Kurdistan Region Salahaddin University-Erbil College of Engineering Chemical-Petrochemical Engineering Department

Production of Phosphoric Acid

A Project Submitted to the Chemical-Petrochemical Engineering Department

University of Salahaddin-Erbil

in the Partial Fulfillment of the Requirement for the Degree of Bachelor of Science

in Chemical-Petrochemical Engineering

Prepare By:

Zaynab Sirwan Majed

Zana Maghdid Azeez

Supervisor:

Dr. Mohammad Jawdat

2023-2024

Abstract

This project explores the production of phosphoric acid, a vital industrial chemical with numerous applications. Beginning with a concise introduction to the significance of phosphoric acid in various industries, the study delves into the intricacies of material balance and heat balance within the production process. Material balance analysis elucidates the input-output dynamics of raw materials and products, ensuring optimal resource utilization. Meanwhile, heat balance considerations focus on the efficient management of thermal energy, essential for maintaining process integrity and sustainability. Additionally, the project investigates the design aspects of key production units, emphasizing the critical role of unit design in achieving operational efficiency and product quality. Through comprehensive analysis and design strategies, this project aims to contribute to the advancement of phosphoric acid production methodologies, fostering sustainable industrial practices and economic viability.

Supervisor's Certificate

I certify that the engineering project titled **"Production of Phosphoric Acid"** was done under my supervision at the Chemical-Petrochemical Engineering Department, College of Engineering - Salahaddin University–Erbil. In the partial fulfillment of the requirement for the degree of Bachelor of Science in Chemical-Petrochemical Engineering

Supervisor

Signature:

Name:

Date: / /

List of Contents

Abstract	ii
Supervisor's Certificate	iii
List of Contents	iv
List of Figures	vi
List of Tables	vii
1 Introduction	1
1.1 Phosphorous Acid and its History	1
1.2 Physical and Chemical Properties	3
1.2.1 Physical Properties	3
1.2.2 Chemical Properties	3
1.3 Methods of Production	4
1.3.1 Wet Process	5
1.3.1.1 Gypsum Disposal	7
1.3.1.2 Disposal to water	7
1.3.1.3 Disposal on land	7
1.3.2 Thermal Process	8
2 Methodology	10
2.1 Material Balance	10
2.1.1 Material Balance on Mill	12
2.1.2 Material Balance on Reactor	14
2.1.3 Material Balance on Filter	18
2.1.4 Material Balance on Evaporator	20
2.1.5 Material Balance on Mixing Tank	
2.1.6 Material Balance on Absorber:	22
2.1.7 Overall Material Balance	23

2.2 Energy Balance	
2.2.1 Energy Balance on Reactor	25
2.2.2 Energy Balance on Evaporator	27
3 Example of Analysis and Design	28
3.1 Design of Reactor	
Reactions:	
3.2 Design of Evaporator	30
4 Results and Conclusion	
4.1 Conclusion	36
reference	37

List of Figures

Figure 1.1-1 Consumption and uses of phosphoric acid by sectors	2
Figure 1.1-2 Wet Process Acid Production Flow Diagram	.6
Figure 1.1-3 Thermal Process Acid Production Flow Diagram	9
Figure 2-1 material balance reactor	.14
Figure 2-2Material Balance on Filter	.18
Figure 2-3 Material Balance on Evaporator	.20
Figure 2-4Material Balance on Mixing Tank	.21
Figure 2-5Material Balance on Absorber	.22
Figure 2-6 Energy Balance on Evaporator	.27
figure 3-1 evaporator design	.30
figure 3-2 tube-side friction factor	.32

List of Tables

Table-1.1 Physical Properties of Phosphoric Acid	3
table 2-1Material Balance	11
table 2-1Material Balance on Mill	13
table 2-2 material balance on reactor	17
table 2-3Material Balance on Filter	19
table 2-4 Material Balance on Evaporator	20
table 2-5Material Balance on Mixing Tank	21
table 2-6Material Balance on Absorber	23
table 3-1Design of Reactor	29

Chapter One

Introduction

1.1 Phosphorous Acid and its History

Phosphorus, a vital element in the Earth's ecosystem, plays a crucial role in various biological and industrial processes. The focus of this engineering project research is on phosphoric acid, an essential compound derived from phosphorus. Understanding the history, production methods, and properties of phosphoric acid is vital to comprehending its significance in diverse applications. The journey into the realm of phosphoric acid begins with phosphorus, a non-metallic element classified under the nitrogen family on the periodic table. Discovered by the alchemist Hennig Brand in 1669, phosphorus has since become indispensable in various fields, including agriculture, medicine, and industry. It is crucial to acknowledge the historical evolution of phosphorus as it sets the stage for the subsequent exploration of phosphoric acid. Phosphoric acid, commonly known as orthophosphoric acid (H₃PO₄), is a derivative of phosphorus with a rich history dating back to the 17th century. Its synthesis involves multiple steps, with the earliest documented method being the calcination of bones, leading to the extraction of phosphorus, which could then be oxidized to form phosphoric acid. Over time, advancements in chemical engineering have facilitated the development of various production methods, each with distinct advantages and applications. One of the largest worldwide applications for phosphate rock is in the production of phosphoric acid. It is the intermediate product between beneficiated phosphate rock and other phosphate compounds where phosphorus is the key ingredient element in the form of a phosphate. The global phosphoric acid (as P_2O_5) production capacity in 2014 was about 55 MT. The concentration of phosphoric acid can be expressed as a percentage of phosphoric acid (H₃PO₄%) or a percentage of phosphorus (P%), but normally it is expressed as a percentage of phosphorous pentoxide (P₂O₅%). Fertilizer production accounts for about 84 – 90 % of the world market for phosphoric acid and animal feed for about 6%; the rest is used in different industrial applications. The present global phosphoric acid consumption and uses by various sectors is shown in Figure (1.1).(Toama, 2016)

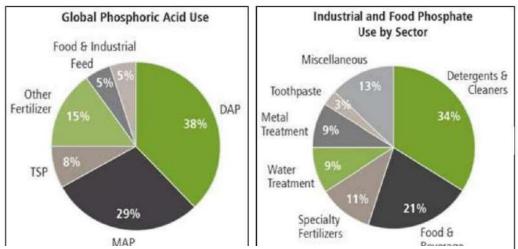


Figure 1.1-1 Consumption and uses of phosphoric acid by sectors

1.2 Physical and Chemical Properties

1.2.1 Physical Properties

Table 1.1(Australian Government, June 2022) shows the physical properties of phosphoric acid (pure).

