Salahaddin University-Erbil Science College Physics Department

# Nuclear Physics Lectures 

$4^{\text {th }}$ Year Physics

Prepared by
Dr. Mohammed Issa Hussein

## Chapter One

## Basic Nuclear Concepts

## Basic Nuclear Properties

## Nomenclature

As in any specialized field, a certain nomenclature has developed based on convenience and tradition. The important terms are given bellow

Nuclide: A specific nuclear species, with a given proton number $Z$ and neutron number $N$.
Example 1.1: ${ }_{4}^{7} \boldsymbol{B} \boldsymbol{e}$ this can be written in symbol form ${ }_{Z}^{A} \boldsymbol{X}_{\boldsymbol{N}}$ where;
$Z=$ atomic number (number of proton) $=4$
$A=$ mass number (number of protons plus number of neutrons) $=Z+N=7$
$N=$ neutron number (number of neutron) $=A-Z=7-4=3$
Isotopes: Nuclides of same $Z$ and different $N$
Example 1.2: ${ }_{4}^{7} B e,{ }_{4}^{8} B e,{ }_{4}^{9} B e,{ }_{4}^{10} B e$
${ }_{4}^{7} \boldsymbol{B e}$ : (7-4=3 neutrons)
${ }_{4}^{8} \boldsymbol{B e}$ : (8-4=4 neutrons)
${ }_{4}^{9} \boldsymbol{B e}$ : (9-4=5 neutrons)
${ }_{4}^{10} \boldsymbol{B e} \boldsymbol{e}$ (10-4=6 neutrons)
all of them in the same Z , while they are in the different N
sotones: Nuclides of same $N$ and different $Z$
Example 1.3: ${ }_{2}^{5} \mathrm{He},{ }_{3}^{6} \mathrm{Li},{ }_{4}^{7} \mathrm{Be}$
${ }_{2}^{5} \mathrm{He}:(5-2=3$ neutrons $)$
${ }_{3}^{6} L i:(6-3=3$ neutrons $)$
${ }_{4}^{7} \boldsymbol{B e}:(7-4=3$ neutrons $) \quad$ all of them in the same $N$, while they are in the different $Z$
Isobars: Nuclides of same mass number $A(A=Z+N)$
Example 1.4: ${ }_{3}^{7} \boldsymbol{L i},{ }_{4}^{7} \boldsymbol{B} \boldsymbol{e},{ }_{5}^{7} \boldsymbol{B} \quad$ all of them in the same A
The isotopes, isotones, isobars and their symbols can be shown in the table (1.1)
Isomer: Nuclides in an excited state with a measurable half-life
Example 1.5: ${ }_{84}^{210} \mathrm{Po}$ (polonium)
Half-life $=138.38$ days, $\alpha-$ emitting and $\gamma-$ radiation.

Table 1.1: Light elements and their possible atoms.

| Element | Atomic (Proton) number Z | Electron number Z | Neutron number N | $\begin{gathered} \text { Mass number } \\ \text { A } \end{gathered}$ | Symbol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hydrogen | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{gathered} \hline{ }_{1}^{1} H \text { (proton } \\ { }_{1}^{2} H \text { (deuteron } \\ { }_{1}^{3} H \text { (tritium) } \\ { }_{1}^{4} H \end{gathered}$ |
| Helium | $\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{gathered} { }_{2}^{3} \mathrm{He} \\ { }_{2}^{4} \mathrm{He}(\alpha \text {-particle }) \\ { }_{2}^{5} \mathrm{He} \\ { }_{2}^{6} \mathrm{He} \end{gathered}$ |
| Lithium | $\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$ | $\begin{aligned} & \hline{ }_{3}^{6} L i \\ & { }_{3}^{7} L i \\ & { }_{3}^{8} L i \end{aligned}$ |
| Beryllium | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$ | $\begin{aligned} & \begin{array}{l} 7 \\ 4 \\ { }_{4}^{8} B e \\ { }_{4}^{9} \mathrm{Be} \\ { }_{4}^{10} \end{array}{ }_{4}{ }^{20} B e \end{aligned}$ |

## Nucleon: Neutron or proton

Mesons: Particles of mass between the electron mass $\left(m_{0}\right)$ and the proton mass $\left(M_{H}\right)$. The best known mesons ate the $\pi$-mesons ( $\approx 270 m_{0}$ ) which play an important role in nuclear force, $\mu$-mesons ( $207 m_{0}$ ) which are important in cosmic-ray phenomena.

