Kurdistan Region Salahaddin University-Erbil College of Engineering Chemical-Petrochemical Engineering Department



# **Production of nitric acid**

A Project Submitted to the Chemical-Petrochemical Engineering Department

University of Salahaddin-Erbil

in the Partial Fulfillment of the Requirement for the Degree of Bachelor of Science

in Chemical-Petrochemical Engineering

Prepare By:

Sarhang farhad mohemmedamin

Hunar abdulhamid mohemmed

Supervisor:

Dr. mohemmed jawdat

2023-2024

#### Abstract

The production of nitric acid (HNO3) is a fundamental process in the chemical industry, supporting a wide array of applications across agriculture, explosives manufacturing, pharmaceuticals, and metallurgy. This abstract presents an overview of nitric acid production, emphasizing the significance of two primary methods: the single and dual processes.

The single process, exemplified by the Ostwald process, involves the catalytic oxidation of ammonia (NH3) to nitric oxide (NO), followed by the subsequent oxidation of NO to nitrogen dioxide (NO2), and ultimately the absorption of NO2 in water to yield nitric acid. Conversely, the dual process, typified by the Birkeland–Eyde process, integrates the production of nitrogen oxides with the synthesis of nitric acid in a single operation, utilizing atmospheric nitrogen and oxygen as raw materials

Results from both processes indicate their efficacy in yielding high-purity nitric acid suitable for various industrial applications. However, environmental concerns persist due to the emission of nitrogen oxides (NOx) during production, necessitating ongoing efforts to develop more sustainable and environmentally friendly synthesis methods.

the production of nitric acid via single and dual processes plays a critical role in modern industrial processes, with advancements geared towards enhancing efficiency, reducing environmental impact, and meeting the evolving demands of industry and society.

### Acknowledgement

All the thanks, praises and glorifying is due to almighty ALLAH. To our parents who grew us up and guided us through life.

Our special thanks and owe deepest gratitude go to our supervisor

**Dr. mohemmed jawdat**. First for accepting us as students, then for the support and help he has given to us through the project.

Big thanks to our colleagues and all thanks for all doctors and teaching assistance of Chemical Engineering Department through these four years..

# Supervisor's Certificate

I certify that the engineering project titled **" production of nitric acid"** was done under my supervision at the Chemical-Petrochemical Engineering Department, College of Engineering - Salahaddin University–Erbil. In the partial fulfillment of the requirement for the degree of Bachelor of Science in Chemical-Petrochemical Engineering

### Supervisor

Signature:

Name:

Date: / /

# Table of contents

| ABSTR                         | RACT                                          | 2        |  |
|-------------------------------|-----------------------------------------------|----------|--|
| ACKNO                         | OWLEDGEMENT                                   |          |  |
| SUPER                         | RVISOR'S CERTIFICATE                          |          |  |
| TABLE                         | E OF CONTENTS                                 | 5        |  |
| LIST O                        | DF FIGURE                                     | 6        |  |
| LIST O                        | OF TABLES                                     | 7        |  |
| NOME                          | ENCLATURE                                     |          |  |
| INTRO                         | DDUCTION                                      |          |  |
| 1.1                           | Name and history of Nitric Acid               | 10       |  |
| 1.1.2                         | History                                       |          |  |
| 1.2                           | Applications                                  |          |  |
| 1.5                           | Chemical properties                           |          |  |
| 1.5                           | Safety properties                             |          |  |
| METH                          | IODOLOGY                                      |          |  |
| 2.1                           | The Nitric Acid Production Processes          |          |  |
| 2.1.1                         | The Single-Pressure Process                   |          |  |
| 2.1.2                         | The Dual-Pressure Process                     | 24       |  |
| MATE                          | RIAL BALANCE                                  |          |  |
| 2.1 Prc                       | OCESS DESCRIPTION                             |          |  |
| 2.2 FLO                       | OW SHEET OF PROCESS                           |          |  |
| 2.3 OVER ALL MATERIAL BALANCE |                                               |          |  |
| 2.4 Rea                       | ACTOR MATERIAL BALANCE                        |          |  |
| 2.5 Oxi                       | (IDATION MATERIAL BALANCE                     |          |  |
| 2.6 ABS                       | SORBER MATERIAL BALANCE                       |          |  |
| ENERG                         | GY BALANCE                                    |          |  |
| 4.1 VAF                       | PORIZER ENERGY BALANCE                        |          |  |
| 4.2 SUP                       | IPERHEATER ENERGY BALANCE                     |          |  |
| 4.3 Mi                        | IXER ENERGY BALANCE                           |          |  |
| 4.4 REA                       | ACTOR ENERGY BALANCE                          |          |  |
| 4.5 Hea                       | di Excildinger Energy Balance                 |          |  |
|                               | SATE SUCHANGED ENERGY BALANCE $(2nd)$ Cooled) | 45<br>17 |  |
| 4.8 ABS                       | SORBER ENERGY BALANCE                         |          |  |
| CHEM                          | IICAL AND MECHANICAL DESIGN                   |          |  |
| 5 1 DEG                       | SIGNOF                                        | 51       |  |
| 5.2 DFS                       | SIGN OF ABSORBER :                            |          |  |
| CONCL                         | LUSION                                        |          |  |
| REFER                         | RENCES                                        |          |  |
|                               |                                               | 74       |  |
| AFFEN                         | אישוי איזיא איז איז איז איז איז איז איז איז   |          |  |

# List of Figure

| Figure 2-1 The Single-Pressure Process                  |    |
|---------------------------------------------------------|----|
| Figure 2-2 The Dual-Pressure Process                    |    |
| Figure 5-1 nitric acid column                           | 56 |
| Figure 5-2 Stream temperature and NO2 molar composition | 57 |

# List of Tables

| Table | 1-1 physical properties                       | . 14 |
|-------|-----------------------------------------------|------|
| Table | 1-2 Chemical properties                       | . 17 |
| Table | 3-1 Summery of reactor mass balance           | 33   |
| Table | 3-2 Summery of oxidation mass balance         | 35   |
| Table | 3-3 Summery of absorber mass balance          | 37   |
| Table | 4-1 Summary of enthalpy components in reactor | .42  |

# Nomenclature

| Q                                                         | total energy of the system      |
|-----------------------------------------------------------|---------------------------------|
| H(x0)                                                     | enthalpy                        |
| Ср                                                        | heat capacity                   |
| dw                                                        | wire diameter                   |
| fw<br>sectional area                                      | wire area per gauza cross       |
| Awr<br>of one screen The density of catalyst              | surface area of screen / volume |
| ns                                                        | number of screen per gauza      |
| £                                                         | Porcity                         |
| <i>G</i>                                                  | mass velocity                   |
| <i>V</i> * <sub>w</sub><br>cross – sectional area kg/m2.s | gas mass flow rate per unit     |
| σb                                                        | bending stress                  |
| σς                                                        | Elastic Stability               |

Chapter 1

# Introduction

#### **Chapter One**

# Introduction

#### 1.1 Name and history of Nitric Acid

1.1.1 Name

#### **IUPAC** : Nitric acid

Other name : Hydrogen nitrate , Aqua fortis

Color : colorless (pure), yellow(old)

**Properties** : a) highly corrosive , can cause severe burns

b) miscible in water at all concentration

- c) will decompose at high temperature to form nitrogen oxide
- d) poisonous liquid

Nitric acid, a colorless, highly corrosive liquid, stands as one of the most potent oxidizing agents known in chemistry. Its remarkable reactivity renders it indispensable across various industrial sectors. However, in its highly pure form, nitric acid is not entirely stable and necessitates careful preparation. Typically, it is obtained from its azeotrope through distillation with concentrated sulfuric acid, a process essential for ensuring its purity and stability.