Molecular Formula	H ₃ PO ₄
Chemical Name	Ortho Phosphoric Acid
Common Name	Phosphoric Acid
Solubility	soluble in water
Molecular Weight	9.994 g/mol
Boiling Point	260°C
Melting Point	42°C
Density	1.88 g/mL (at 25°C)
Vapor Pressure	0.03 mmHg at (20°C)
Vapor Density	3.4

Table-1.1 Physical Properties of Phosphoric Acid

1.2.2 Chemical Properties

Because phosphoric acid (H_3PO_4) is triprotic, that is, it can contribute three protons in consecutive ionization reactions, it has special chemical features. It is a weak acid that partially ionizes in aqueous solutions to produce phosphate and hydrogen ions. Because of its acidity, it is an essential ingredient in the food processing, detergent, and fertilizer industries. The corrosion-inhibiting properties of phosphoric acid are partly attributed to its capacity to bind metal ions. It also acts as a buffer, preserving pH stability in a range of applications. The primary source of phosphor utilized in the production of phosphate fertilizers is phosphoric acid. Furthermore, phosphoric acid can irritate the skin, eyes, and mucous membranes, as well as increase the risk of ulcers.

 $3 H_2 SO_4(l) + Ca_3(PO_4)_2(s) + 6 H_2O(l) \rightarrow 2 H_3PO_4(s) + 3 CaSO_4.2 H_2O(s)$

(Phosphate Rock) (Gypsum)

Side reactions:

 $CaF_2 + H_2SO_4 + 2H_2O \rightarrow 2HF + CaSO_4.2H_2O$ $6HF + SiO_2 \rightarrow H_2SiF_4 + 2H_2O$

1.3 Methods of Production

Phosphoric acid may be produced using a variety of techniques, which reflects the compound's versatility in industrial processes. Phosphoric acid is created when sulfuric acid is mixed with phosphate rocks, according to the most conventional method. An alternative technique involves the thermal breakdown of phosphorus pentoxide, resulting in fuming phosphoric acid, a highly concentrated form of phosphoric acid. There are other methods as well, such the "wet process" and the "dry process," each with their own benefits and drawbacks. Phosphoric acid manufacturing methods are chosen based on a number of considerations, including cost, efficiency, and environmental effect. The sulfuric acid method, despite being a well-established and cost-effective approach, the production of gypsum as a byproduct poses environmental issues. The thermal decomposition process, on the other hand, produces a higher concentration of phosphoric acid but may present issues with energy consumption and safety.

1.3.1 Wet Process

Phosphoric acid is mostly produced using the wet process, which combines the hemihydrate and dehydrate processes. When phosphate rock and sulfuric acid are first combined in the dehydration process, phosphoric acid and calcium sulfate (gypsum) are produced as byproducts in the form of (CaSO₄.2H₂O). The reaction takes place in a series of reactors, and the liquid phosphoric acid and solid gypsum are separated by filtering the resultant slurry. Phosphoric acid is partly dried in order to transform it into a more concentrated form in the hemihydrate process. This process improves the product's purity and is especially used in the manufacturing of certain fertilizers. The byproduct, gypsum, is represented by the formula (CaSO₄.1/2H₂O). Several crucial phases are involved in the wet process of producing phosphoric acid, as shown in a simplified flow diagram (Figure 1.2). First, phosphoric acid and gypsum are produced by digesting phosphate rock in a reactor with sulfuric acid. The solid gypsum is subsequently separated from the liquid phase of the slurry by filtering it. The liquid proceeds through further phases of concentration and filtration now that it contains phosphoric acid. Achieving the appropriate product quality may need extra filtering and hemihydrate conversion as subsequent processes. Because of the wet process's flexibility to various sources of phosphate rock, it is a frequently used technique in the phosphoric acid business. For the production of strongest acid possible, 94% sulfuric acid is used. This plays a vital role in this process since the ratio of acid to phosphate rock entering the reactor. The heat produced in the reactor usually was removed by blowing air over the slurry surface. In modern plants, vacuum flash cooling is used. This process usually yields 26%-30% P₂O₅. It can be concentrated by vacuum evaporators for further applications like fertilizer production. $Ca_3(PO_4)_2$ + $3H_2SO_4 + 6H_2O \rightarrow 2H_3PO_4 + 3(CaSO_4).2H_2O$

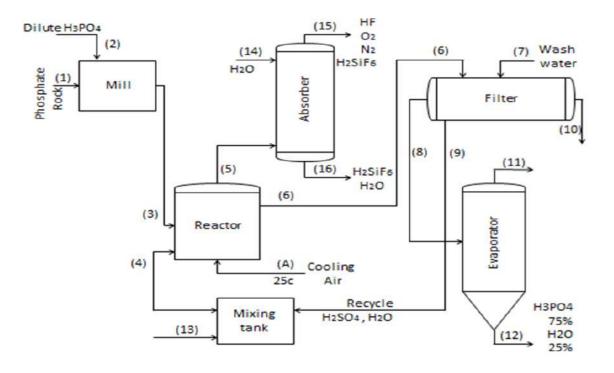


Figure 1.1-2 Wet Process Acid Production Flow Diagram

The present invention relates to a process for preparing phosphoric acid, which comprises: dividing raw materials which contain phosphate rock slurry and sulfuric acid into two parts, then feeding these two parts into two reactors separately. Part of the reaction solution directly flows into conversion cell and participates in the conversion reaction of dihydrate gypsum. By Such process, the recovery efficiency of P_2O_5 is improved and up to 99% or more. Meanwhile, good quality hemihydrate gypsum is obtained, in which P_2O_5 is 0.05-0.2%, water of hydration is 4-8%, and adsorptive water is about 19%. After naturally hydrating, the product can be used for producing Sulfuric acid and cement without baking dry. The coke powder as filtration-supporting agent is added to the reaction solution, which improves the filtration efficiency and reduces energy consumption. The present invention has obvious advantage in the aspect of economy and society.(Group and Company, 2001)

1.3.1.1 Gypsum Disposal

Around 5 tons of gypsum are generated per ton of P_2O_5 produced as phosphoric acid. This represents a serious disposal problem with the individual phosphoric acid production units of over 1,000 tons per day capacity now being built.

Two methods can be used to dispose of gypsum: -

- Disposal to land
- Disposal into water

By-product gypsum contains four types of impurity that are considered to be potentially harmful: -

- Residual acidity
- Fluorine compounds
- Undesirable trace elements
- Radioactivity

1.3.1.2 Disposal to water

The gypsum can be pumped through an outfall into the sea at coastal sites and estuaries. Disposal into rivers is no longer practiced, as it is not a good environmental option. Disposal of gypsum into the sea has the advantage that gypsum is more soluble in sea water than in fresh water. However, some of the impurities in the gypsum should be controlled. Clean gypsum itself (CaSO₄) is soluble and is not harmful to the environment. A phosphoric acid plant with high efficiency is essential for this method of disposal and only clean phosphates can be used in the plant if the pollution is to be kept within local environmental quality standards.

