

n X .N—Xx 3
f(x;n,p) = p(X =x) :{Cx P q , x=0,1,2,....,n
0 oW

where (n) and (p) are positive parameters, such that (0 <p < 1), n: No. of trials (positive integer),
l.e., X~ b(n, p).

Cy: A combination is the number of ways to choose a sample of x elements from a set of n distinct
objects where order does not matter.

X: the number of successful trials. p: probability of success in a single trial.
n — X: Number of failures in (n) trials. q: probability of failure. p+qg=1
Remarks:

a) The binomial dist. reduces to Bernoulli dist. if (n = 1).
b) Binomial experiment it must have four properties:
1. There must be a fixed number of trials.
2. Each trial must have two possible outcomes.
3. All trials must have the same probability of success.
4. The trials must be independent of each other.



Properties of the Binomial Distribution

1) Let X be a r.v. with X ~ b(n, p), then; The mean and the variance of X.

|
meaan(X):%xp(x)zixcgpan—ng NI X"~ X
X =

x=0 x=0 o Xx!(n-x)!
n(n-1)! x—1 n - x L (n-1)! x—1 n - x
XEO X(x=1)!(n-x)! S px:o (x=1)!(n—x)! b
Let;
y=x-1, m=n-1 Range: X=0=>y=-1, x=n=>y=n-1
X=yY+1,n=m+1 - y=-1012,....,n-1
n-1 |
mean=np ¥ m p’gq" Y =np
y=-1 yl(m-y)!

=1
var(X) = E(X*) - [E(X)]?



“—2 m!
y——2 y!(m-y)!
—1

var(X) =n(n -2 p? +np -[npl> =n?p? —np? +np-n®p’=np-np?=np(- p)
sovar(X)=npq

Yy M

~ E(X?)=n(n-1)p? Vg™ Y +np=n(n-)p°+np

2) The moment generating function (m.g.f.) of X ~ bin(n P)

n n
My (t) = Eet” = z e p(x) = 3 etXcf pXg" X = z Cy (pet)* "X

Xx=0
n
c@a+b)" =Y cla*p"™* by law
x=0
= a-= pet , b=g
2 My (@) = (pe' + )" J= ()t =17 =1

=My (1) = (pe' + )
To find the mean and the variance by the m.g.f. of X.

My (t) = Eet® = (pel + g)"



3) The Cumulative Dist. Function (C.D.F.) of X ~b(n, p).

0 , X< 0
X
F)=pX<x)=4 XClpg" ™M 0<x<n
u=0
1 , X2N

4) Addition Property

n

1

A The c.d.f of X~b(n.

n

If X ~Db(n, p),then Y = 2 X distributed Binomial distribution b( Y nj, p).

1=1
Proof:

My (t) = EetY = Eetzxi — Ee 2tXj _ E(etxl eth

- MEe™i - llr]T'V'Xi(t) - T1(q+ pet)i = (q + ety

For example; Y~ >f1 + i<2 + )%

b(nl,p) , b(n2,p)  b(n3,p)
—> Y ~b (n,+n,tn;, p)

1=1

2N

n
Y= 2 Xj~b(Xnj, p)

1=1



5) The mode of Binomial Distribution
If the mode of distribution of X is unique?

Mode of X(Bin)=m=[(n+1) p]
Mode[Y] = greater integer less than or equal.

If the mode iIs an integer, it has two modes.
However, if the mode contains a fraction, then it has one mode
Let: € = fraction — then;m=(n+1)p+¢
Ife=0 thenmode=(M,m-1)->[(n + Dp,(n + 1)p —1]
Mode integer = (my, my)
Mode fraction = (m)
Ex: x=6.1 > mode =6

X = 6.99 — mode = 6 | ‘ ‘ |

If x=6 (integer) » mode=6,5 R TN
Ex: Let; p=0.7 ,n=5 b
m=(nN+1p=6(0.7)=42 —e=0.2
.m=4
Ex: Let; p=0.3 ,n=19
m=(nN+1p=6
.m=6,5



5) The median of Binomial Distribution
The median of Bin. Dist. is; me = [np] if an integer (when me is an integer)

Proof: We have the following empirical relation between mean, mode and median:
Mean — Mode = 3(Mean — Median)

Or; w—mo = 3(u—me)

Inthiscase, mo=(n+1)p-e,—e=0

me=u - (M —3m0)

21 + mo 2X +mo
= — = for sample

Take the case (np) is an integer;
2np +(n+)p _ 2np +np+p
3 - 3 B

me =

np +

w s

= np

is an integer fraction



3. Poisson: The binomial distribution converges towards the Poisson distribution as the number
of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson
distribution with parameter 4 = np can be used as an approximation to B(n, p) of the binomial
distribution if n is sufficiently large and p is sufficiently small. When p is very small and (n) large
then the Bin(n, p) distribution — A = np become Poisson distribution, Bin(n, p) ~ Poi (np).
According to rules of thumb, this approximation is good if n > 20 and p <0.05 such that np <1,
orif n>50and p <0.1suchthatnp <5, orif n>100 and np < 10.