Notably, nitric acid exhibits a gradual yellowing phenomenon attributed to its decomposition into nitrogen dioxide over time. This characteristic change underscores its dynamic nature and underscores the need for proper storage and handling protocols. Solutions comprising more than 80% nitric acid are termed fuming nitric acids, reflecting their heightened reactivity and tendency to release nitrogen dioxide fumes.

In its commonly encountered form, reagent-grade nitric acid exists as a water solution containing approximately 68% by weight nitric acid. This concentration corresponds to the constant-boiling mixture of nitric acid with water, which consists of 68.4% nitric acid by weight and boils at 121.9°C. Nitric acid exhibits complete miscibility with water, forming distinct hydrates, including a monohydrate (HNO3·H2O) with a melting point of - 38°C and a dihydrate (HNO3·2H2O) with a melting point of -18.5°C. These hydrates contribute to the diverse physical properties exhibited by nitric acid solutions.

The multifaceted nature of nitric acid, encompassing its reactivity, stability considerations, and various hydrate forms, underscores its significance in chemical synthesis, industrial processes, and laboratory applications. This introduction sets the stage for a comprehensive exploration of nitric acid's properties, applications, and broader implications across diverse fields.

#### 1.1.2 History

Scholars have known nitric acid for many centuries. Probably the earliest description of its synthesis occurs in the writings of the Arabic alchemist Abu Musa Jabir Ibn Hayyan (c. 721–c. 815), better known by his Latinized name of Geber. The compound was widely used by the alchemists, although they knew nothing of its chemical composition. It was not until the middle of the seventeenth century that an improved method for making nitric acid was invented by German chemist Johann Rudolf Glauber (1604–1670). Glauber produced the acid by adding concentrated sulfuric acid (H2SO4) to saltpeter (potassium nitrate; KNO3). A similar method is still used for the laboratory preparation of nitric acid, although it has little or no commercial or industrial value.

The chemical nature and composition of nitric acid were first determined in 1784 by the English chemist and physicist Henry Cavendish (1731–1810). Cavendish applied an electric spark to moist air and found that a new compound - nitric acid – was formed. Cavendish was later able to determine the acid's chemical and physical properties and its chemical composition. The method of preparation most commonly used for nitric acid today was one invented in 1901 by the Russian born German chemist Friedrich Wilhelm Ostwald (1853–1932). The Ostwald process involves the oxidation of ammonia over a catalyst of platinum or a platinum-rhodium mixture.

Today, nitric acid is one of the most important chemical compounds used in industry. It ranks number thirteen among all chemicals produced in the United States each year. In 2005, about 6.7 million metric tons (7.4 million short tons) of the compound were produced in the United States

#### **1.2 Applications**

Nitric acid is used in the production of ammonium nitrate for fertilizers, making plastics, and in the manufacture of dyes. It is also used for making explosives such as nitroglycerin and TNT. When it is combined with hydrochloric acid, an element called aqua regia is formed. This is a reagent that is capable of dissolving gold and platinum. Additionally, it is used in a colorimetric test to distinguish heroin and morphine.

Nitric acid is commonly used in science laboratories at schools for experimenting when specifically testing for chloride. This is accomplished by adding a sample with silver nitrate solution and nitric acid to test if a white precipitate, silver chloride is present. In the field of medicine, nitric acid is used in its pure state as a caustic to remove chancres and warts. Diluted solutions are used in the treatment of dyspepsia.

Nitric acid has been used in various forms as the oxidizer in liquid–fueled rockets. These forms include red fuming nitric acid, white fuming nitric acid, mixtures with sulfuric acid, and forms with HF inhibitor.

It is also typically used in the digestion process of turbid water samples, solid sludge samples, as well as other types of unique samples that require elemental analysis via ICP-MS, ICP-OES, ICP-AES, GFAA and flame atomic absorption spectroscopy.

In organic synthesis, nitric acid may be used to introduce the nitro group. When used with sulfuric acid, it generates the nitronium ion, which electrophilically reacts with aromatic compounds such as benzene.

In electrochemistry, nitric acid is used as a chemical doping agent for organic semiconductors, and in purification processes for raw carbon nanotubes.

In a low concentration, nitric acid is often used in woodworking to artificially age pine and maple. The color produced is a gray–gold, very much like very old wax or oil-finished wood.

Nitric acid can be used as a spot test for alkaloids like LSD, producing a variety of colors, depending on the alkaloid.

### **1.3 Physical properties**

| 1.Molecular weight               | 63,012 g / mol                                                   |
|----------------------------------|------------------------------------------------------------------|
| 2. Physical appearance           | Colorless or pale yellow liquid,<br>which may turn reddish-brown |
| 3. Smell                         | Sharp, distinctive smothering.                                   |
| 4. Boiling point                 | Degrees Fahrenheit to 760 mmHg (83 ° C).                         |
| 5. Melting point                 | -41.6 ° C.                                                       |
| 6. Water solubility              | very soluble and not miscible with water.                        |
| 7. Density                       | 1513 g / cm3 at 20 ° C.                                          |
| 8. The relative density          | 1.50 (with respect to water $=$ 1).                              |
| 9. The relative density of vapor | 2  or  3  times the estimated (with respect to air = 1).         |
| 10. steam pressure               | 63.1 mm Hg at 25 ° C                                             |
| 11. Viscosity                    | 1,092 MPa at 0 $^{\circ}$ C, and 0.617 MPa at 40 $^{\circ}$ C .  |
| 12. enthalpy evaporation         | 39.1 kJ / mol at 25 ° C .                                        |
| 13 enthalpy Standard molar       | -207 kJ / mol (298 degrees<br>Fahrenheit).                       |
| 14. Molar entropy                | 146 kJ / mol (298 degrees<br>Fahrenheit).                        |
| 15Surface tension                | -0.04356 N / m at 0 $^\circ$ C .                                 |

Table 1-1 physical properties

**Molecular Weight**: Nitric acid has a molecular weight of 63.012 g/mol, which is crucial for understanding its chemical behavior and stoichiometry in reactions.

**Physical Appearance**: While primarily colorless or pale yellow, nitric acid can undergo color changes, turning reddish-brown due to exposure to light or impurities. These variations in color can indicate changes in purity or concentration.

**Smell**: Nitric acid emits a sharp and distinctive odor, often described as suffocating or pungent. This characteristic smell serves as a warning sign of its presence and potential hazards.

**Boiling Point**: Nitric acid boils at 83°C (degrees Fahrenheit to 760 mmHg), indicating its volatility and susceptibility to vaporization. Knowledge of its boiling point is essential for various applications involving distillation or evaporation.

**Melting Point**: With a melting point of -41.6°C, nitric acid exists in liquid form at typical ambient temperatures. Understanding its freezing point is crucial for storage and handling, especially in cold environments.

**Water Solubility**: Nitric acid exhibits high water solubility, being very soluble and non-miscible with water. This property facilitates its use in aqueous solutions and reactions involving water as a solvent.

**Density**: The density of nitric acid at 20°C is 1.513 g/cm<sup>3</sup>, indicating its relatively high mass per unit volume. Knowledge of its density is essential for calculating concentrations and for proper storage and handling practices.

**Relative Density**: With a relative density of 1.50 compared to water, nitric acid is denser than water. This property influences its behavior in aqueous solutions and its interactions with other substances.

