Principles Accounting in English 2

CHAPTER FOUR INVENTORY

ACCOUNTING DEPATMENT

2022-2023

Inventories are asset items that a company holds for sale in the ordinary course of business, or goods that it will use or consume in the production of goods to be sold. The description and measurement of inventory require careful attention. The investment in inventories is frequently the largest current asset of merchandising (retail) and manufacturing businesses.

TYPES OF INVENTORIES

1- Merchandising Inventory
2- Manufacturing Inventories

* Raw materials
* Work-in-process
* Finished goods
Merchandising Company
Wal-Mart Stores, Inc.

TYPES OF INVENTORY SYSTEMS

1- Perpetual Inventory System

2- Periodic System

Comparing Perpetual and Periodic Systems

To illustrate the difference between a perpetual and a periodic system, assume that a Company had the following transactions during the current year.

The Lothridge Wholesale Beverage Company purchases soft drinks from producers and then sells them to retailers. The company began 2018 with merchandise inventory of $\$ 120,000$ on hand. During 2018 additional inventory transactions include:

- Purchases of merchandise on account totaled \$620,000, with terms 2/10, n/30.
- Freight charges paid by Lothridge were \$16,000.
- Merchandise with a cost of \$20,000 was returned to suppliers for credit.
- All purchases on account were paid within the discount period.
- Sales on account totaled \$830,000. The cost of soft drinks sold was \$550,000.
- Inventory remaining on hand at the end of 2018 totaled \$174,000.

The above transactions are recorded in summary form according to both the perpetual and periodic inventory systems using the gross method:

(\$ in thousands)					
Perpetual System			Periodic System		
Purchases					
Inventory	620		Purchases ...	620	
Accounts payable		620	Accounts payable		620
Freight					
Inventory	16		Freight-in ..	16	
Cash................................		16	Cash ..		16
Returns					
Accounts payable	20		Accounts payable	20	
Inventory		20	Purchase returns		20
Discounts					
Accounts Payable	600		Accounts Payable	600	
Inventory (\$600 $\times 2 \%$)		12	Purchase discounts (\$600 $\times 2 \%$)		12
Cash		588	Cash ...		588
Sales					
Accounts receivable	830		Accounts receivable	830	
Sales revenue		830	Sales revenue		830
Cost of goods sold	550		No entry		
Inventory		550			

And also you can see this example for Fesmire Company

Beginning inventory	100 units at $\$ 6=\$ 600$
Purchases	900 units at $\$ 6=\$ 5,400$
Sales	600 units at $\$ 12=\$ 7,200$
Ending inventory	400 units at $\$ 6=\$ 2,400$

Fesmire records these transactions during the current year as shown below:

Perpetual Inventory System		Periodic Inventory System		
Beginning inventory, 100 units at \$6				
The Inventory account shows the inventory on hand at $\$ 600$.		The Inventory account shows the inventory on hand at $\$ 600$.		
Purchase 900 units at \$6				
Inventory Accounts Payable	$5,400 \quad 5,400$	Purchases Accounts Payable	$5,400$	5,400
Sale of 600 units at \$12				
Accounts Receivable Sales Revenue	$7,200 \quad 7,200$	Accounts Receivable Sales Revenue	7,200	7,200
Cost of Goods Sold (600 at \$6)	$3,600$	(No entry)		
Inventory	3,600			
End-of-period entries for inventory accounts, 400 units at \$6				
No entry necessary. The Inventory account shows the ending balance of $\$ 2,400(\$ 600+\$ 5,400-\$ 3,600)$.		Inventory (ending, by count)	2,400	
		Cost of Goods Sold Purchases Inventory (beginning)	3,600	$\begin{array}{r} 5,400 \\ 600 \end{array}$

Inventory Cost Flow Assumptions

Regardless of whether the perpetual or periodic system is used, it's necessary to assign dollar amounts to the physical quantities of goods sold and goods remaining in ending inventory. Unless each item of inventory is specifically identified and traced through the system, assigning dollars is accomplished by making an assumption regarding how units of goods) and their associated costs) flow through the system. We examine the common cost flow assumptions next. In previous illustrations, dollar amounts of the cost of goods sold and the cost of ending inventory were assumed known. However, if various portions of inventory are acquired at different costs, we need a way to decide which units were sold and which remain in inventory. The below Illustration will help explain.