Electron: Negative charged particle of mass $\left(m_{0}\right)$
Positron: Positive charged electron of mass $\left(m_{0}\right)$
Photon: Quantum of electromagnetic radiation like ( $\gamma$-ray, x-ray, light...)

## Nuclear Mass

Early chemical methods of mass comparison and already brought out the following approximate relation):

$$
\begin{equation*}
M \approx \text { Integer } \times M_{H} \tag{1.1}
\end{equation*}
$$

where $M=$ mass of a specific atom

$$
M_{H}=\text { mass of a hydrogen atom }
$$

The integer is now called mass number $A$
Example 1.6: $M\left({ }_{4}^{9} \mathrm{Be}\right) \approx 9 \times M_{H}$

$$
M\left({ }_{5}^{11} B\right) \approx 11 \times M_{H}
$$

It was shown by x-ray scattering (Barkla, 1911) that the number $(Z)$ of atomic electrons, and hence the number of positive nuclear charges, was not equal to the mass number A with the (neutron-proton hypothesis) we expect the mass of an atom to be:

$$
\begin{equation*}
M \approx Z M_{H}+N M_{n} \tag{1.2}
\end{equation*}
$$

where $Z=$ atomic number (number of protons in the nucleus)
$N=$ neutron number (number of neutrons in the nucleus)
$M_{n}=$ mass of neutron

## Exact Atomic Mass and Mass Excess

Any exact atomic mass $(M)$ can be written in terms of the atomic mass unit $\left(M_{u}\right)$ or $(u)$, or (amu):

$$
\begin{equation*}
M=A \pm \Delta M \tag{1.3}
\end{equation*}
$$

where $M=$ atomic mass or exact atomic mass
$A=$ mass number (is an integer $=$ total number of nucleons in the nucleus)
$\Delta M=$ Mass excess or mass defect or mass difference
Therefore the mass excess can be written :

$$
\begin{equation*}
\Delta M=\text { Mass Excess }=M-A \tag{1.4}
\end{equation*}
$$

The sign of $\Delta M$ is not always positive because of the choice of $\left({ }^{12} \mathrm{C}\right)$ as our standard of atomic mass , i.e., the unified atomic mass unit, $\left(M_{u}\right)$, is $\left(\frac{1}{12}\right)$ of the mass of an atom of the ( ${ }^{12} \mathrm{C}$ ) nuclide. Some examples are given in table (1.2), where in all cases, $(M)$ is the mass of neutral atom, that is includes all the electrons, and $\Delta M$ is the mass excess $(M-A)$ the units of the table are the atomic mass unit $M_{u}$, this unit is:
$1 M_{u}$ or $1 u=1.67 \times 10^{-27} \mathrm{~kg}$, or more correctly it is $\left(\frac{1}{12} \times M^{12} \mathrm{C} \mathrm{kg}\right)$, where $M^{12} \mathrm{C}=12.0 M_{u}$.

Table 1.2: Some isotopic masses in $M_{u}$ or amu

| Nuclide | $M$ | $A$ | $\Delta M$ (Mass Excess) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| ${ }^{1} \mathrm{H}$ | 1.007825 | 1 | +0.007825 |
| ${ }^{4} \mathrm{He}$ | 4.002603 | 4 | +0.002603 |
| ${ }^{16} \mathrm{O}$ | 15.994915 | 16 | -0.005085 |
| ${ }^{35} \mathrm{Cl}$ | 34.96885 | 35 | -0.031149 |

## Nuclear Size

When an alpha particle is very distance from a given nucleus, it has only kinetic energy $T_{\alpha}$.It comes closest to the nucleus in ahead-on collision. At that point ,the alpha particle has only potential energy $V_{p}$, if the recoil of the nucleus is neglected.