**Relative Density of Vapor**: The relative density of nitric acid vapor is estimated to be 2 to 3 times that of air, indicating its tendency to form dense vapors that may accumulate in confined spaces or low-lying areas.

**Vapor Pressure**: Nitric acid has a vapor pressure of 63.1 mm Hg at 25°C, reflecting its tendency to evaporate and form vapors even at moderate temperatures. This property is important for understanding its volatility and potential for inhalation exposure.

**Viscosity**: Nitric acid exhibits variable viscosity, with values of 1.092 MPa at 0°C and 0.617 MPa at 40°C. Understanding its viscosity is crucial for processes involving fluid flow, such as pumping and mixing.

**Enthalpy of Evaporation**: The enthalpy of evaporation of nitric acid is 39.1 kJ/mol at 25°C, representing the energy required to convert liquid nitric acid into vapor at a constant temperature. This property is important for understanding its phase behavior and energy requirements for vaporization.

**Standard Molar Enthalpy**: With a standard molar enthalpy of -207 kJ/mol at 298°F, nitric acid exhibits exothermic behavior when undergoing standard state reactions. This property is significant for thermodynamic calculations and reaction kinetics.

**Molar Entropy**: Nitric acid has a molar entropy of 146 kJ/mol at 298°F, reflecting the degree of disorder or randomness associated with its molecular configuration at a given temperature. Knowledge of entropy is crucial for understanding its thermodynamic stability and spontaneity in reactions.

**Surface Tension**: Nitric acid displays a surface tension of -0.04356 N/m at 0°C, which influences its interactions with other substances at interfaces. Understanding surface tension is important for processes such as wetting, spreading, and emulsification.

These complete insights into the physical properties of nitric acid provide a foundation for expertise its behavior, reactivity, and capacity dangers in diverse applications, ranging from business processes to laboratory experiments. Proper understanding and control of these homes are critical for ensuring secure handling, storage, and use of nitric acid.

## **1.4 Chemical properties**

| Table 1-2 Chemical | properties |
|--------------------|------------|
|--------------------|------------|

| 1 | Nitrogen acid is a strong monomeric acid that easily reacts with water to form mono (HNO3 H2O) and triple (HNO3 3H2O) solid hydrates.                                                                                                                                                                         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | It is affected by heat or light, which causes it to decompose, as<br>shown below<br>$4\text{HNO}_3 \rightarrow 2\text{H}_2\text{O} + 4\text{NO}_2 + \text{O}_2$                                                                                                                                               |
| 3 | Acid and strong oxidizing agent, when at high concentrations, it<br>oxidizes nonmetallic elements such as carbon (C), iodine (I),<br>phosphorous (P) and sulfur (S), and gives their oxides, or oxygen<br>acids, and nitrogen dioxide (NO2), for example:<br>$S + 6NHO_3 \rightarrow H_2SO4 + 6NO_2 + 2H_2O$  |
| 4 | Concentrated nitric acid oxidizes water chloric acid, forming chlorine and chlorine oxide, ClO2.                                                                                                                                                                                                              |
| 5 | Water-soluble nitrate salts result from the reaction of nitric acid with minerals, their oxides, hydroxides, or carbonates. All nitrates decompose when heated, and they may do so explosively.                                                                                                               |
| 6 | The nitric acid reacts with minerals, and it is reduced (i.e., a decrease<br>in the oxidation state of nitrogen), and causes its dissolution and<br>forms metallic oxides with it, and the reaction products differ<br>according to the concentration of nitric acid, the reaction metal, and<br>temperature. |
| 7 | Relatively unreacted minerals such as copper (Cu), silver (Ag), and<br>lead (Pb) reduce the concentrated nitric acid, mainly to NO2, while<br>the reactive minerals such as zinc (Zn) and iron (Fe) react with the<br>dilute nitric acid to form N2O or nitrous oxide. (laughing gas).                        |
| 8 | Nitric acid interacts with proteins, and is used to detect them, as in proteins in human skin, to produce a yellow substance called xanthoprotein                                                                                                                                                             |

| 9  | Highly corrosive and non-flammable toxic substance.                    |
|----|------------------------------------------------------------------------|
| 10 | is very sensitive to water and causes painful and severe first- degree |
|    | burns.                                                                 |
| 11 | A solution containing more than 86% is called fumigated nitric acid.   |
| 12 | It needs to be kept in a dry and cool place                            |

#### 1.5 Safety properties

Nitric acid's potency as a strong acid and oxidizing agent warrants a comprehensive understanding of its safety considerations. Beyond its capacity for chemical burns, which can cause significant harm upon contact with living tissues, nitric acid poses additional risks and demands stringent handling protocols.

The corrosive nature of nitric acid extends beyond its immediate contact with skin or flesh. Upon exposure, it initiates a cascade of chemical reactions known as acid hydrolysis, effectively breaking down proteins and fats present in biological tissues. This process not only leads to the destruction of cells but can also result in long-term damage if not promptly addressed. The severity of these burns is often exacerbated by the concentration and duration of exposure to the acid.

In addition to its corrosive effects on biological matter, nitric acid exhibits distinctive staining properties. The yellow discoloration observed on the skin following contact with concentrated nitric acid stems from its reaction with keratin, the protein responsible for the structural integrity of skin, hair, and nails. This visual indicator serves as a warning sign of exposure and underscores the need for immediate intervention.

While systemic effects from nitric acid exposure are relatively rare, its status as a non-carcinogenic and non-mutagenic substance provides some reassurance regarding its long-term health implications. Nonetheless, the importance of adhering to strict safety measures cannot be overstated, particularly when dealing with concentrated solutions or prolonged exposures.

Effective first aid for nitric acid spills involves rapid and thorough irrigation with copious amounts of water. This not only helps to dilute the acid and mitigate its corrosive effects but also serves to cool the surrounding tissue and prevent further damage. Prompt removal of contaminated clothing and meticulous cleansing of exposed skin are essential steps in minimizing the extent of injury.

Beyond its direct corrosive effects, nitric acid presents additional hazards due to its potent oxidizing properties. Reactions with certain compounds, such as cyanides, carbides, and metallic powders, have the potential to yield explosive outcomes, highlighting the importance of careful handling and storage practices. Similarly, interactions with organic materials, including turpentine, can result in violent and spontaneous ignition, emphasizing the need for segregation from such substances.

To mitigate the risk of accidents or chemical reactions, nitric acid should be stored in dedicated areas away from bases and organic materials. Proper labeling, containment, and ventilation are essential considerations in ensuring the safe handling and storage of this hazardous substance. Additionally, thorough training and adherence to established safety protocols are indispensable for minimizing the likelihood of incidents and safeguarding both personnel and the surrounding environment.

# Chapter 2

# Methodology

#### **Chapter Two**

#### Methodology

#### 2.1 The Nitric Acid Production Processes

All commercially produced nitric acid is now prepared by the oxidation of ammonia. The requirement for a nitric acid product of 60%(wt.) Immediately restricts the choice of a recommended production process. Only two processes

are possible, both highly efficient, each offering distinct advantages under different market conditions .