Ex:p=0.01,n=(2") —>A=np=2or10.

4. Beta: The binomial distribution and beta distribution are different views of the same model

of repeated Bernoulli trials. The binomial distribution is the PMF of k successes given n

Independent events each with a probability p of success. Mathematically, when o =k + 1 and f

=n—k + 1, the beta distribution and the binomial distribution are related by a factor of n + 1:
Beta(p;a,f) = (n+ 1)Bin(k; n,p)

Beta distributions also provide a family of prior probability distributions for binomial

distributions in Bayesian inference.



Q//'Is Binomial distribution belongs to exponential family?
n
faom) = () p* (-0
exp(In f(x;0,n)) = expi@n(ﬁ) + xn(0) + (n — x) In(1 — 0))
o 6 n
= expifx In (1 — 0) +nln(1—-6)+ In (x))
A@)=In—, B(x) = x = I, x
n

() =n(1-96) , D) =In()

X
.. Binomial distribution belongs to exponential family.

Let X, X,, ..., X, be arssn from Binomial dist" Bin(m, 6), find the m.l.e for 6.
X ~ Bin(m, &)
f(x;0)=CJ' QA -6)""" ,x=0,1,....,m

L(©) = 11 f(x:0) =TICI %% (1 —g) =M=
i=1 i=1
In L(®) = InTIC + X% 1) + (M - x;)In(L — )
=1

oInL@) _ o, 2% 2(M—X) (1) 22X 2(m—X)
o0 o 1 0) o 1-0)




Ynl-6)-6X(m—-x) ¥Yx;-0¥Yx;-nm@+ 0¥y, Yx; -nmé

8(1- &) - 8(1-6) 8(1- 6)
C 11‘{1(5} — 0
c 8
XX —nmd =0 =Yx-nmf@=0 =Y =nmb —f = 2
F(1-8) - - M
é* 1n L(6) -¥x B YOn—x) XX nm-Yx; <0
¢ 87 8- (1-8)° 8- (1- 8)°

-8 ismle for 6.

H.W: Find estimator p for Bin(m, 8) by using moments method.

Q/l X ~Bin (m, 0). Is @ consistent estimator for 6

lim E(Q)— hmE(Zl 1Xl) = limnE(X) lim nmb _ 6

n—oo n—oo nm n—-oco nm n—oco nNm
nmé6 (1-6 . 6 (1-6

nm

lim v(@) = lim v

n—oo n—oo

~

, « 0 is consistent est. for 0.

n—>oo lemz n—oo nm



n

Let X1, Xo, ..., Xn be a rssn from Binomial dist" Bin(m, ), if T = 6 = :1:—1mX‘ Is an efficient
estimator for ¢(0) = 6.

Completeness
Completeness means unigueness of unbiased estimators. This means if we have more than one
unbiased estimators for 6 then these all are the same if the distribution is complete.

Def: Let f(x ; 6) denote a family of probability density function, let u(x) be a continuous
function of (X), then if [E{u(X)}= 0] implies (u(x) = 0) at each point of (X), we say that the
family of p.d.f. is complete.

Ex: assume that [f(x; 8)] is complete and let u1(x) and ux(x) be unbiased estimators for 6.

e, E[uu(X)]=20

and E[ux(X)] =6

E[ui(X)] - E[ux(X)] =0

E[us(X) - U2(X)] = 0 ol oo
E[u(X)]=0 —u(x)=0 , Vx ECO = E) =0
Because the distribution of X is complete.

ur(X) - ux(x) =0

— U1(X) = Uz(X)



Ex: Let X be a random variable from Binomial distribution X ~Bin(n, ). Show that the family
of X is complete.

Sol:

'+ X~Bin(n, 0)

flx;6,n) = (7;) 6% (1 — g)n*

Let u(x) be a continuous function of X, then;

E[u(X)]=0 forall e Q

Elu(¥)] = Ziooul)(;)0*@—6)"* =0

-»u(0)@ -0 "+ umnot@-0r"1+-+um)o"@-0"r"=0
u0)@A-0)"+uMnot@-0)"1t+-+um)o" =0

v 0>0->0%0,n %0

~u0)=u@)=-=umn) =0 ->ux)=0 Vx

~ f(x;8,n) is complete



4) Geometric Distribution

Independent Bernoulli trials are performed (repeated) until the first success appears (occurs).
What is the distribution of the number of failures until the first success is observed?