Hence, by conservation of energy, $\quad T_{\alpha}=V_{p}$
where $T_{\alpha}=1 / 2 M_{\alpha} v_{\alpha}{ }^{2}$, and $\quad V_{p}=k \frac{Z e 2 e}{D}$
where $M_{\alpha}, v_{\alpha}$ are the mass and the velocity of the alpha particle

$$
2 e=\text { charge of the alpha particle }\left(e=4.80 \times 10^{-10} e s u\right)
$$

$Z e=$ charge of the scattering nucleus

$$
D=\text { distance of closest approach }
$$

and $k=1$ in esu (electrostatic unit)
therefore

$$
\begin{equation*}
D=\frac{2 Z e^{2}}{T_{\alpha}} \tag{1.5}
\end{equation*}
$$

Example 1.7: Alpha particles show deviations from pure Coulomb scattering on uranium beyond $25 \mathrm{MeV}\left(1 \mathrm{MeV}=1.60 \times 10^{-6} \mathrm{ergs}\right)$. In that case

$$
D=\frac{2 \times 92 \times\left(4.80 \times 10^{-10}\right)^{2}}{25 \times 1.60 \times 10^{-6}} \approx 10^{-12} \mathrm{~cm}=10 \mathrm{~F}
$$

where $1 \mathrm{~F}=1$ Fermi $=10^{-13} \mathrm{~cm}=10^{-15}$ meter

If we assume that a nucleus is spherical, we may express its size in terms of its radius (R). The nuclear radius ( R ) may then be defined as the distance from the center of the nucleus; we can obtain this radius ( R ), for example, by analyzing difference types of nuclear processes, such as the scattering of fast neutron by nuclei. The experimental result is that the nuclear radius is proportional to ( $A^{1 / 3}$ ), where $(A)$ is the mass number of the nucleus, that is:

$$
\begin{equation*}
R=R_{0} A^{1 / 3} \tag{1.6}
\end{equation*}
$$

where $R_{0}$ is called the radius constant and the same for all nuclei, and has the values

$$
R_{0} \approx\left\{\begin{array}{l}
1.4 F \text { for nuclear particle scattering on nuclei }  \tag{1.7}\\
1.2 F \text { for electron scattering on nuclei }
\end{array}\right.
$$

The simple form of Eq. (1.6) would be obtained if the nucleus were a spherical assembly of $A$ hard particles. In that case, the volume of the nucleus would be proportional A and the radius proportional to $A^{1 / 3}$.

Since the volume of a sphere is $\left(\frac{4}{3} \pi R^{3}\right)$, we conclude from Eq. (1.6), that the nuclear volume is:

$$
\begin{aligned}
V=\frac{4}{3} \pi R^{3}= & \frac{4}{3} \pi\left(R_{0} A^{\frac{1}{3}}\right)^{3} \quad \text { with } R_{0}=1.2 F \\
& =\frac{4}{3} \pi R_{0}{ }^{3} A \\
& \approx 7.238 \times 10^{-45} \mathrm{~A} . \mathrm{m}^{3}
\end{aligned}
$$

That is, the volume of nucleus is proportional to the mass number $A$ of nucleus. This suggests that the nucleus is maintained at fixed average distances, independent of the number of particles. So that the volume per nuclear is a constant quantity the same for all nuclei.

Example 1.8: Determine the radius of a ${ }^{208} \mathrm{~Pb}$ (assume that $R_{0}=1.4 F$ ).
Solution: $R=R_{0} A^{1 / 3}=1.4(208)^{1 / 3} \approx 8.3 F$
Another conclusion is that nuclear matter has a constant density; this may be seen as follows:
The mass of a nucleus of mass number $A$ is approximately,

$$
M=1.67 \times 10^{-27} \mathrm{~A} . \mathrm{kg}
$$

therefore the average density $\rho$ of nuclear matter is:

$$
\begin{aligned}
& \rho=\frac{M}{V} \\
= & \frac{1.67 \times 10^{-27} \mathrm{~A} . \mathrm{kg}}{7.238 \times 10^{-45} \mathrm{A.m}}{ }^{3} \\
& 2.307 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

which means that the density of nuclear matter is nearly constant for all nuclei and it has a large value and is independent of mass number $A$.