1.3.1.3 Disposal on land

Disposal on land, under proper conditions, is the best environmental option although it is not possible everywhere because it requires space and certain soil qualities where the gypsum stack is situated. Dry gypsum from the filter in some plants is transported by belt conveyors to the gypsum storage pile. The pile area is completely surrounded by a ditch which collects the runoff water including any rain water. In other plants the filter cake is slurried with recycled pond water and pumped to special storage areas where the phosphorgypsum eventually dries in stacks. The area receiving the phosphor-gypsum slurry is sub-divided into smaller areas, with each section being used in rotation. Slurry is discharged on top of the storage pile and the phosphorgypsum rapidly settles out of solution. Clear water runs off and drains to the adjacent cooling ponds. The water is recycled within the system to ensure that the contaminants are kept within the plant. The phosphor-gypsum stack is completely surrounded by a ditch which can contain not only this water but also rain water and any that might spill accidentally.(2000)

1.3.2 Thermal Process

Air, water, and elemental phosphorus are the raw elements used in the thermal process to produce phosphoric acid. As seen in Figure 1.3, there are typically three main processes in this process: demisting, hydration, and combustion. Phosphorus pent oxide is created during combustion, which involves oxidizing liquid elemental phosphorus in ambient air inside a combustion chamber heated to between 1650°C and 2760°C. Strong phosphoric acid liquid is then created by hydrating the phosphorus pentoxide with either water or diluted H_3PO_4 . The last phase, demisting, uses high pressure demisters to extract the phosphoric acid mist from the combustion gas stream before releasing it into the atmosphere. Phosphoric acid comprises of 75%–80%

 P_2O_5 during this procedure. Because acid produced via the thermal process is highly concentrated and contains fewer impurities, it is generally used in more specialized industrial applications.

Reactions:

 $P_4 + 5O_2 \rightarrow 2P_2O_5$

```
2P_2O_5+6H_2O\rightarrow 4H_3PO_4
```

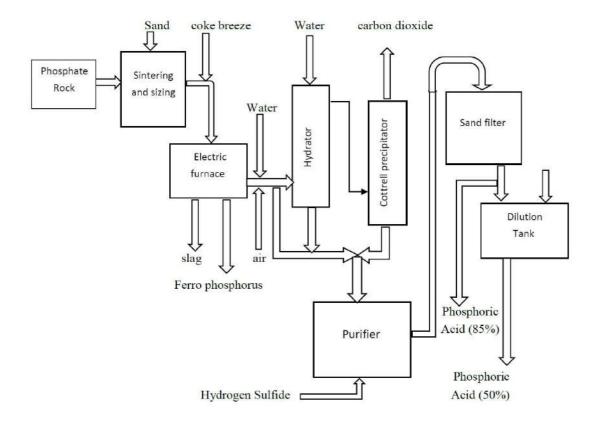
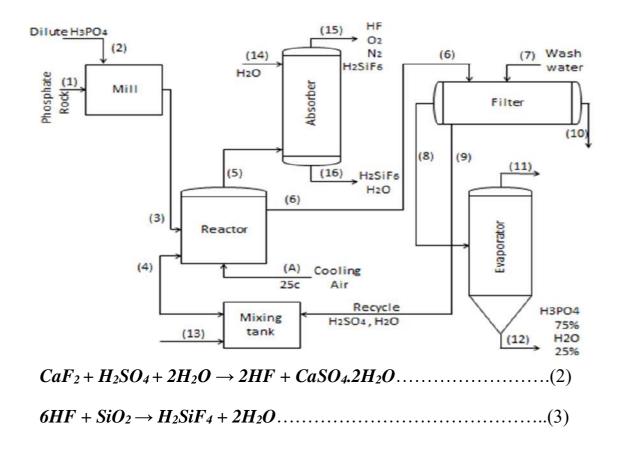


Figure 1.1-3 Thermal Process Acid Production Flow Diagram

Chapter Two

Methodology


2.1 Material Balance

As mentioned above, wet process is more used and effective in production of phosphoric acid, hence it is our choice of material balance.

Main Reaction: -

 $Ca_3(PO4)_2 + 3H_2SO_4 + 6H_2O \rightarrow 2H_3PO_4 + 3(CaSO_4).2H_2O....(1)$

Side Reactions:

Rock Analysis by weight percent:

$Ca_3(PO_4)_2$	75
----------------	----

CaF₂ 20

SiO₂ 5

Required assumptions:

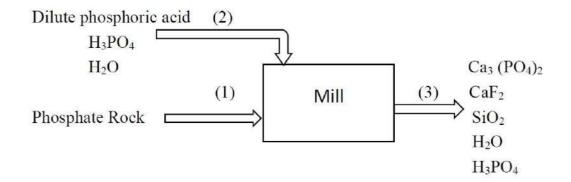
• Production of H_3PO_4 per year: $3 * 10^8$ kg/year = $1 * 10^6$ kg/day = 1000 ton/day

- Year = 300 days
- Yield = 95%
- H₂SO₄ concentration 94%
- H₂SO₄ excess 15%

Components	Molecular Weight
H_3PO_4	98
H_2SO_4	98
SiO_2	60
CaF_2	78
H_2O	18
$Ca_3(PO_4)_2$	310
$CaSO_4$	136
$CaSO_4.2H_2O$	172
HF	20
H_2SiF_6	144
P_2O_5	142

Table 2-1material balance

Production of $H_3PO_4 = 10^6$ kg per day = 42000 kg/hr = 429 kmol/hr


Product stream = 42000/0.75 = 56000 kg/hr

 $H_2O = 56000 * 0.25 = 14000 \text{ kg/hr}$

From reaction (1):

 $Ca_3(PO_4)_2 = 1/2 H_3PO_4 = 1/2*429 = 214.5 \text{ kmol/hr} = 66.5 \text{ kg/hr}$

 $Yield = \frac{Product H_3PO_4}{feed Ca_3(PO_4)_2} \rightarrow feed Ca_3(PO_4)_2 = 429/0.95 = 451.5 \text{ kmol/hr} = 140000 \text{ kg/hr}$

Feed stream (phosphate rock) composition:

 $Ca_3(PO_4)_2 = 140000 \text{ kg/hr}$

Total feed=140000/0.75 = 187000 kg/hr

 $CaF_2 = 0.2*187000 = 37400 \text{ kg/hr}$

 $SiO_2 = 0.05*187000 = 9350 \text{ kg/hr}$

2.1.1 Material Balance on Mill

Dilute phosphoric acid stream (2), has 85% water and 15% phosphoric acid.