Let the random variable X be the number of failures before the first success is observed. Since
the first success may occur on the first trial, or second trial or third trial, and so on, X is a random
variable with range space {0,1,2,3,...}or{1,2,3,...} with no (theoretical) upper limit. Then ar.v.
X is defined to have geometric distribution if the p.m.f. of X given by;

The first form:

p(x) = p(x; p) = p(X :X):{pqx , x=0,1,2,....
0 oW
The second form:
x-1 _
0(x) = p(x; p) = p(X = x) =4 P4 . ox=12,....
0 oW

Where; the parameter (p) satisfies (0 <p <1).
X: the number of failed trials before getting the first success.

Examples:

1) Tossing a coin continuously until the first success (head) appears.

2) Tossing a die continuously until the first success (number 4) appears.

3) Drawing objects from a box respectively with replacement until getting the defective object.



Properties of the Geometric Distribution
1) The mean and the variance of X ~ Geo(p).

1) mean = E(X) = %x pqxngqungqu ~1+1

= Pq ZXCI
x=0 x=0 x=0 x=0
— s 0 X D 4X _ x—1
_pqxzo 3q 4  because - g* =xq
_ 0 < X 1
— 8_§ ,bylowxzor =1
QL_ 1 1 _4q
2 q
2) var(X) =E(X?) —[E(X)] 2
=p? (- - (s L=2P9 ¢ _2PT g 24,
Poa-g P p Py
1(1)_1gq_i_|i‘lq=35’f _i_t:fi_lqj—pqq—qj
ps £ NP p- ¥ p° p-




2) The moment generating function (m.g.f.) of X ~ Geo(p)

o0

My (t) = EetX = § et X p(x) = P X pg¥=p ¥ (ge')”

X= = x=0
o0
' Z ( j by law = where; a = ge'
Mx(t)—p( tJ = .. I\/Ix(t)_[ P t} , forget <1
1-qe 1-qe

Mx(t) =M x(t)]i=
My () =p (1—qet)™"
My(t)=—p(—qe) ™ (—qe)li=o =p (1 —qe’)* (qe°)
__prg _p
1-q) q
M'x(®t)=p(1—qe)*(qe') —2p qe' (1 —qe") > (— qe")|,—o
=p(A - (@+2pq(1—q)>(q)

pq 2pq* q  29° pq+2q° ,
= + =+ L = = E(X
1-q¢? (A-q93 p p? p* (x%)
2 pq+2q¢° (p\* pa+2¢° q° pg+q
v(X) = E(x?) - (E(0)) = 24 (—) S e B S '
p q p p p

_alpta) _ q

p? p?




3) The cumulative dist. function (c.d.f.) of X ~Geo(p).

X X 1— X+1
F)=p(X <k)= > pgk = p qu=p(lq jzl—qx+1
k=0 k=0 —q
0 , X <O 0 v <1
F(X)=<1_qx+1 ’ 0< X < oo OT';F(X)z 1_qx 1<x < oo
1 X —> o0 1 X —

4) Mode of Geometric Distribution X ~Geo(p).

fl;p)=pqg* , x=01,2,...
f(O;p)=p

fp)=pq

f(2;p) =pq*

, ™ p>pq>pq2> ey

If one of the two numbers 1s less
than one, then when multiplied
together, the result is less than the
value of one of them, such as p.

mode = 0



5) Memoryless (No memory) Property of Geometric Distribution

Theorem: Suppose that X ~ Geo(p). Then for positive integers (s), (t), we have;
pX>s+t|X>s)= p(X>1)

If an event has not occurred by time (s), the probability that it will occur after an additional (t)

time units is the same as the (unconditional) probability that it will occur after time (t) --- it forgot

that it made it past time s!. (Reference: Mood and Graybill)

Proof:

p(X >s+t|X>s)= p(X>s+t N X>5s)

p(X>s)
_ p(X>s+t) .y -
= e , (t positive) .
X >
__ 1—F(s+t) i X>s+r
1—F(s)
1_(1_qs+t+1) Ky s+1 s+2 ... s+ 1tz
— —d_a D) — qt ,free of (S) J=s+1,s+2 ,....., s+t
_ _  pX>s+t) __ Z;O:5+t+1p q* oo x "
Or; p(X>s+t|X>s5)= X T o — Y r* = — ,0<r<1
_ @YH/a-a) _ gt
(@sT1)/(1—q)
(X=s+t ) > s+t P q* (@°T)/(1—q) _
If, (X =s+t]|X=s)=1E = ZX=s+t = = qgt=p(X >t
p( | ) = s 2 op g~ @a-o 14 =p( )
t
Because, p(X =t) = X3, pq* = p—= ¢*