The Browning Company has the following inventory information for 2018:			
Beginning Inventory and Purchases During 2018			
Date	Units	Unit Cost*	Total Cost
Jan. 1 (Beginning Inventory)	4,000	\$5.50	\$22,000
Purchases:			
Jan. 17	1,000	6.00	6,000
Mar. 22	3,000	7.00	21,000
Oct. 15	3,000	7.50	22,500
Goods available for sale	11,000		\$71,500
Sales			
Date of Sale	Units		
Jan. 10	2,000		
Apr. 15	1,500		
Nov. 20	3,000		
Total	$\underline{6,500}$		
*Includes purchase price and cost of			

Browning began the year with 4,000 units and purchased another 7,000 units, so there were 11,000 units available for sale. Of this amount, 6,500 units were sold. This means 4,500 units remain in ending inventory.

What is the cost of the 6,500 units sold? In other words, which of the 11,000 units available for sale were sold? If all units, including beginning inventory, were purchased at the same price, then the answer would be simple. However, that rarely is the case. Using the numbers given, let's consider the question as follows:

Beginning inventory (4,000 units @ \$5.50)
Plus: Purchases (7,000 units @ various prices)
Cost of goods available for sale (11,000 units)
Less: Ending inventory (4,500 units @ ?)
Cost of goods sold (6,500 units @ ?)

The $\$ \mathbf{7 1 , 5 0 0}$ in cost of goods available for sale must be allocated to ending inventory and cost of goods sold.

Let's turn our attention now to the various inventory methods that can be used to achieve the allocation between ending inventory and cost of goods sold.

Inventory Methods Evaluation

1- First-In, First-Out (FIFO)
2- Last-In, First-Out (LIFO)
3- Average Cost

Perpetual Inventory System

1- First-in First-out Method - FIFO

The ending inventory and cost of goods sold will have the same amounts in a perpetual inventory system as in a periodic inventory system when FIFO is used. This is because the same units and costs are first in and first out whether cost of goods sold is determined as each sale is made or at the end of the period as a residual amount. The application of FIFO in a perpetual system is shown in Illustration

Date	Purchased Sold	Balance
Beginning inventory	$4,000 @ \$ 5.50=\$ 22,000$	4,000@\$5.50 = \$22,000
Jan. 10	$2,000 @ \$ 5.50=\$ 11,000$	2,000@\$5.50=\$11,000
Jan. 17	1,000@\$6.00=\$6,000	$\left.\begin{array}{l} \text { 2,000 @ \$5.50 } \\ 1,000 @ \$ 6.00 \end{array}\right\} \$ 17,000$
Mar. 22	$3,000 @ \$ 7.00=\$ 21,000$	$\left.\begin{array}{l} 2,000 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 3,000 @ \$ 7.00 \end{array}\right\} \$ 38,000$
Apr. 15	1,500@ \$5.50=\$8,250	$\left.\begin{array}{r} 500 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 3,000 @ \$ 7.00 \end{array}\right\} \$ 29,750$
Oct. 15	3,000@\$7.50=\$22,500	$\left.\begin{array}{r} 500 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 3,000 @ \$ 7.00 \\ 3,000 @ \$ 7.50 \end{array}\right\} \$ 52,250$
Nov. 20	$\begin{aligned} & 500 @ \$ 5.50+ \\ & 1,000 @ \$ 6.00+ \\ & 1,500 @ \$ 7.00=\$ 19,250 \end{aligned}$	$\left.\begin{array}{l} 1,500 @ \$ 7.00 \\ 3,000 @ \$ 7.50 \end{array}\right\} \stackrel{\$ 33,000}{=}$
	Total cost of goods sold $=\$ 38,500$	

2-Last-in First-out - LIFO

The application of LIFO in a perpetual system is shown in Illustration. Each time inventory is purchased or sold, the LIFO layers are adjusted.

