Date:	Examination No.:	Version:2021-2022	Start:25/1/2022
Module Name - Code	Analog IC Design -2120	00	
Module Language:	English		
Responsible:	Dr. Muhammed A Ibrahim		
Lecture (s):	None		
College:	College of Engineering – Salahaddin University-Erbil		
Duration:	15 weeks – 1 semester		
Course outcomes:	At the end of the semester, students will be able to		
	- carry out research and development in the area of analog signal IC design.		
	- analysis and design of operational amplifiers (OPAMPs) based structures in		
	terms of input and output resistances, their gain and their frequency response		
	- analysis and design some op-amp based special circuits		
	amplifiers		
	- analysis and design of active filters		
	- design of oscillator circuit		
	- carry out application	s of a special IC which is called	d "Triple 5" or "555".
Course Content:	A) Theoretical Part		
	Integrated Circuits. General Introduction, Basic principles.		
	• Operational amplifiers. Introduction to operational amplifier, Block		
	diagram of a typical Op-Amp, Ideal vs. Prostical anomasis onemp personators (Voltage and surrent affects		
	• Ideal vs. Fractical opamps. opamp parameters (voltage and current offsets, CMRR_Slew Rate) opamp freequency response opamp analysis		
	 Applications of Op-Amp: Finite Gain amplifier, Unity gain amplifier. 		
	Inverting type of finite gain amplifier, Non-inverting type of finite gain		
	amplifier, Summing point amplifier, Integrator, Differentiator, Voltage		
	Follower, Differ	ence Amplifier, Adder-Subtr	actor, Voltage Regulators
	(Fixed voltage	regulators, Adjustable volta	ge regulators, Switching
	Regulators), N	egative Resistance Converte	er, Gyrator, Generalized
	Impedance Conv	erter.	nologias
	Active filters: F	ilters and filter types. Transf	pologies. er functions Poles zeros
	quality factor & po	le frequency. Second-order fi	ilters. Higher-order filters.
	Filter Approximation	is, Gain & phase distortions	
	➢ Oscillators: Osci	llator Principles, The Wien-Bi	ridge Oscillator, Distortion
	Reduction in a Linea	r Oscillator, Phase-Shift Oscilla	ator, Quadrature Oscillator,
	LC Oscillators (Hare	tly Oscillator, Colpitts Oscillat	or), Crystal Oscillator
	 Specialized IC application 	pplications: 555 Timer: Pin cor	ifiguration, Block diagram,
	application of 555 as	Monostable and Astable Mult	ivibrator.
	 Special-Purpose Amplifiers Operation 	Op-Amp Circuits: Instrument	differe (OTAs) Log and
	Antilog Amplifiers	Converters and Other On-Amn	Circuits.
		content and other op minp	
	B) Practical Part		
	• Experiment No.1	-Push Pull Amplifier	

	• Experiment No.2 -Tuned Amplifier		
	• Experiment No.3 -Differential Amplifier using BJT		
	• Experiment No.4		
	• Opamp basics (Inverting, Non-Inverting, Voltage Follower)		
	• Opamp basics (Measurement of input & output Impedances)		
I	• Experiment No.5		
	• Opamp basics (Common Mode Rejection Ratio measurement)		
	• Opamp circuits (Adder & differential amplifier)		
	 Experiment No.6 - Special Onamp circuits (Log and Antilog Amplifiers) 		
	Experiment No 7		
	• Experiment No. /		
	 Active High Fass & Low Fass Friters Oscillators (Wien bridge oscillator & Square Wave Generator) 		
	• Experiment No. 9. Transistor on a switch		
	• Experiment No.8 - Fransistor as a switch		
	• Experiment No.9 - Astable Multivibrator		
	• Experiment No.10 -Bistable Multivibrator		
	• Experiment No.11 - Monostable Multivibrator		
	• Experiment No.12 - Voltage Regulator.		
Literature:	- Thomas L. Floyd, Electronic Devices, 9 th Edn, Prentice-Hall, 2012		
	- Robert L. Boylestad, Louis Nashelsky, Electronic devices and circuit theory,		
	11 th Edn, Pearson, 2013		
	- Jeffrey Beasley, Guillermo Rico & Rolfe Sassenfeld, Advanced Modern		
	Electronics, (print replica), 2019 Edition.		
Type of Teaching:	2 hrs. in lectures		
Due veguiaitage	2 hrs. in practice		
Pre-requisites:	None Analog Electronics Circuits		
Modules:	Analog Electronics Circuits		
Frequency:	Spring Semester		
Requirements for	For the award of credit points, it is necessary to pass the module requirements that		
credit points:	contain:		
	Examinations during the academic semester, Assignments, a Seminar and Final		
	examination.		
	Student's attendance is required in all classes (10% of absences results in		
O	withdrawing the student from the Final Exam).		
Credit point:	3		

Grade Distribution:	The following grade system is used for the evaluation of the module:		
	The module exam is based on the summation of two categories of evaluations:		
	First: (50%) of the mark is based on the academic semester effort which		
	includes (35%) for Theoretical Part and (15%) for Practical Part distributed as		
	following:		
	A) Theoretical Part:		
	- Three examinations during the academic semester, each out of 7%		
	- Two assignments each out of 4%		
	- One seminar out of 6%		
	B) Practical Part		
	- Eleven Reports each out of 1%		
	- Two quiz examinations each out of 2%		
	Second: (50%) of the mark is based on final examination that is comprehensive		
	for the whole of the study materials reviewed during the academic semester which		
	includes (40%) for Theoretical Part and (10%) for Practical Part.		
Work load:	The workload is 162 hrs. It is the result of 60 hrs. face-to-face study and 102 hrs.		
	self-studies (Assignments, preparation for exam and applications).		