Maximum Likelihood Estimation for Parameter of Geometric Distribution

Q// Find the value of p, which maximized p.d.f., or (for what value of p, the p.d.f. is maximum)
In a rssn from Geometric dist" Geo(p), with p.d.f; f(x;p) = p(1 —p)*t,x=1.2,....., find the m.l.e
for p:

Sol: X — Geo(p)

First Case:

flsp)=p@—p) 1 , x = 1,2, ...
- X's are indep.
L(p) = f(x1,%x1, .-, x15 ) = I f(x:50)
= p"(1 —p)* "
InL(») = nIn(p) + Cx; —n)Inill — p)

OlnL(p) n (Xx; —n) dlnL(p) o
op 12 1 —p) ’ op
n (Xx; —n)
- = 0
P 1 —p)
n(l—p)— pEx; —n) _
— — = 0
p(1 —p)
n—np —piIx; + np =0
n—prx; =0
A o 1
plx; = n Pm.ie = 27;(1_ = ?
% InL(p) _ n (Tx; —n) -0
ap2 p? (1 — p)?

~p= 1/X ism.l.e forp.



Moment Method for Parameter of Geometric Distribution

X ~ Goe(p) ,firstcase:f(x;p) =pq* E(X) = 1%9 :

= Iy, = E(x* =M
mk — n ) k — ( ) y mk - k
1 _ _
ml:zzi:X' Mle(X):%
my = M1
— 1—p — ~ 1
X :T _)szl_p — Pmoment :1—|—)?

X ~ Goe(p) ,second case: f(x;p) =pqg* ! E(X) = % ,

D k
m, = ,Mk:E(X) , ™ mk=Mk

n

1 _
2% X M, =EX) = >

n

my
my = M
X

< |

1 — A 1
=; _>Xp=1 — DPmoment =7

Note: In all distributions, it is not a requirement. Moment Method equal to the m.l.e Method.
For example, in Beta distribution, or in some cases we cannot use m.l.e. method.

Q//Ism.le p = % unbiased estimator for p in Geo. distriution? p = le



HW:Ism.le p = :1)? = néxi unbiased estimator for p in Geo. distribution? f(x; p) = p g*.

Exponential Family
Q// Is Geometric distribution Geo(p) belongs to exponential family?

D fx p)= pqgq* , x=0,1, ..

f(x; p) = expin f(x; p))

= expl|lnp + xIn(1 — p)]

AB) = In(1 —p) , B(x) =x,C(O) =Inp, D(x)=0

o f(x; p) of Geometric distribution belongs to exponential family.

In arssn;

f(x1,x2, ..., x5 p) = exp(ninp + In(1 — p) X x;)

<~ 2B(X;)) = 2 x; issuff.est. for p.

2)f(x; p)= pg* 1!t , x= 1,2, ...

f(x; p) = expildn f(x; p))

= expllnp + (x — 1) In(1 — p)]

= exp [ln (ﬁ) + xIn(1 — p)]

A(P)=In(1—p) , B(x) =x,C(O) =In (1%) , D(x)=0

o f(x; p) of Geometric distribution belongs to exponential family.

INn arssn;
- — _p — .
F ez, s 05 D) = exp (nin (525) +In(1 — p) 3 x,)

-~ BX;)) = X x; issuff.est.forp



5) Negative Binomial Distribution

Independent Bernoulli trials are performed until (r) successes appear, define the r.v. X is the
number of failure trials before getting the r—th success trial, then a r.v. X defined to have (N.B.)
dist. if the p.d.f. of X given by:

|o(x)={cxx+r_1IOqu X=0,1,2,....

Where the parameters (r) and (p) satisfy [r=1, 2, ...., 0 <p <1].

X: No. of failure trials before getting the r—th success.

r: No. of successes cases (fixed number).

Clearance: Let a coin tossed nine times, in ninth toss we get success trials, success trials (get 3
Heads). What is the probability of the following result?

2 r

@)

Cg : No. of failure trials before getting the (3) success trials (H)

r 3

POTT HT H TT H) — (1)(1)(1)%)(%)(

r =71 r =22

N|F I
‘NII-‘ I