#### 2.1.1 The Single-Pressure Process

The Single -Pressure process was developed to take full advantage of operating pressure in enabling equipment sizes to be reduced throughout the process . A single compression step is used to raise the pressure through the entire process sufficiently to favor absorption. Operating pressures range from 800 kPa as used by the Sumitomo Chemical Company Ltd. to 1100 kPa

as used in the C&l Girdler single-pressure process. Increased ammonia oxidation and complete ammonia/air mixing, and uniform flow distribution can minimize increased consumption of ammonia due to the higher-pressure operation across the gauze "inside the reactor". The higher oxidation 10 temperature results in an increased consumption of platinum and rhodium and the need to rework the gauze every five to seven weeks .The higher temperature and the favorable pressure effect make possible a greater recovery of energy from the process.

The process begins with the vaporization of ammonia at 1240 kPa and 35°C using process heat "as shown in the given flow sheet, Fig. (1). Steam is then used to superheat the ammonia to 180°C, filtered air is compressed by an axial compressor to an interstage level and then, following cooling, by a centrifugal compressor to a discharge pressure of 1090 kPa. A portion of the air is diverted for acid bleaching; the remainder is circulated through a jacket surrounding the tail-gas preheater and then used for ammonia oxidation.

In this process; the heated air and the ammonia vapor (10.3% ammonia by volume) are then mixed and passed through the platinum/ rhodium gauze reactor where the heat of reaction (producing nitric oxide) raises the temperature to be between 927°C and 937°C. The reaction gas flows through a series of heat exchangers in which energy is recovered either as high-pressure superheated steam or as shaft horsepower from the expansion of hot tail gas. Approximately 70% of the oxidation to nitrogen dioxide occurs as the gas passes through the energy recovery train and is cooled to 185°C. After further cooling to 63°C in the primary cooler/condenser, separation of approximately one third acid product as 42% strength nitric acid is achieved. The remaining gas reaches a 43% oxidation conversion to nitrogen dioxide, with approximately 20% dimerization. The gas is combined with bleached air containing additional nitrogen peroxide; it then passes through an empty

oxidation vessel and the secondary cooler. In cooling to 66"C, the gas provides heat to a recirculating hot water system used for vaporizing the ammonia.

The gas entering the absorber is 95% oxidized to nitrogen peroxide. In the absorber deionized water is added to the top tray, and weak acid from the low-pressure condenser is added to a tray corresponding to its strength.

Down-flowing acid and up-flowing acid alternately mix as the chemical steps of action formation and nitric oxide oxidation take place with the liberation of heat. There are three operational zones in the absorber, these are the lower zone cooled with plant cooling water, the middle zone cooled with chilled water, and the upper zone which is essentially adiabatic. High efficiency of heat removal in the middle and lower zones is particularly important due to its effect on the oxidation and dimerization reactions.

For this process, chilled water at 7°C is used and the tail-gas exit temperature is approximately 10°C. Acid from the bottom of the absorber is bleached at 1010 kPa with partially cooled compressed air. The bleach air, containing nitrogen peroxide stripped from the acid, is then added to the main gas stream before entering the oxidation vessel. The cold gas is warmed by heat exchange with the hot compressed bleached air, and then heated to the expander inlet temperature of 620°C by two exchangers in the recovery train. The expander recovers 80% of the required compressor power. Expanded tail gas at 300°C flows through an economizer, providing heat to highpressure boiler feed water and to low pressure de ionized deaerator make-up water. Subsequently tail gas is exhausted to the atmosphere at 66°C and less than 1000 ppm of nitrogen oxides.

The chilled water  $(7^{\circ}C)$  for absorption refrigeration unit, using heat, supplies the absorber recovered from the compressor and intercooler as the energy source. Heat for ammonia vaporization, as previously noted, is available at 35°C and is recovered from the secondary gas cooler. The system uses circulating condensate as the energy transfer medium.



Figure 2-1 The Single-Pressure Process

### 2.1.2 The Dual-Pressure Process

The dual-pressure process was developed to take advantage of two factors: a) Low-pressure ammonia oxidation;

b) High-pressure absorption for acid production

In addition to the higher conversion, the lower catalyst gauze temperature (associated with the low-pressure ammonia oxidation) results in a much lower rate of platinum deterioration. Both advantages are maximized at the lowest pressure. In contrast, however, absorption is best performed at the highest pressure.

The low-pressure ammonia oxidation is usually performed in the pressure range of 101.3 kPa to 344 kPa. High-pressure absorption is usually performed in the operating range of 800 kPa up to 1010 kPa. This process begins with the vaporization of ammonia at 550 kPa and 7"C "as shown in its flow sheet of Fig. (2)" followed by superheating to 76°C using heat from

the compressed bleached air. Filtered air is 12 compressed in an axial compressor to 350 kPa and is mixed

with the superheated ammonia vapor (1 O-1 1% ammonia by volume) prior to entering the converter/reactor. In the converter, the gases react over the platinum/rhodium gauze catalyst.

The gases leaving the reactor at 330 kPa and 865°C flow through a series of heat exchangers for recovery of energy, either as high-pressure superheated steam or shaft horsepower from expansion of hot tail gas. Approximately 40% of the oxidation to nitrogen dioxide occurs in the gas as it passes through the energy recovery train and is cooled to 135°C (exit from the tail-gas preheater). After further cooling to 45°C in the medium-pressure condenser, and separation of 20% of the acid product as 30% strength nitric acid, the gas reaches 50% oxidation to nitrogen peroxide with approximately 20% dimerization.

The gas is combined with bleach air containing additional nitrogen peroxide and is compressed in a centrifugal nitrous-gas compressor to 1025 kPa. The exit temperature of 224°C is achieved due to the combined heat effects of the compression, the further oxidation to 80% nitrogen peroxide, and the virtual disappearance of the dimer. The compressed gas flows through an empty oxidation chamber, a high-pressure boiler feed water economizer, and a low-pressure deionized water economizer, and thus is cooled to 95°C. Residence time in the system and the effect of increased pressure result in at least 95% oxidation to nitrogen peroxide, but the dimerization is low due to the temperature level.

The gas is then cooled to the dew point (50°C) for entry into the absorber. The dimerization increases to 48%, adding significantly to the heat removed prior to the absorber.

25

The system uses circulating condensate as the energy transfer medium. The absorber is essentially the same as that previously described for the single pressure process. Chilled water at 15°C is used in the absorber and the outlet gas temperature is 18°C. Refrigeration for the chilled water is provided by the ammonia vaporizer which operates at 7°C. Weak acid from the bottom of the absorber is let down to 330 kPa for bleaching with air from the axial compressor. This air, with nitrogen peroxide stripped from the acid, flows to the suction of the nitrous-gas compressor together with the main nitrous gas stream from the condenser



Figure 2-2 The Dual-Pressure Process

# Chapter 3

# **Material Balance**

## 2.1 Process Description

The process begins with the vaporization of ammonia at 1240 kPa and 35°C using process heat. Steam is then used to superheat the ammonia about 170°C, filtered air is compressed by a centrifugal compressor, discharge pressure of 1200 kPa. In our process; the air and the ammonia vapor are mixed and passed through the platinum/ rhodium gauze reactor where the heat of reaction raises the temperature to be between 650°C and 630°C. The reaction gas flows of heat exchangers to cooled down to 70 oC. Approximately 95% of the oxidation to nitrogen dioxide occurs as the gas passes in the Oxidation unit, after that cooled to 60°C, then sent to absorber to produce nitric acid (60%) purity.