## Nuclear Charge Distributions

Refined electron scattering experiments show that the nuclear density distribution does not have a sharp cutoff at the radius $R$, but has roughly the shape given in Fig (1.1). Nevertheless the concept of nuclear radius is often useful. Equation (1.6) applied to ${ }^{238} \mathrm{U}$ gives $(R=9 F)$.


Distance from center of nucleus

Fig 1.1: Density distribution of nuclear matter in a nucleus.

The best information we have about nuclear charge distributions comes from electron scattering, where one uses short-wavelength electrons to explore the structure. In the work of Hofstadter and colleagues at Stanford a phaseshift analysis was made of elastic electron scattering from an arbitrary charge distribution through the Coulomb interaction. The best fit to the data, on the average, was found with the following shape, illustrated in Fig. 1.2 .

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{1+e^{(r-R) / a}} \tag{1.8}
\end{equation*}
$$



Fig. 1.2: Charge Distribution of Nuclei
$\rho_{0}$ is nucleus density near the center of the nucleus;
$R$ is the radius at which the density has decreased by a factor of 2 below its central value.
Skin thickness $t$; is the measured of the surface thickness such that the distance over which the density falls from $90 \%$ of $\rho_{0}$ to $10 \%$ of $\rho_{0}$

Example 1.9: Show from Eq. (1.8) and Fig. (1.2) that the skin thickness is 4.4a. Solution: $\quad \rho(r)=\frac{\rho_{0}}{1+e^{(r-R) / a}}$

$$
0.9 \rho_{0}=\frac{\rho_{0}}{1+e^{\left(r_{1}-R\right) / a}}
$$

$$
\frac{10}{9}=1+e^{\left(r_{1}-R\right) / a} \Rightarrow \frac{10}{9}=\frac{9}{9}+e^{\left(r_{1}-R\right) / a}
$$

$$
\frac{1}{9}=e^{\left(r_{1}-R\right) / a} \quad \text { by taking the natural logarithm of each side we get, }
$$

$$
\ln 1-\ln 9=\left(r_{1}-R\right) / a ;
$$

$$
(0-\ln 9) a=r_{1}-R \Rightarrow-a \ln 9=r_{1}-R \Longrightarrow
$$

$r_{1}=R-a \ln 9 ;$ and
$0.1 \rho_{0}=\frac{\rho_{0}}{1+e^{\left(r_{2}-R\right) / a}}$
by the same way of the steps of finding the $r_{1} ; r_{2}$ becomes
$r_{2}=R+\operatorname{aln} 9$
Then $r_{2}-r_{1}=t=R+a \ln 9-(R-a \ln 9)=a \ln 9+a \ln 9=2 a \ln 9=4.4 a$ therefore Fig. (1.2) which is plot of Eq. (1.8) becomes


Fig. 1.3: Plot of Eq. (1.8) for $\rho(r)$ vs. $r$. the meaning of $\rho_{0}, R$, and $a$ are illustrated

## PROBLEMS

1.1 Find the stable nucleus that has a radius $1 / 3$ that ${ }^{189} \mathrm{Os}$ is
a. ${ }^{7} \mathrm{Li}$
b. ${ }^{4} \mathrm{He}$
c. ${ }^{10} \mathrm{~B}$
d. ${ }^{12} \mathrm{C}$
1.2 If the radius of a nucleus is given by $R=R_{0} A^{\frac{1}{3}}$ with $R_{0}=1.2 \mathrm{~F}$, what is the density of nuclear matter (a) in $\mathrm{g} / \mathrm{cm}^{3}$, (b) in nucleons $/ \mathrm{F}^{3}$ ?
1.3 Determine the approximate density of a nucleus? If the nucleus is treated as a uniform sphere. If you know that the mass of a nucleon is $\left(1.67 \times 10^{-27} \mathrm{Kg}\right)$
1.4 An 0.2 MeV proton makes a head-on collision with an alpha particle at rest. What is distance of closest approach in Fermi?