If the ratio of dilute phosphoric acid (2) to phosphate rock (1) is 1:2, then:

187000 * 1/2 = 93500 kg/hr of dilute phosphoric acid stream

93500 * 85/100 = 79500 kg/hr of water

93500 * 15/100 = 14000 kg/hr of phosphoric acid

Composition	Stream 1	Stream 2	Stream 3
$Ca_3(PO_4)_2$	140000		140000
CaF ₂	37400		37400
SiO ₂	9350		9350
H ₂ O		79500	79500
H ₃ PO ₄		14000	14000

table 2-1Material Balance on Mill

Mass in = 140000+37400+9350+79500+14000 = 280250

Mass out = 140000+37400+9350+79500+14000 = 280250

Mass in = Mass out

2.1.2 Material Balance on Reactor

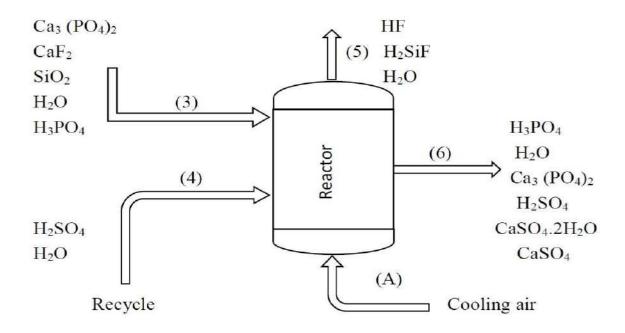


Figure 2-2 material balance reactor

Stream 3:

Reactions:

 $Ca_{3}(PO4)_{2} + 3H_{2}SO_{4} + 6H_{2}O \rightarrow 2H_{3}PO_{4} + 3(CaSO_{4}).2H_{2}O....(1)$ $CaF_{2} + H_{2}SO_{4} + 2H_{2}O \rightarrow 2HF + CaSO_{4}.2H_{2}O....(2)$ $6HF + SiO_{2} \rightarrow H_{2}SiF_{6} + 2H_{2}O....(3)$

 H_3PO_4 production = 429 kmol/hr

Reaction 1:

 $Ca_3(PO4)_2$ reacted = 429/2 = 214.5 kmol/hr

Unreacted $Ca_3(PO4)_2 = 452-214.5 = 237.5 \text{ kmol/hr}$

 H_2SO_4 reacted = 3/2 * 429 = 643.5 kmol/hr

 H_2O reacted = 6/2 * 429 = 1287 kmol/hr

 $CaSO_4.2H_2O$ produced = 3/2 * 429 = 643.5 kmol/hr

Reaction 2:

In CaF_2 = reacted CaF_2 = 480 kmol/hr

Reacted $H_2SO_4 = 480$ kmol/hr

Produced HF = 2 * 480 = 960 kmol/hr

Produced $CaSO_4 = 480 \text{ kmol/hr}$

Reaction 3:

In SiO_2 = reacted SiO_2 = 156 kmol/hr

Reacted HF = 6 * 156 = 936 kmol/hr

Produced $H_2SiF_6 = 156$ kmol/hr

Produced $H_2O = 2 * 156 = 312 \text{ kmol/hr}$

Stream 4:

Total H_2SO_4 reacted = 643.5 + 480 = 1123.5 kmol/hr = 110000 kg/hr

Excess $H_2SO_4 = 15\% \rightarrow 0.15 = \frac{\text{in-reacted}}{\text{in}} = 0.15 = \frac{\text{in-110000}}{110000}$

In = 126630 kg/hr

Non reacted $H_2SO_4 = 126630 - 110000 = 16530 \text{ kg/hr}$

H₂SO₄ concentration 94%:

 $\frac{126630}{0.94} = 134700 \text{ kg/hr}$

 $H_2SO_4 = 126630 \text{ kg/hr}$

 $H_2O = 134700 - 126600 = 8100 \text{ kg/hr}$

Stream 6:

 $H_3PO_4 = 42000 + 14000 = 56000 \text{ kg/hr}$

 $H_2O = 79500 + 8100 + 5600 - 23130 = 70000 \text{kg/hr}$

 $Ca_3 (PO_4)_2 = 73600 \text{ kg/hr}$

 $CaSO_4.2H_2O = 110700 \text{ kg/hr}$

 $H_2SO_4 = 16500 \text{ kg/hr}$

 $CaSO_4 = 65250 \text{ kg/hr}$

Stream 5:

 $H_2SiF_6 = 22450 \text{ kg/hr}$

 H_2O = assume 50% of H_2O from stream 6 is vaporized:

0.5 * 70000 = 35000 kg/hr

HF = produced - reacted = 960 - 936 = 24 kmol/hr

= 480 kg/hr

Cooling air stream:

79% Nitrogen

21% Oxygen

Component	Stream 3	Stream 4	Stream 5	Stream 6	Air Stream (%)
$Ca_3(PO_4)_2$	140000			73600	
CaF ₂	37400				
SiO ₂	9350				
H ₂ O	79500	8100	35000	35000	
H_3PO_4	14000			56000	
H_2SO_4		126630		16500	
CaSO ₄ 2H ₂ O				110700	
CaSO ₄				65250	
H_2SiF_6			22450		
HF			480		
O ₂					21
N_2					79

In = 3 + 4 / Out = 5 + 6

In = 140000 + 37400 + 9350 + 79500 + 14000 + 8100 + 126630 = 414980 kg /hr

Out = 35000 + 22450 + 73600 + 35000 + 56000 + 16500 + 110700 + 65250+480 = 414980 kg/hr

In = Out

2.1.3 Material Balance on Filter

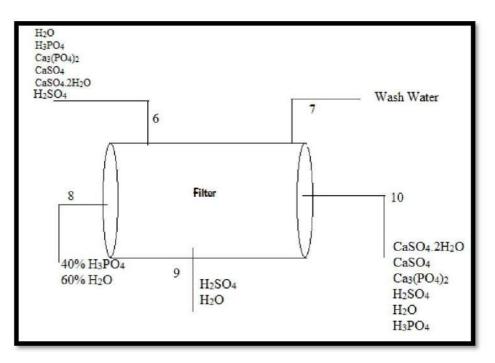


Figure 2-3Material Balance on Filter

Stream 10:

 $H_3PO_4 = 14000 \text{ kg/hr}$

Stream 8:

 $H_3PO_4 = 56000 - 14000 = 42000 \text{ kg/hr}$

Total stream $8 = \frac{42000}{0.4} = 105000 \text{ kg/hr}$

 H_2O in stream 8 = 0.6 * 105000 = 63000 kg/hr

If we assume 1.5% of H_2SO_4 and H_2O is allowed to go through with the gypsum for easy filtration, then:

 H_2SO_4 in stream 10 = 16500 * $\frac{1.5}{100}$ = 247.5 kg/hr

 H_2SO_4 in stream 9 = 16500 - 247.5 = 16252.5 kg/hr

H₂O in stream 10 = 35000 * $\frac{1.5}{100}$ = 525 kg/hr

Since stream 9 recycles back to the reactor and the acid concentration needs to be at 94%, then:

Total stream $9 = \frac{H_2 SO_4}{0.94} = \frac{16252.5}{0.94} = 17290 \text{ kg/hr}$

 H_2O in stream 9 = 17290 * 0.06 = 1037.5 kg/hr

 H_2O in stream 7 = -35000 + 63000 + 525 + 1037.5 = 29562.5 kg/hr

Component	Stream	Stream	Stream	Stream	Stream
	6	7	8	9	10
$Ca_3(PO_4)_2$	73600				73600
H ₂ O	35000	29562.5	63000	1037.5	525
H_2SO_4	16500			16252.5	247.5
H_3PO_4	56000		42000		14000
CaSO ₄ 2H ₂ O	110700				110700
CaSO ₄	65250				65250

table 2-4Material Balance on Filter

In = 6 + 7 / Out = 8 + 9 + 10

In = 73600 + 35000 + 16500 + 56000 + 110700 + 65250 + 29562.5 = 386612.5 kg/hr

Out = 63000 + 42000 + 1037.5 + 16252.5 + 73600 + 525 + 247.5 + 14000 + 110700 + 65250 = 386612.5 kg/hr

In = Out

2.1.4 Material Balance on Evaporator

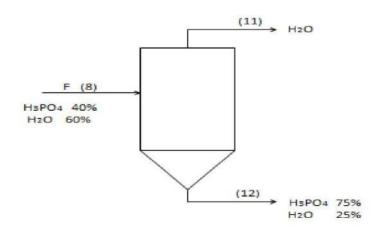


Figure 2-4 Material Balance on Evaporator

Stream 8(F) composition:

 $H_3PO_4 = 42000 \text{ kg/hr}$

 $H_2O = 63000 \text{ kg/hr}$

Material balance on H₃PO₄:

0.4 * F = 0.75 * Stream 12

0.4 * 105000 = 0.75 * Stream 12

Stream 12 = 56000 kg/hr

 H_2O in Stream 12 = 0.25 * 56000 = 14000 kg/hr

 H_2O in Stream 11 = 63000 - 14000 = 49000 kg/hr

Component	Stream 8	Stream 11	Stream 12
H ₃ PO ₄	42000		42000
H ₂ O	63000	49000	14000

In = 8 / Out = 11 + 12

$$In = 42000 + 63000 = 105000 \text{ kg/hr}$$

Out = 49000 + 14000 + 42000 = 105000 kg/hr

In = Out

2.1.5 Material Balance on Mixing Tank

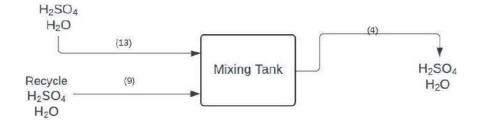


Figure 2-5Material Balance on Mixing Tank

Stream 4:

 $H_2SO_4 = 126630 \text{ kg/hr}$

 $H_2O=8100\ kg/hr$

Stream 9:

 $H_2SO_4 = 16252.5 \text{ kg/hr}$

 $H_2O = 1037.5 \text{ kg/hr}$

Stream 13:

 $H_2SO_4 = 126630 - 16252.5 = 110377.5 \text{ kg/hr}$

 $H_2O = 8100 - 1037.5 = 7062.5 \text{ kg/hr}$

Composition	Stream 9	Stream 13	Stream 4
H_2SO_4	16252.5	110377.5	126630
H ₂ O	1037.5	7062.5	8100

table 2-5Material Balance on Mixing Tank

In =
$$9 + 13$$
 / Out = 4
In = $16252.5 + 1037.5 + 110377.5 + 7062.5 = 134730$ kg/hr
Out = $126630 + 8100 = 134730$ kg/hr
In = Out

2.1.6 Material Balance on Absorber:

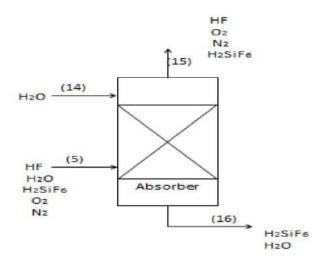


Figure 2-6Material Balance on Absorber

Assume 99% recovery:

 H_2SiF_6 in stream 16 = 0.99 * 22450 = 22225.5 kg/hr

 H_2SiF_6 in stream 15 = 22450 - 22225.5 = 224.5 kg/hr

If we assume the amount of water in stream 16 made H₂SiF₆ into 15%:

Total stream $16 = \frac{22225.5}{0.15} = 148170 \text{ kg/hr}$

 H_2O in stream 16 = 0.85 * 148170 = 125944.5 kg/hr

 H_2O in stream 14 = 125944.5 - 35000 = 90944.5 kg/hr

(N_2 and O_2 don't get absorbed they just enter from the bottom and leave at the top)

Composition	Stream 5	Stream	Stream	Stream
		14	15	16
H_2SiF_6	22450		224.5	22225.5
H ₂ O	35000	90944.5		125944.5
HF	480		480	

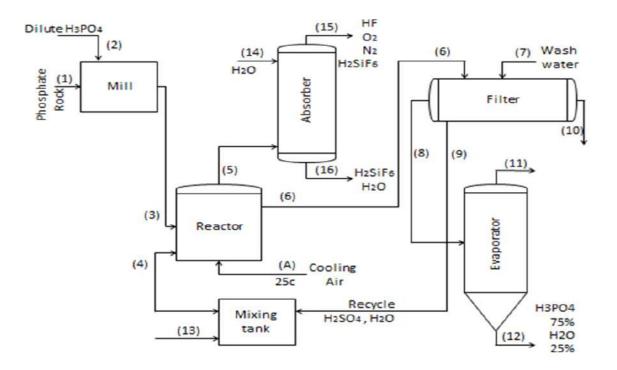
Figure 2-6Material Balance on Absorber

In = 5 + 14 / Out = 15 + 16

In = 22450 + 35000 + 480 + 90944.5 = 148874.5

Out = 224.5 + 480 + 22225.5 + 125944.5 = 148874.5 kg/hr

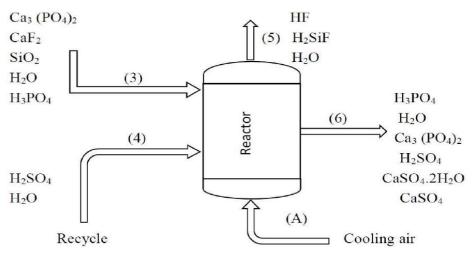
In = Out


2.1.7 Overall Material Balance

All in streams = 1 + 2 + 13 + 14 + 7 → 186750 + 93500 + 29562.5 + 117440 + 90944.5 = 518197 kg/hr