## 2.3 Over all material balance

Production=150000  $\frac{ton}{year}$  of 60% nitric acid 150000  $\frac{ton}{year}$  =20833  $\frac{kg}{hr}$ 

 $HNO_3 = 0.6 \times 20833 = 12499.8 \ kg/hr = 198.4 \ kmol/hr$ 



 $NH_{3(g)}+2O_{2(g)} \longrightarrow HNO_3 + H_2O$ 

Conversion of ammonia 95%

HNO3:

 $= 198.4 \frac{kmole}{hr}$ 

**NH**3 :

$$= 231.40 \frac{kmole}{hr}$$

O2 :

$$= 198.4 \times 2 = 396.8 \frac{mole}{hr}$$
 (reacted)  
Excess 20%  
$$= 496 \frac{kmole}{hr}$$

 $N_2$ :

$$=\frac{496\times32\times0.79}{28\times0.21}=2132.46\,\frac{kmol}{hr}$$

Make up H<sub>2</sub>O :

$$= 462.95 - 198.4 = 264.55 \frac{kmole}{hr}$$

Tail gases

$$= 231.40 + 496 + 2132.46 - 198.4 - 264.55 = 2396.91 \, kmole/hr$$

# 2.4 Reactor material balance :



1) 
$$NH_3 + \frac{5}{4}O_{2(g)} \longrightarrow NO_{(g)} + \frac{3}{2}H_2O$$
  
2)  $NH_3 + \frac{3}{4}O_{2(g)} \longrightarrow \frac{1}{2}N_{2(g)} + \frac{3}{2}H_2O$ 

Reaction one:

Conversion of ammonia = 95%  
NH<sub>3</sub> (reacted) = 
$$231.40 \times 0.95 = 219.83 \frac{kmole}{hr}$$
  
O<sub>2</sub> (reacted) =  $\frac{5}{4} \times 219.83 = 274.78 \frac{kmole}{hr}$   
NO (produced) =  $219.83 \frac{kmole}{hr}$   
H<sub>2</sub>O (produced) =  $\frac{3}{2} \times 219.83 = 329.74 \frac{kmole}{hr}$ 

Reaction two :

Conversion of ammonia =5%  
NH3 (reacted) = 
$$0.05 \times 231.40 = 11.57 \frac{kmole}{hr}$$

O<sub>2</sub> (reacted) = 
$$\frac{3}{4} \times 11.57 = 8.677 \frac{kmole}{hr}$$
  
N<sub>2</sub> (produced) =  $\frac{1}{2} \times 11.57 = 5.785 \frac{kmole}{hr}$   
H<sub>2</sub>O (produced) =  $\frac{3}{2} \times 11.57 = 17.355 \frac{kmole}{hr}$ 

Output pruducts:

$$O_{2} = \text{inlet} - \text{reacted} = 496 - 274.78 - 8.677 = 212.543 \frac{\text{kmole}}{\text{hr}}$$

$$N_{2} = \text{inlet} + \text{produced} = 2132.46 + 5.785 = 2138.245 \frac{\text{kmole}}{\text{hr}}$$

$$NO = \text{inlet} + \text{produced} = 0 + 219.83 = 219.83 \frac{\text{kmole}}{\text{hr}}$$

$$H_{2}O = \text{inlet} + \text{produced} = 0 + 329.74 + 17.355 = 347.095 \frac{\text{kmole}}{\text{hr}}$$

| compound | Input   |          |       |        | Output   |          |       |        |
|----------|---------|----------|-------|--------|----------|----------|-------|--------|
| _        | Mole/hr | Kg/hr    | Wt%   | Mole % | Mole/hr  | Kg/hr    | Wt%   | Mole % |
| NH3      | 231.40  | 3933.8   | 4.94  | 8.09   |          |          |       |        |
| O2       | 496     | 15872    | 19.96 | 17.343 | 212.543  | 6801.376 | 8.55  | 7.284  |
| N2       | 2132.46 | 59708.88 | 75.09 | 74.565 | 2138.245 | 59870.86 | 75.29 | 73.284 |
| NO       |         |          |       |        | 219.83   | 6594.9   | 8.29  | 7.534  |
| H2O      |         |          |       |        | 347.095  | 6247.71  | 7.86  | 11.896 |
| TOTAL    | 2859.86 | 79514.8  |       |        | 2917.713 | 79514.8  |       |        |

Table 1 Summery of reactor mass balance

## 2.5 Oxidation material balance :



 $2NO + O_{2(g)} \longrightarrow 2NO_{2}$ Conversion of NO = 95% NO (inlet) = 219.83  $\frac{kmole}{hr}$ NO (reacted) = 219.83 × 0.95 = 208.838  $\frac{kmole}{hr}$ NO (outlet) = 219.83 - 208.838 = 10.992  $\frac{kmole}{hr}$ N2 (outlet) = 2138.245  $\frac{kmole}{hr}$ H2O (outlet = 347.095  $\frac{kmole}{hr}$ O2 (outlet) = 212.543 -  $\frac{1}{2}(208.838) = 108.124 \frac{kmole}{hr}$ NO<sub>2</sub> (outlet) = 0 + 208.838  $\frac{kmole}{hr} = 208.838 \frac{kmole}{hr}$ 

| component        | Input    |          |      | Output   |          |          |       |          |
|------------------|----------|----------|------|----------|----------|----------|-------|----------|
| -                | Mole/hr  | Kg/hr    | Wt%  | Mole     | Mole/hr  | Kg/hr    | Wt%   | Mole     |
|                  |          |          |      | fraction |          |          |       | fraction |
| NO               | 219.83   | 6594.9   | 8.29 | 7.53     | 10.992   | 329.76   | 0.41  | 0.3907   |
| O2               | 212.543  | 6801.376 | 8.55 | 7.28     | 108.124  | 3459.968 | 4.35  | 3.843    |
| N2               | 2138.245 | 59870.86 | 75.3 | 73.28    | 2138.245 | 59870.86 | 75.3  | 76.005   |
| H <sub>2</sub> O | 347.095  | 6247.71  | 7.85 | 11.896   | 347.095  | 6247.71  | 7.85  | 12.337   |
| NO <sub>2</sub>  |          |          |      |          | 208.838  | 9606.548 | 12.08 | 7.42     |
| TOTAL            | 2917.713 | 79514.8  |      |          | 2813.29  | 79514.8  |       |          |

## Table(2) : Summery of oxidation mass balance

#### 2.6 Absorber material balance :


| component        |         | Input         |       |       |          | Output    |      |       |
|------------------|---------|---------------|-------|-------|----------|-----------|------|-------|
| _                | Mole/hr | Kg/hr         | Wt%   | Mole  | Mole/hr  | Kg/hr     | Wt%  | Mole  |
|                  | I       | '             | ۱'    | %     |          |           |      | %     |
| NO <sub>2</sub>  | 208.838 | 9606.548      | 12.08 | 7.42  | 10.442   | 480.332   | 0.6  | 0.391 |
| O2               | 108.124 | 3459.968      | 4.35  | 3.84  | 58.525   | 1872.8    | 2.36 | 2.196 |
| N2               | 2138.24 | 59870.72      | 75.3  | 76.00 | 2138.245 | 59870.86  | 75.3 | 80.24 |
| HNO <sub>3</sub> |         | [ - <u></u> ' |       |       | 198.396  | 12498.948 | 15.7 | 7.44  |
| NO               | 10.992  | 329.76        | 0.41  | 0.390 | 10.992   | 329.76    | 0.41 | 0.412 |
| H <sub>2</sub> O | 347.095 | 6247.71       | 7.85  | 12.33 | 247.897  | 4462.146  | 5.61 | 9.303 |
| Total            | 2813.29 | 79514.8       |       |       | 2664.49  | 79514.8   |      |       |