Date	Purchased	Sold	Balance	
Beginning inventory	4,000 @ \$5.50=\$22,000		4,000 @ \$5.50 =	\$ 22,000
Jan. 10		2,000 @ \$5.50 = \$ 11,000	2,000 @ \$5.50 =	\$ 11,000
Jan. 17	1,000 @ \$6.00 = \$6,000		$\left.\begin{array}{r} 2,000 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \end{array}\right\}$	\$ 17,000
Mar. 22	3,000 @ \$7.00 = \$ 21,000		$\left.\begin{array}{l} 2,000 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 3,000 @ \$ 7.00 \end{array}\right\}$	\$38,000
Apr. 15		1,500 @ \$7.00 = \$ 10,500	$\left.\begin{array}{l}\text { 2,000 @ } \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 1,500 @ \$ 7.00\end{array}\right\}$	\$27,500
Oct. 15	3,000 @ \$7.50=\$22,500		$\left.\begin{array}{r} 2,000 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 1,500 @ \$ 7.00 \\ 3,000 @ \$ 7.50 \end{array}\right\}$	\$50,000
Nov. 20		3,000 @ \$7.50 = \$ 22,500	$\left.\begin{array}{r} 2,000 @ \$ 5.50 \\ 1,000 @ \$ 6.00 \\ 1,500 @ \$ 7.00 \end{array}\right\}$	\$27,500
	Total cost of goods sold	$=\$ 44,000$		

3- Average Cost

The weighted-average unit cost in a perpetual inventory system becomes a moving-average unit cost. A new weighted-average unit cost is calculated each time additional units are purchased. The new average is determined after each purchase.

HOUSTON ELECTRONICS

Astro Condensers

Date	Explanation	Units	Unit Cost	Total Cost	Balance in Units
1/1	Beginning inventory	100	\$10	\$ 1,000	100
4/15	Purchases	200	11	2,200	300
8/24	Purchases	300	12	3,600	600
9/10	Sale	550			50
11/27	Purchases	400	13	5,200	450
				\$12,000	

First-In, First-Out (FIFO)

finto Sottinnetnat

Last-In, First-Out (LIFO)

Illustration 6A-3
Perpetual system-LIFO

system-LIFO	Date	Purchases	Cost of Goods Sold	(iil minits an	
	January 1			(100@\$10)	\$1,000
	April 15	(200@\$11) \$2,200		(100@\$10)	\$3200
				(200@\$11)	53,20
	August 24	(300@\$12) \$3,600		(100@\$10)	
				(200@\$11)	\$6,800
				(300@\$12)	
	September 10		(300@\$12)		
			(200@\$11)		
			(50@\$10)	(50@\$10)	\$ 500
Cost of goods sold			\$6,300		
	November 27	(400@\$13) \$5,200		(50@\$10)	5700
Endinginirentory				(400@\$13)	20,700

Average-Cost

|l|ustration 6A-4
Perpetual system-
average-cost method

Cost of gools sold
Ending inventory

Date	Purchases	Costof(GondSsodd	$\begin{aligned} & \text { Balance } \\ & \text { (in miltsand cost) } \end{aligned}$
Jamay 1			(100 \$ \$10) \$1,00
Apill 15	(200@ 811158220		(300 \$10.667) 83,200
Algut24	(300@ \$12) 53,600		(600 \$ \$113,3) 85,80
Sepemerer 10		(550@811.33)	(50@\$11333) \$ 967
		- 60.233	
November 27	(400@ \$13) $\$ 5.220$		

EXAMPLE: 1

The company has the same inventory, purchases, and sales data for the month of March as shown earlier:
Inventory: March 1
Purchases: March 10
200 units
@ \$4.00
\$ 800
March 20
500 units @ \$4.50
2,250
March 30
400 units @ \$4.75
1,900
300 units
@ $\$ 5.001,500$
Sales:
March 15
March 25
500 units
400 units
The physical inventory count on March 31 shows 500 units on hand.
Instructions:
Under a perpetual inventory system, determine the cost of inventory on hand at March 31 and the cost of goods sold for March under (a) FIFO, (b) LIFO, and (c) average-cost.

EXAMPLE: 2

Jensen's Department Store uses a perpetual inventory system. Data for product E2-D2 include the following purchases.

Date	Number Unit of		Units Price
7	50	$\$ 10$	
July 28	30	13	

On June 1 Jensen's sold 30 units, and on August 27, 40 more units.
Instructions:
Prepare the perpetual inventory schedule for the above transactions using (1) FIFO, (2) LIFO, and (3) moving-average cost.