All out streams = 10 + 11 + 12 + 15 + 16

 \rightarrow 264322.5 +49000 + 56000 + 704.5 + 148170 = 518197 kg/hr


In = Out

2.2 Energy Balance

For the energy balance, we will be only concentrating on the reactor and evaporator since they are the main units in our process. The other units we assume no heat is lost or gained overall. Also, for easier calculations, we had a feed of 1000 tons per day, but we will only be doing the heat balance for 1 ton per day. This is to get smaller and more accurate numbers that we can deal with.

2.2.1 Energy Balance on Reactor

Reactions:

 $Ca3(PO4)2 + 3H2SO4 + 6H2O \rightarrow 2H3PO4 + 3(CaSO4).2H2$

 $O CaF2 + H2SO4 + 2H2O \rightarrow 2HF + CaSO4.2H2O$

 $6HF + SiO2 \rightarrow H2SiF6 + 2H2$

O Operating conditions:

 $T = 75-80^{\circ}C$, P=1atm, Liquid

Phase Heat in = heat out m Cp $\Delta T_{Ca3(PO4)2}$ + m Cp ΔT_{CaF2} + m Cp ΔT_{SiO2} + m Cp ΔT_{H2O} + m Cp ΔT_{H3} PO4+ m Cp ΔT_{H2SO4} + m Cp ΔT_{H2O} + m Cp ΔT_{O2} + m Cp ΔT_{N2} + ΔHr_{total} = m Cp ΔT_{HF} + m Cp ΔT_{H2siF6} + m Cp ΔT_{O2} + m Cp ΔT_{N2} + m Cp ΔT_{H3PO4} + m Cp ΔT_{H2O} + m Cp $\Delta T_{Ca3(PO4)2}$ + m Cp ΔT_{H2SO4} + m Cp ΔT_{CaSO4} +m Cp $\Delta T_{CaSO4.2H2}$ o+ Q + m λ_{H2O}

 $T_{ref} = 25^{\circ}C$

We have 3 reactions: Δ

 $Hr_1 = -2901.5 \text{ kJ/kmol}$

 $\Delta Hr_2 = 22.343 \text{ kJ/kmol}$

$\Delta Hr_3 = 770.5 \text{ kJ/kmol}$

 $\Delta Hr_{total} = 0.2145 \text{ kmol} * -2901.5 + 0.48 * 22.343 + 0.156 * 770.5 = -490 \text{ KJ/kg}$ $\frac{0.6}{20} * \left| 29.06(353 - 298) + \frac{6.611 * 10^{-4}}{2} * (353^2 - 298^2) - \frac{2.032 * 10^{-6}}{3} \right|$ $* (353^{3} - 298^{3}) + \frac{2.5 * 10^{-9}}{4} * (353^{4} - 298^{4}) + \frac{31.3}{18}$ $* \left| 32.24(353 - 298) + \frac{1.923 * 10^{-3}}{2} * (353^2 - 298^2) - \frac{1.06 * 10^{-5}}{3} \right|$ $*(353^{3}-298^{3})+\frac{3.6*10^{-9}}{4}*(353^{4}-298^{4})+\frac{22.32}{144}$ $* \left[0.67(353 - 298) + \frac{21}{32} * \left[28.106(353 - 298) + \frac{3.68 * 10^{-6}}{2} \right] \right]$ $* (353^{2} - 298^{2}) + \frac{1.75 * 10^{-5}}{3} * (353^{3} - 298^{3}) + \frac{1.07 * 10^{-8}}{4}$ $*(353^{4}-298^{4})] + \frac{79}{28}*[31.15(353-298) - \frac{1.36*10^{-2}}{2}$ $* (353^2 - 298^2) + \frac{2.68 * 10^{-5}}{3}$ * (353³ – 298³) $-\frac{1.11*10^{-8}}{4}*(353^{4}-298^{4})] + \frac{56}{98}*185.4(353-298)$ $+\frac{38.26}{18} * 75.3 (353 - 298) + \frac{73.16}{301} * 262.9 (353 - 298) + \frac{16.45}{98}$ $*167.4(353 - 298) + \frac{110.4}{172} * 164.9(353 - 298) + \frac{65.28}{136}$ $*236.1(353 - 298) + Q + \frac{31}{18} * 40683$ $= -490.765 + \frac{8.08}{18} * 75.3(304 - 298) + \frac{126.45}{98} * 167.4(304 - 298)$

Q = -263300 Kj/hr

2.2.2 Energy Balance on Evaporator

Heat In = Heat Out

 $\label{eq:constraint} \begin{array}{l} m \ Cp {\rm H_3PO_4} \, dT + m \ Cp {\rm H_2O} \, dT + Q = \\ m \ Cp {\rm H_2O} \, dT + m \ \Lambda {\rm H_2O} + m \ Cp {\rm H_3PO_4} \, dT + m \ Cp {\rm H_2O} \, dT \end{array}$

 $T_{ref} = 72^{\circ}C$

 $\begin{aligned} & Q = (42/98) * 185.4 * (373-345) + (14/18) * \{4.184 * (373-345) + (49/18) * 32.243 * (373-345) + (1.9238 * 10^{-3}/2) * (373^2 - 345^2) + (1.055 * 10^{-5}/3) * (373^3 - 345^3) - (3.596 * 10^{-5}/4) * (373^4 - 345^4) \} + (49/18) * 40683 \end{aligned}$

Q=115700 KJ/hr

 $Q=m_s * \lambda_s$

 $\lambda_s = 2113 \text{ KJ/kg}$

 $m_s = Q/\lambda_s = 115700/2113 = 54.76 \text{ kg/hr}.$

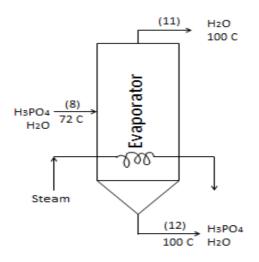


Figure 2-7 Energy Balance on Evaporator

Chapter Three

Example of Analysis and Design

3.1 Design of Reactor

Reactions:

 $Ca_3(PO_4)_2 + 3H_2SO_4 + 6H_2O \longrightarrow 2H_3PO_4$

+3(CaSO4.2H₂O) CaF₂ + H₂SO₄ \longrightarrow

 $2HF + CaSO_4$

 $6HF + SiO_2 \longrightarrow H_2SiF_6 + 2H_2O$

Operating Conditions $T = 75 - 80C^{\circ}$

P= Liquid Phase

 $\tau = 4-8hr$

1atm

We have three chemical reactions.