# Table(3) Summery of absorber mass balance

# **Chapter 4**

# **Energy Balance**

# 4.1 Vaporizer Energy Balance :



For S4: NH3 at -15 C  $^\circ$  and S5: NH3 at 35 C  $^\circ$ 

Tref = -15 C  $^{\circ}$ 

 $Q = \sum n_{out} H_{out} - \sum n_{in} H_{in}$ 

$$\sum H_{in} = \int_{-15}^{10} CP \, dT$$

 $Q = \sum n_{out} H_{out} - 0$ 

$$H_{out} = n \left[ \int_{T_{ref}}^{T_{boi}} Cp \, dT + H_{vap} + \int_{T_{boil}}^{T_{out}} Cp \, dT \right]$$

$$H = \int_{35}^{-15} Cp \, dT = 35.15 \times 10^{-3} (35 + 15) + 2.954 \times \frac{10^{-5}}{2} (35^2 + 15^2) + \frac{10^{-8}}{3} (35^3 + 15^3) - 6.686 \times \frac{10^{-12}}{4} (35^4 + 15^4)$$

$$\sum H_{out} = 1000 \times 231.40 \left[ 1.78 + \left( \frac{1133.642}{1000} \times 17 + 0.07232 \right) \right]$$

$$\sum H_{out} = Q = 4888147.748 \frac{kJ}{h}$$

### 4.2 Superheater Energy Balance :



For S5: NH3 at 35 C  $^{\circ}$  and S6: NH3 at 177 C  $^{\circ}$ 

$$Q = \sum n Hout - \sum n Hin$$

Tref = 35 C  $^{\circ}$ 

 $H_{in} = Zero$ 

$$H_{(out)} = \int_{T_1}^{T_2} Cp \ dT$$

For NH3 :  $H = \int_{35}^{177} Cp \ dT = 35.15 \times 10^{-3} (177 - 35) + 2.954 \times \frac{10^{-5}}{2} (177^2 - 35^2) + 0.4421 \times \frac{10^{-8}}{3} (177^3 - 35^3) - 6.686 \times \frac{10^{-12}}{4} (177^4 - 35^4)$   $Hout = 1000 \times 231.40 \times 5.442 = 1259278.8 \ KJ/h$ 

 $Q = Hout = 1259278.8 \, KJ/h$ 

# 4.3 Mixer Energy Balance :



For S3: NH3 at 177 C °, S6: Air at 262 C ° and S7: NH3+Air at ?

Q = 0 (Adiabatic)

Energy required to heat ammonia = Energy lost by air

$$mCp(T_{out} - T_{in}) = mCp(T_{out} - T_{in})$$

$$Cp(NH_3) = 2.38 \frac{KJ}{Kg.C^{\circ}}$$

$$Cp(Air) = 1.05 \frac{KJ}{Kg.C^{\circ}}$$

$$2335.88 \times 2.38 \times (T_{out} - 177) = 43537.52 \times 1.05 \times (262 - T_{out})$$

$$T_{out} = 250 C^{\circ}$$

# 4.4 Reactor Energy Balance :



For S7: NH3 + Air at 250 C  $^\circ$  and S8: Air + NO + H2O at 645 C  $^\circ$ 

| Table 4: | Summary | of | enthalpy | components | in reactor |
|----------|---------|----|----------|------------|------------|
|          |         |    | 1.2      | 1          |            |

| Component | Input S7 (kJ/mol) | Output S8 (kJ/mol) |
|-----------|-------------------|--------------------|
| H (Air)   | 6.654             | 19                 |
| H (NH3)   | 8.84              |                    |
| H (NO)    |                   | 19.744             |
| Н (Н2О    |                   | 23                 |

 $Q = \sum n_{out} H_{out} - \sum n_{in} H_{in} + n_{product \ 1} \Delta H_{r1} + n_{product \ 2} \Delta H_{r2}$ 

1)  $4NH_3+5O_2 \rightarrow 4NO+6H_2O$  (1) Conversion=95% 2)  $4NH_3+3O_2 \rightarrow 2N_2+6H_2O$  (2) Conversion=5%  $\Delta H_r = \sum (F\Delta Hf)_{Product} - \sum (F\Delta Hf)_{Reactant}$   $\Delta H_{r1} = -1311.04 \frac{kJ}{mol}$ Based on NO  $\Delta H_{r1} = -\frac{1311.04}{4} = -327.76 \ KJ/mol$ 

$$\Delta H_{r2} = -1446.24 \ KJ/mol$$

Based on H<sub>2</sub>O

 $\Delta H_{r2} = -\frac{1446.24}{6} = -241.04 \ KJ/mol$ 

$$H = \int_{T_1}^{T_2} Cp \, dT = a(T_2 - T_1) + \frac{b}{2} \begin{pmatrix} T_2^2 - T_1^2 \end{pmatrix} + \frac{c}{3} \begin{pmatrix} T_3^3 - T_3^3 \end{pmatrix} + \frac{d}{4} \begin{pmatrix} T_4^4 - T_4^4 \end{pmatrix}$$

For NH3 :  

$$H = \int_{25}^{250} Cp \ dT = 35.15 \times 10^{-3} (250 - 25) + 2.954 \times \frac{10^{-5}}{2} (250^2 - 25^2) + \frac{10^{-8}}{2} (250^3 - 25^3) - 6.686 \times \frac{10^{-12}}{4} (250^4 - 25^4) = 8.84 \ \text{KJ/mol}$$

Tref =25 C  $^{\circ}$ 

| Component | Input S7          | Output S8 |
|-----------|-------------------|-----------|
|           | ( <i>kJ/mol</i> ) | (kJ/mol)  |
| H (Air)   | 6.654             | 19        |
| H (NH3)   | 8.84              | _         |
| H (NO)    | _                 | 19.744    |
| H (H2O)   | _                 | 23        |

 $Q = 39294150 + F_{out}(NO).\Delta H_{r1} + F_{out}(H_2O).\Delta H_{r2}$ Q = -11641109 KJ/h

## 4.5 Heat Exchanger Energy Balance (1st Cooler):



### 4.6 Oxidation Energy Balance :



$$H = \int_{25}^{140} Cp \, dT \qquad \text{For output}$$

For (H<sub>2</sub>O)<sub>g</sub>  $H = \int_{25}^{140} Cp \ dT = 33.46 \times 10^{-3} (140 - 25) + 0.6880 \times \frac{10^{-5}}{2} (140^2 - 25^2) + 0.7604 \times \frac{10^{-8}}{3} (140^3 - 25^3) - 3.593 \times \frac{10^{-12}}{4} (140^4 - 25^4) = 3.919 \ \text{KJ/mol}$ 

Table (4)

| Component            | Input S9 | Output S10 |
|----------------------|----------|------------|
|                      | (KJ/mol) | (KJ/mol)   |
| H (H2O)g             | 1.521    | 3.919      |
| H (Air )             | 1.312    | 3.37       |
| H (NO)               | 1.345    | 3.47       |
| H (NO <sub>2</sub> ) | _        | 4.5        |