EXAMPLE: 3

Boarders sells a snowboard, Xpert, that is popular with snowboard enthusiasts. Below is information relating to Boarders's purchases of Xpert snowboards during September. During the same month, 121 Xpert snowboards were sold. Boarders uses a periodic inventory system.

Date	Explanation	Units	Unit Cost	Total Cost
Sept. 1	Inventory	26	\$ 97	\$ 2,522
Sept.	Purchases	45	102	4,590
Sept. 19	Purchases	20	104	2,080
Sept. 26	Purchases	$\underline{50}$	105	5,250
	Totals	141		\$14,442

Instructions:

(a) Compute the ending inventory at September 30 and cost of goods sold using the FIFO and LIFO methods. Prove the amount allocated to cost of goods sold under each method.
(b) For both FIFO and LIFO, calculate the sum of ending inventory and cost of goods sold. What do you notice about the answers you found for each method?

EXAMPLE: 4

Yount Company reports the following for the month of June.

	Units	Unit Cost		Total Cost
	June 1 Inventory	200	$\$ 5$	
12 Purchase	300	6		1,000
				1,800

23 Purchase 500
7
3,500
30 Inventory
120

Instructions:
(a) Compute the cost of the ending inventory and the cost of goods sold under (1) FIFO and (2)

LIFO.
(b) Which costing method gives the higher ending inventory? Why?
(c) Which method results in the higher cost of goods sold? Why?

EXAMPLE:5

Jones Company had 100 units in beginning inventory at a total cost of $\$ 10,000$. The company purchased 200 units at a total cost of $\$ 26,000$. At the end of the year, Jones had 80 units in ending inventory.

Instructions:

(a) Compute the cost of the ending inventory and the cost of goods sold under (1) FIFO, (2) LIFO, and (3) average-cost.
(b) Which cost flow method would result in the highest net income?
(c) Which cost flow method would result in inventories approximating current cost in the balance sheet?
(d) Which cost flow method would result in Jones paying the least taxes in the first year?

EXAMPLE: 6

Klugman Appliance uses a perpetual inventory system. For its flat-screen television sets, the January 1 inventory was 3 sets at $\$ 600$ each. On January 10, Klugman purchased 6 units at $\$ 660$ each. The company sold 2 units on January 8 and 4 units on January 15.

Instructions:

Compute the ending inventory under (1) FIFO, (2) LIFO, and (3) moving-average cost.

EXAMPLE: 7

Yount Company reports the following for the month of June.

	Date	Explanation	Units	Unit Cost	Total Cost
June	1	Inventory	200	\$5	\$1,000
	12	Purchase	300	6	1,800
	23	Purchase	500	7	3,500
	30	Inventory	120		

Instructions
(a) Calculate the cost of the ending inventory and the cost of goods sold for each cost flow assumption, using a perpetual inventory system. Assume a sale of 400 units occurred on June 15 for a selling price of $\$ 8$ and a sale of 480 units on June 27 for $\$ 9$.
(b) How do the results differ from E6-6 and E6-8?
(c) Why is the average unit cost not $\$ 6\left[\left(\$ 5 __{-} \$ 6 _\$ 7\right) ~ _3=\$ 6\right]$?

EXAMPLE: 8

Information about Boarders is presented in E6-4. Additional data regarding Boarders' sales of Xpert snowboards are provided below. Assume that Boarders uses a perpetual inventory system.

Date		Units	Unit Price	
	Sale	$\frac{12}{12}$	$\$ 199$	$\$ 2,388$
Sept. 16	Sale	50	199	9,950
Sept. 29	Sale	$\underline{59}$	209	$\underline{12,331}$
	Totals	$\underline{121}$		$\$ 24,669$

Instructions:

(a) Compute ending inventory at September 30 using FIFO, LIFO, and moving-average cost.
(b) Compare ending inventory using a perpetual inventory system to ending inventory using a periodic inventory system (from E6-4).
(c) Which inventory cost flow method (FIFO, LIFO) gives the same ending inventory value under both periodic and perpetual? Which method gives different ending inventory values?

