Blue Print (As per PU Board)

Торіс	1 mark questions	2 marks questions	3 marks questions	5 marks questions	Total Marks
Chemical Kinetics	1	1	-	1	8

One mark questions

- 1. The unit of rate constant of a reaction is $mol^{-1}Ls^{-1}$. What is the order of the reaction? Answer: Second order or 2
- 2. What happens to the half-life period for a first order reaction, if the initial concentration of the reactants is increased?

Answer: No change or remains constant Answer: A

3. **Give an example of a zero-order reaction** Answer: Decomposition of hydrogen iodide on the surface of gold

Two marks questions

- 4. A reaction is first order with respect to the reactant and *A* and second order w.r.t the reactant *B* in a reaction, $A+B \rightarrow$ product.
 - (i) Write the differential rate equation
 - (ii) How is the rate of the reaction affected on increasing the concentration of *B* by 2 times?

Answer: (i)
$$\frac{dx}{dt} = k[A][B]^2$$
 (1 mark)

(ii)
$$\frac{dx}{dt} = k [A] [2B]^2 = 4 \text{ times}$$
 (1 mark)

Define collision frequency. Give an example for pseudo-first order reaction Answer: It is the number of collisions per second per unit volume of the reaction mixture. (1 mark) Acid hydrolysis of ester or

$$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$$
 (1 mark)

or Inversion of cane sugar or

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$$

6. Given $2NO_{(g)} + O_{2(g)} \to 2NO_{2(g)}$; rate $= k [NO]^2 [O_2]^1$

By how many times does not rate of the reaction change when the volume of the reaction vessel is reduced to $\frac{1}{3}$ rd of its original volume? Will there be any change in the order of the reaction?

Answer: Rate
$$= k [NO]^2 [O_2]^1$$

 $= k [3]^2 [3]^1 = 27$ times (1 mark)
There will be no change in the order. (1 mark)

Three marks questions

7. A certain first order reaction is half completed in 46 mins. Calculate the rate constant and also time taken for 75% completion of the reaction. (3 marks)

Answer:
$$k = \frac{0.693}{t_{1/2}}$$

= $\frac{0.693}{46} = 0.015 \,\mathrm{min}^{-1}$ (1 mark)
To find $t_{75\%}$, $[R]_0 = 100$

$$[R] = 25$$

$$\therefore t_{75\%} = \frac{2.303}{k} . \log \frac{[R_0]}{[R]}$$
(1 mark)

$$=\frac{2.303}{0.015} \cdot \log \frac{100}{25} = 92.02 \text{ mins}$$
(1 mark)

8. Show that in case of a first order reaction, the time taken for completion of 99.9% reaction is ten times the time required for half change of the reaction. (3 marks) Answer: To show that $t_{09.9\%} = 10t_{50\%}$ (1 mark)

For
$$\frac{t_{99,9\%}}{t_{50\%}} = \frac{\frac{2.303}{k} \log \frac{[R_0]}{[R]}}{\frac{0.693}{k}}$$
 (1 mark)

$$= \frac{2.303 \cdot \log \frac{100}{0.1}}{0.693}$$

$$= \frac{2.303 \times 3}{0.693} = 9.96 \approx 10$$

$$\therefore t_{99,9\%} = 10t_{50\%}$$
(1 mark)

9. The half-life for radioactive decay of ${}^{14}C$ is 5730 years. An archaeological artifact containing wood had only 80% of the ${}^{14}C$ found in a living tree. Estimate the age of the sample. (3 marks) Answer: Radioactive decay follows first order kinetics

: Decay constant
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{5730} \,\mathrm{yr}^{-1}$$
 (1 mark)

$$t = \frac{2.303}{k} \cdot \log \frac{[R_0]}{[R]}$$

$$= \frac{2.303}{\frac{0.693}{5730}} \log \left(\frac{100}{80}\right)$$

$$= \frac{2.303 \times 5730}{0.693} \times 0.0969 = 1845 \text{ years}$$
(1 mark)

Five marks questions

10. (a) Derive integrated rate equation for the first order reaction.(3 marks)(b) According to collision theory, what are the two factors that lead to effective collision?(2 marks)Answer: (a) The rate of reaction is directly proportional to the *I* power of the concentration of reactantR R - P

$$Rate = \frac{-d[R]}{dt} = k[R]$$
(1 mark)

$$\frac{d[R]}{dt} = -k[R] \text{ or } \frac{d[R]}{[R]} = -k.dt$$
Integrating both sides, $\int \frac{d[R]}{[R]} = -\int k.dt$

$$ln[R] = -k \cdot t + I (1) \text{ where } I = \text{integration constant}$$
(1 mark)
when $t = 0$, $[R] = [R]_0$ $\therefore I = ln[R]$
substituting in (1) we get

$$ln[R_0] - ln[R] = kt$$

$$ln \frac{[R]_0}{[R]} = kt \text{ or } k = \frac{1}{t} ln \frac{[R]_0}{[R]} \text{ or } k = \frac{2.303}{t} . \log \frac{[R]_0}{[R]}$$
(1 mark)
(b) (1) Activation energy (1 mark)
(2) Proper orientation of the colloiding molecules (1 mark)
(3) The rate of a particular reaction doubles when the temperature changes from 300 K to 310 K.
calculate the energy of activation of the reaction [given $R = 8.314 JK^{-1}mol^{-1}$] (3 marks)
(b) Show that the half-life period of a first order reaction is independent of initial concentration of
reacting species. (2 marks)
(b) Show that the half-life period of a first order reaction is independent of initial concentration of
reacting species. (2 marks)
(1 mark)
 $Ea = \frac{2.303 \times 8.314 \times 310 \times 300}{10} . \log \frac{2}{1}$ (1 mark)
 $Ea = \frac{2.303 \times 8.314 \times 310 \times 300}{10} . \log \frac{2}{1}$ (1 mark)
 $Ea = \frac{2.303}{t} \log t \left[\frac{R_0}{R} \right]$ (1 mark)
 $Ea = 53598.59 J \text{ or } 53.598 kJ$ (1 mark)
(b) $k = \frac{2.303}{t} \log t \left[\frac{R_0}{R} \right]$...(1) (1 mark)
When $t = t_{1/2}, [R] = \frac{[R_0]}{2}$
Substituting in (1), $t_{1/2} = \frac{0.693}{k}$ (1 mark)
12. Rate constant of a first order reaction $0.0693 \min^{-1}$. Calculate the percentage of the reactant
remaining at the end of 60 minutes (3 marks)
Answer: $k = \frac{2.303}{t} \log \frac{[R_0]}{[R]}$ (1 mark)
 $0.0693 = \frac{2.303}{60} \log \frac{100}{[R]}$ (1 mark)
 $[R] = 1.56\%$ (1 mark)
 R

Half-life
$$=\frac{0.093}{0.0693}=10$$
 (1 mark)

∴ Reactant remaining at the end of 60 mins

$$=100 \times \frac{1}{2^6} = 1.56\%$$
 (1 mark)

(b) Show that half-life period for a zero order reaction is directly proportional to initial concentration. (2 marks)

Answer:
$$k = \frac{[R_0] - [R]}{t}$$
 for a zero order reaction
At $t = t_{1/2}$; $[R] = \frac{1}{2}[R_0]$ (1 mark)

$$\therefore k = \frac{\left[R_{0}\right] - \frac{1}{2}\left[R_{0}\right]}{t_{1/2}} \Longrightarrow t_{1/2} = \frac{\left[R_{0}\right]}{2k} \text{ or } t_{1/2} \propto \left[R_{0}\right]$$
(1 mark)