 $\sum (FH)_{in} = 3907.84 \ KJ/h$ 

 $\sum (FH)_{out} = 9908.44 \text{ KJ/h}$ 

Q = -63978.32958 KJ/h

#### 4.7 Heat Exchanger Energy Balance (2nd Cooler):



For S10 : Air + NO + H2O + NO2 at 140 C  $^{\circ}$ and

S11: Air + NO + H2O + NO2 at 60 C °  $T_{ref} = 60 \text{ C} °$   $Q = \sum (FH)_{out} - \sum (FH)_{in}$   $H = \int_{T_1}^{T_2} Cp \ dT = a(T_2 - T_1) + \frac{b}{2} (T_2^2 - T_2^2) + \frac{c}{3} (T_2^3 - T_3^3) + \frac{d}{4} (T_2^4 - T_1^4)$   $H_{out} = \text{Zero}$ Input : For H2O  $H = \int_{60}^{140} Cp \ dT = 33.46 \times 10^{-3} (140 - 60) + 0.6880 \times \frac{10^{-5}}{2} (140^2 - 60^2) + 0.7604 \times \frac{10^{-8}}{3} (140^3 - 60^3) - 3.593 \times \frac{10^{-12}}{4} (140^4 - 60^4) = 2.737 \ \text{KJ/mo}$ For Air  $H = \int_{60}^{140} Cp \ dT = 2.350 \ \text{KJ/mol}$ For NO  $H = \int_{60}^{140} Cp \ dT = 2.4230 \ \text{KJ/mol}$ 

 $Q = -33526.579 \ KJ/mol$ 

#### 4.8 Absorber Energy Balance :



Basis :  $T_{ref} = 25 \text{ C}^{\circ}$ 

For S11 : Air + NO + H2O + NO2 at 60 C  $^\circ\,$  , S11 : H2O at 20 C  $^\circ\,$ 

For S12 : Air + NO + H2O at 30 C  $^\circ$  and S13 : HNO3 + H2O at 30 C  $^\circ$ 

 $3NO_{2} + H_{2}O + \frac{1}{2}O_{2} \rightarrow 2HNO_{3}$ Conversion = 95 %  $\Delta Hr = \sum (F\Delta Hf)_{Product} - \sum (F\Delta Hf)_{Reactant}$   $\Delta Hr = -300258.6481KJ/mol$ Based on (HNO<sub>3</sub>) :  $\Delta Hr = -300258.6481/2 = -150129.3241KJ/mol$   $Q = \sum (FH)_{out} - \sum (FH)_{in} + nproud \Delta Hr$   $H = \int_{T_{1}}^{T_{2}} Cp \ dT = a(T_{2} - T_{1}) + \frac{b}{2}(T_{2}^{2} - T_{2}^{2}) + \frac{c}{3}(T_{3}^{3} - T_{3}^{3}) + \frac{d}{4}(T_{4}^{4} - T_{4}^{4})$ 

For (H<sub>2</sub>O)<sub>g</sub> in S12  

$$H = \int_{25}^{30} Cp \, dT = 33.46 \times 10^{-3} (30 - 25) + 0.6880 \times \frac{10^{-5}}{2} (30^2 - 25^2) + 0.7604 \times \frac{10^{-8}}{3} (30^3 - 25^3) - 3.593 \times \frac{10^{-12}}{4} (30^4 - 25^4) = 0.166 \text{ KJ/mol}$$

 $T_{ref}$  = 25 C  $^{\circ}$ 

| Component            | Input S11                                               | Input S14                                               | Output S12                                              | Output S13                 |
|----------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------|
|                      | $(\mathbf{K}\mathbf{J}/\mathbf{M}\mathbf{O}\mathbf{I})$ | $(\mathbf{K}\mathbf{J}/\mathbf{M}\mathbf{O}\mathbf{I})$ | $(\mathbf{K}\mathbf{J}/\mathbf{M}\mathbf{O}\mathbf{I})$ | ( <b>KJ</b> / <i>MOL</i> ) |
| H (H2O)g             | 1.18                                                    | —                                                       | 0.166                                                   | —                          |
| H (H2O)L             | —                                                       | -0.375                                                  | —                                                       | 0.375                      |
| H (Air )             | 1.02                                                    | _                                                       | 0.145                                                   | _                          |
| H (NO)               | 1.044                                                   | _                                                       | 0.149                                                   | _                          |
| H (NO <sub>2</sub> ) | 1.32                                                    | _                                                       | _                                                       | _                          |
| H (HNO3)             | _                                                       | _                                                       | _                                                       | 0.55                       |

 $\sum (FH)_{in} = 2857.845 \text{ KJ/mol}$  $\sum (FH)_{out} = 563.399 \text{ KJ/mol}$ Q = -152423.7701 KJ/mol

# Chapter 5

# **Chemical and Mechanical Design**

### 5.1 Design of Reactor:

#### **Introduction:**

#### **CHOICE OF REACTOR TYPE**

The choice of reactor is dictated by the process conditions, the type of reaction and the mode of catalyst exposition. The oxidation of ammonia is a gas-solid reaction of catalytic type. Since the catalyst is in the form of wire gauze, so a fixed bed reactor is best suited. The reaction is exothermic and the heat of reaction is to be conserved as it will be used to supply power required for compression, to generate steam and to preheat air, hence the mode of operation will be adiabatic.

The reactor is classified as a heterogeneous, catalytic, shallow fixed bed, adiabatic, down flow reactor. Most of the reactors employed in nitric acid industry are tapered along with 700 angles.

#### **CHOICE OF CATALYST**

Catalysts which increase the rate of oxidation of ammonia to nitrogen oxide (NO) include platinum, its alloys with metals of platinum group, oxides of iron, manganese, cobalt etc. The activity of platinum and platinum alloy catalysts is higher than that of others. Non platinum catalysts are cheaper but they are less active and unstable. For these reasons at most of plants where HNO3 is made from ammonia, platinum catalysts are used. 90% Pt with 10% Rh is selected as catalyst for this reaction because it can operate at high temperatures, maximum yield is obtained and the contact time can be accurately controlled.

#### **Kinetic of reaction**

The catalyst of ammonia oxidation is so rapid that the amount of catalyst required is very small and heat transfer is not feasible. Typically configuration of this system is the woven – wire gauze. This reaction completely by mass transfer, and the design of screen packs has been based on pilot –plant studies and plant experience.

#### Assumption:

1. The reactions are mainly controlled by diffusion.

2. The partial pressure of ammonia on the catalyst surface is negligible.

3. The design model is developed as plug flow.

4. Typical reported data are used.

5. Ratio of mass of ammonia /hr.: mass of catalyst =85.

6. Cross sectional area =  $0.256 \times 10^{-3}$  m<sup>2</sup>/ ton HNO3, daily.

#### Let:

Nw = 80 inch mesh size Aw = area /ton HNO<sub>3</sub> = 0.256 m<sup>2</sup>/ton HNO<sub>3</sub> dw = wire diameter = 0.003 inch =76 × 10<sup>-4</sup> cm fw = wire area per gauza cross sectional area Awr = surface area of screen / volume of one screen The density of catalyst = 0.0214 kg / cm<sup>3</sup> ns = number of screen per gauza X= 0.95

$$V_{g} = \text{volume of one screen} = 110 \text{ cm}^{3}$$

$$Y_{NH3} = 0.09$$

$$a_{wr} = \pi N_{w}^{2} \left[ \left( \frac{1}{N_{w}} \right)^{2} + d_{w}^{2} \right]^{0.2} = 122.6 \text{ } cm^{-1} = 294.39 \text{ } inch^{-1}$$

$$f_{w} = a_{wr} \times 2d_{w} = 294.39 \times 2 \times 0.003 = 1.77$$

$$\pounds = Porcity = 1 - \frac{a_{w}d_{w}}{4} = 1 - \frac{122.6 \times 76 \times 10^{-4}}{4} = 0.8$$