The reaction is exothermic and temperature is maintained constant by-passing air across the reactor.

For continuous stirred tank reactor

$$\tau = V/Vo = CaoV/Fao = XaCao/(-ra) = (Cao - Ca)/(-ra)$$

Comp.	Density Kg/m ³
H_2SO_4	1153
H ₂ O	988
Ca ₃ (PO ₄) ₂	1310
CaF ₂	1755
SiO ₂	1042

 $\rho mix = \sum Xi \rho i$

Where:

 V^{o} = volumetric flow rate (m³/hr).

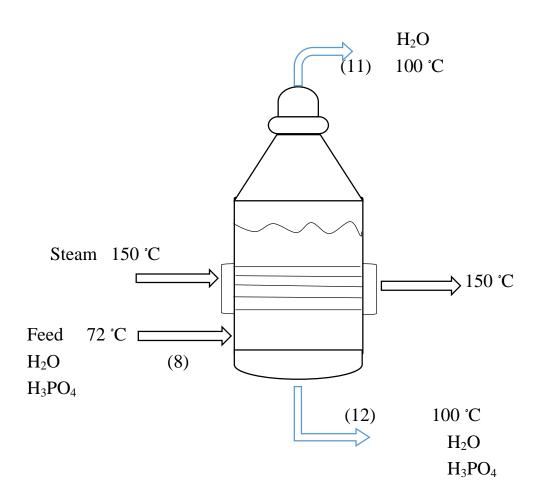
 ρ = density of component (kg/m³).

Mass= mass flow rate of component (kg/hr.).

Comp.	Density (kg/m ³)	Mass (kg/hr)	V° (m ³ /hr)
H ₂ SO ₄	1153	126.45	0.11
H ₂ O	988	8.08	0.008
Ca ₃ (PO ₄) ₃	1310	139.5	0.1065
CaF ₂	1755	37.2	0.0212
SiO ₂	1042	9.3	0.009

table 3-1Design of Reactor

 $V^{o} = 0.255 m^{3}/hr.$


Calculation the Volume of Reactor: Space time = $\frac{volume \ of \ reactor \ (m3)}{volumetric \ flow \ rate \ of \ reactor \left(\frac{m3}{hr}\right)}$ V° = 0.255m³/hr.

 $\tau = 4 - 8 h r$

take $\tau = 6$ hr. $\therefore \tau = \frac{V}{V^2} \longrightarrow 6 = \frac{V}{0.255}$ $V = 1.53 \text{ m}^3$

 \therefore Volume of reactor = 1.53 m³

3.3 Evaporator Design

Component	Steam (8)	Steam (11)	Steam (12)
	kg/hr.	kg/hr.	kg/hr.
H ₃ PO ₄	42		42
H ₂ O	63	49	41

3.3.1 Calculation of Bundle tubes

take tube dimensions as follows ⁽¹⁵⁾:-

 $d_{\circ} = 16 \text{ mm}$ di = 14 mm L = 1.5 mHeat flux = 2012.5 w/m^{2 (16)} From Energy Balance Heat load = 32.3 Kw

• Heat transfer area = Q/Heat flux

 $A = 32.3/2.0125 = 16 \text{ m}^2$

Area of one tube $a_{\circ} = \pi d_{\circ} L = \pi * 14*10^{-3} * 1.5 = 0.066 \text{ m}^2$

Number of tube

 $N = A/a_{\circ} = 16/0.066 = 243$

Tubes arranged in triangular pitch one pass

Pt = 1.25 d_{\circ} Pt = 1.25*16 = 20 mmFrom volume (6) eq. (12.3b) P. (649) Bundle diameter Db = $d_{\circ} [\text{Nt/K}_1]^{1/n1}$ Where K₁, n₁ constants ⁽¹⁷⁾ K₁ = 0.319 N₁ = 2.142 Db = 16 [243/0.319]^{1/2.142} = 355 \text{ mm}

3.3.2 Tube side pressure drop

Temperature of steam = 150 °C From steam table $v_g = 1.13 \text{ m}^3/\text{kg}$ $\rho_g = 1/v_g = 1/1.13 = 0.885 \text{ Kg/m}^3$ area of flow $A_t = N_t (\pi/4 \text{ d}_i^2)$ $A_t = 243 * \pi/4 * (14*10^{-3})^2 = 0.0374 \text{ m}^2$ Mass flow rate $G = \rho * u_t * A_t$ G = 0.016 kg/s, $\rho = 0.88 \text{ Kg/m}^3$ $U_t = G/\rho * A_t = 0.016/0.885*0.0374 = 0.53 \text{ m/s}$ Steam viscosity $m = 1.4*10^{-5}\text{Ns/m}^2$ $\text{Re}_t = \rho^* u_t^* d_t/m = 0.885*0.5*(14*10^{-3})/1.4*10^{-5} = 442.5$

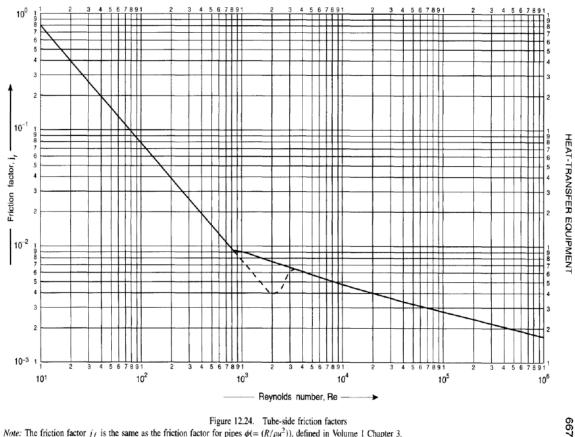


Figure 12.24. Tube-side friction factors Note: The friction factor j_f is the same as the friction factor for pipes $\phi(=(R/\rho u^2))$, defined in Volume 1 Chapter 3.

 $j_f = 2*10^{-2}$ friction factor ⁽¹⁸⁾ $\Delta P = Np^{*}[8^{*}j_{f}^{*}(L/d)^{*}(m/m_{w})^{-m} + 2.5]^{*}\rho^{*}u_{t}^{2}/2^{(19)}$ Where: Np = number of passes $J_{\rm f} = fraction \ factor$ L = tube length (m)di = inside diameter (m) $\rho = \text{density} (\text{Kg/m}^3)$ u_t =velocity (m/s) neglect $(m/m_w)^{-m} = 1$ $\Delta P = [8 \times 2 \times 10^{-2} \times (1.5/14 \times 10^{-3}) + 2.5] \times 0.885 \times (0.5)^2/2 = 2 \text{ N/m}^2$ $= 2.9 \times 10^{-4}$ Psia

If a high-pressure drop must choose the other dimensions of the tube to get to the proper pressure drop is less than (1Psia)

3.3.3 Volume of evaporator

 $V = 1.7261 [e^{-p/RT} + K (m_l/m_v)^{0.2}]^{(20)}$ Where: V = volume of evaporator (m³) P= pressure of evaporator (N/m^2) R= gas constant T= temperature (K) K = constant depend on type of tubes bundle (steam bundle) K=2.125 for vertical tube K = 1.1942 for horizontal tube $\mu_v = 1.4 * 10^{-5} \text{ Ns/m}^2$ $\mu_l = 0.28 * 10^{-3} \text{Ns/m}^2$ take horizontal tube operating pressure = 10 psi = 0.6 atm. = $0.69 \times 10^5 \text{ N/m}^2$ $V = 1.7261[e^{-0.69*10-5/8.314+373} + 1.1942(0.28/0.014)^{0.2}] = 5.5 m^3$ For standard tubes diameter select shell diameter = 1.5 m(shell diameter must be equal to tube length of steam bundle)

3.3.4 Length of evaporator

 $V = \pi/4 D^2 *L$ 5.5 = $\pi/4 (1.5)^2 *L$ L = 3.114 m = 3.2 m

3.3.5 Calculation of residence time (T)

 $T_{\rm b} = v/v.$ Where: $V = \text{volume of evaporator (m^3)}$ $v. = \text{feed volumetric flowrate (m^3/s)}$ $T_{\rm b} = v/v. = \frac{5.5}{mass/\rho}$ $P_{\rm mix.} = 1333.6 \text{ Kg/m}^3$ $T_{\rm b} = \frac{5.5}{24*105/1333.6} = 2.9 \text{ hr.} = 174 \text{ min}$

3.3.6 Mechanical Design

t= $\frac{pi*Di}{2fJ-pi}$ + C ⁽²¹⁾ where: t= thickness of shell (mm) Pi = operating Pressure (N/mm²) Di= shell diameter (mm) J = joint factor (0.8) C= corrosion allowance (2mm) f= design stress (N/mm²) Operating pressure = 10% above design pressure = 1.1*0.069= 0.076 N/mm² Stainless steel (18cr/8Ni) ⁽²²⁾ f= 150 N/mm² t= $\frac{0.076*1500}{2*0.8*150-0.076}$ + 2 = 2.5 mm = 3mm

3.3.7 Thickness of cover

We can use hemispherical cover thickness of cover = 0.6 * thickness of shell

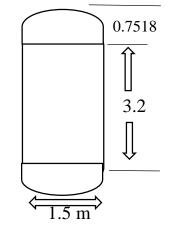
t = 0.6 * 3 = 1.8 mm

3.3.8 Weight of evaporator

For stainless steel $W_v = 240 C_v D_m (H_v+0.8 D_m)t$ Where Cv= constant (1.08) $D_m= mean shell diameter (m)$ $= (Di + t * 10^{-3}) = 1.503 m$ H= length of vessel (m) t = shell thickness (mm)Wv= 240 * 1.08 * 1.503 (3.2+ 0.8 * 1.503) * 3 = 5145 N

3.3.9 Weight of vessel filled with water

$$\begin{split} Ww &= \pi/4 \ D^2 L \ ^* \rho_{\rm H2O} \ ^* g \\ &= 5.5 \ ^* 1000 \ ^* 9.81 = 53955 \ N \end{split}$$


3.3.10 Weight of tubes

Weight of tube (1.05 Kg/m) Weight of one tube = 1.5 * 1.05 = 1.6 Kg Weight of tube (Wt) = 243 *1.6 * 9.81 = 3815 N

4.3.11 Weight of cover

$$\begin{split} r_i &= D/2 = 1.5/2 = 0.75 \text{ m} \\ r_* &= r_i + t = 0.75 + 0.0018 = 0.7518 \text{ m} \\ & \text{Total height of evaporator} = 3.2 + 2 * 0.7518 = 4.7 \text{ m} \\ \text{Volume of sphere } (4\pi/3 * r^3) \\ & \text{* volume of two cover} = 4\pi/3 (r_*^3 - r_i)^2 \\ & \text{for carbon steel } (\rho = 7.7*10^{-4} \text{ Kg/m}^3) \end{split}$$

Wc=
$$4\pi/3[(0.7518)^2 - (0.75)^2] *7.7*10^{4*9.81}$$

= 8549*2 = 17098 N

4.3.12 Total weight

$$\begin{split} W_{T} &= W_{v} + W_{t} + W_{w} + W_{c} + W_{man} \\ W_{T} &= 5145 + 3815 + 53955 + 8549*2 + 1500 \\ W_{T} &= 81513 \text{ N} \\ &= 81.5 \text{ KN} \end{split}$$

Chapter Four

Results and Conclusion

4.1 Conclusion

This project explores the production of phosphoric acid, a vital industrial chemical with numerous applications. Beginning with a concise introduction to the significance of phosphoric acid in various industries, the study delves into the intricacies of material balance and heat balance within the production process. Material balance analysis elucidates the input-output dynamics of raw materials and products, ensuring optimal resource utilization. Meanwhile, heat balance considerations focus on the efficient management of thermal energy, essential for maintaining process integrity and sustainability. Additionally, the project investigates the design aspects of key production units, emphasizing the critical role of unit design in achieving operational efficiency and product quality. Through comprehensive analysis and design strategies, this project aims to contribute to the advancement of phosphoric acid production methodologies, fostering sustainable industrial practices and economic viability.

References

- 1. AUSTRALIAN GOVERNMENT. June 2022. Department of Climate Change, Energy, the Evironment and Water [Online]. Available: https://www.dcceew.gov.au/environment/protection/npi/substances/factsheets/phosphoric-acid#daff-page-main [Accessed].
- 2. 2000. Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry, .
- 3. AUSTRALIAN GOVERNMENT. June 2022. Department of Climate Change, Energy, the Evironment and Water [Online]. Available: <u>https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/phosphoric-acid#daff-page-main</u> [Accessed].
- 4. GROUP, S. L. E. & COMPANY 2001. METHOD OF PREPARING WET PROCESS PHOSPHORIC ACID.pdf>. 5.
- 5. TOAMA, H. Z. 2016. WORLD PHOSPHATE INDUSTRY.pdf>.