$$G = mass \text{ } velocity = \frac{\frac{M_{A}}{M_{w}}}{\frac{M_{A}}{Y_{A}} \times \frac{M_{A}}{X_{A}} \times a_{w}} \times 2000}$$

$$= \frac{30}{24 \times 3600 \times 0.96 \times 0.09 \times 0.027547}$$

$$G = 4.63 \frac{lbm}{ft^{2} \cdot s} = 2.1 \frac{g}{cm^{2} \cdot s}$$

$$\rightarrow$$
 Superficial velocity

4 0

$$u_{s} = 2.1 \times \frac{1}{\rho} = 2.1 \times \frac{82.06 \times 1209}{7.8 \times 30} = 890 \frac{cm}{s} = 28.3 \frac{ft}{s}$$
$$\frac{1 - X_{A} \times \pounds^{0.352} \times d_{w}^{0.648} \times G^{0.648} \times u^{0.0190}}{u_{s} = -\ln 5.81761 \times 10^{-5}) \times f_{w} \times T^{0.333} \times (28.85 + 11.82 \times y_{A_{o}})^{0.667}}$$

$$n_s = 19 \ gauza$$
  
 $ratio = rac{mass \ amonia}{mass \ catalyst} = 85$ 

The mass of ammonia /85=mass of catalyst

$$m_{cat} = \frac{17 \times 231.40}{85} = 46.28 \, kg$$

Area required = A = 0.256 × 300 = 76.8 m<sup>2</sup> Volume of catalyst = the mass of catalyst/ density of catalyst Volume of catalyst =  $\frac{27.5}{0.0214}$  = 1284 cm<sup>3</sup>  $N_c$  = number of screen =  $\frac{V_c}{V_g - (1 - \pounds)}$  = 12 screen height = 0.5 × 50 + 1 TOP + 1 bottom = 8 m

Area = 
$$\pi \times D \times L$$
  
$$D = \frac{76.8}{\pi \times 8} = 3.05 m$$

## Mechanical design :

Shell

$$e = \frac{p_i D_i}{2F - p} + c$$

C= thickness of shell mm

Pi=design pressure N/mm<sup>2</sup>

Di=inside shell diameter

F=design stress N/mm.

c= corrosion constant.

Di = 3.055m=3055mm.

Operating pressure =8 bar.

Design pressure  $Pi = 1.1 \times 8 = 8.8 \ bar = 0.88 \ N/mm^2$ 

C=1 mm

At T=645 °C design stress of stainless steel  $F = 55 \frac{N}{mm^2}$  table 13.2

$$e = \frac{0.88 \times 3055}{2 \times 55 - 0.88} + 1 = 25 \, mm$$

Ellipsoidal head:

$$e = \frac{P_i}{2Jf - 0.2P_i} + c$$

Where :

C=thickness of ellipsoidal head mm

J= joint factor = 0.8

 $e = \frac{0.88 \times 3055}{2 \times 0.8 \times 55 - 0.2 \times 0.88} + 1 = 31 \, mm$ 

| Туре                  | Fixed bed |
|-----------------------|-----------|
| Volume m <sup>3</sup> | 1.284     |
| Height m              | 8         |
| Dimeter m             | 3         |
| Material of const     | St.st     |

# 5.2 Design of Absorber ;

#### Introduction

The most important step of manufacturing nitric acid is Absorption of NOx When it is compared to other absorptions operation. Absorption of NOx is the most complex. This is for several reasons:

1. NOx is a mixture of several components of NO,NO2,N2O3 and N2O4.

2. In absorption tower many reversible and irreversible reactions.

3. Simultaneous absorption of many gases occurs followed be chemical reaction.

 $2NO_2 + H_2O + \frac{1}{2}O_2 \rightarrow 2HNO_3$ 

4. Heat Generated from the reactions, which affect the absorption.



Figure 1 Nitric acid column

#### The objective ;

To design an absorption tower to absorb NO2 from the mixer gas stream using water to form nitric acid with 60% weight.

## Absorber design calculation



Stream temperature and NO2 molar composition

Number of Gases moles entered the absorber= Gm= 1417.09 Kmol/hr Number of water moles entered the absorber=Lm=373.19 Kmol/hr

| Component             | Mole fraction | Mole fraction |
|-----------------------|---------------|---------------|
| $NO_2$                | 0.0884        | 46            |
| NO                    | 0.0037        | 30            |
| <i>O</i> <sub>2</sub> | 0.0386        | 32            |
| N2                    | 0.869         | 28            |

#### Compositions of income gases

Average Molecular Weight (Mwt)

$$= (46 \times 0.0884) + (30 \times 0.0037) + (32 \times 0.0386) + (0.869 \times 28)$$
  
= 29.74 Kg/ Kmol  
Density of Gases (assuming ideal Gas) =  $\rho v = \frac{P \times mwt}{R \times T} = \frac{120000 \times 29.74}{8314.34 \times 333}$   
= 12.89 Kg/m3

P= 1200000 Pa T=60 °C = 333 K R= 8314.34  $m3 \times Pa/Kmol \times K$ Density of water at 20 °C, 1200 kPa =  $\rho_1$ = 998.23 Kg/m<sup>3</sup>

**Diameter Calculation** 

 $Uv = (-0.171 \ Lt^2 + 0.21Lt - 0.047) \ (\frac{\rho L - \rho v}{\rho_v})^{0.5}$ 

L<sub>t</sub>=plat spacing=0.9 m

 $Uv = (-0.171 \times (0.9)^2 + 0.21 \times 0.9 - 0.047)(\frac{998.23 - 12.89}{12.89})^{0.5} = 0.51 \ m/sec$ 

Taking 60% Uv =0.3 m/s

$$D = \sqrt{\frac{4V_m}{\pi \rho_{mU_v}}}$$
$$D = \sqrt{\frac{4 \times 11.71}{3.14 \times 12.98 \times 0.3}} = 1.96 \approx 2m$$

# **Design**

### Assumptions

1. N<sub>2</sub>O<sub>4</sub> (2NO<sub>2</sub>) is the only species, which dissolved in the Liquid.

2. Neglect the reactions occurs in the column.

3. Isothermal Operation and the temperature is 45°C.

4. The design of the column is trays absorption column.

### **Height of Absorber**

Equilibrium line can be specified:

Y = mX

From Raoult's law

$$m = \frac{p^{sat}}{P_{total}}$$

 $P^{sat}$  for NO<sub>2</sub> at 45°C

From Antoine Equation:

$$LnP^{\text{sat}} = A - \frac{B}{T-C}$$
A=20.5324  
B= 4141.29  
C=3.65  
T= 45oC= 318 k  
Ln P^{\text{sat}} = 20.5324 - \frac{4141.29}{318+45} = 7.6572
P<sup>sat</sup> = 2115.944 mmHg = 282.01 kPa  
So, the slope of the equilibrium line  
 $m = \frac{282.01}{1200} = 0.234$ 

Numberof stage N = 
$$\frac{\ln[(1 - \frac{mG_m}{L_m})(\frac{Y_1 - mX_2}{Y_2 - mX_2}) + \frac{mG_m}{L_m}]}{\ln(\frac{L_m}{L_mG_m})}$$
  
m = 0.235 G<sub>M</sub> = 1417.09 kmol/hr L<sub>m</sub>=373.191 Kmol/hr  
Y1 = 0.0048 Y\_2 = 0.0884 X\_2 = 0  
N = 
$$\frac{\ln[(1 - 0.893)(\frac{0.0884 - 0}{0.0048 - 0}) + 0.893]}{\ln(\frac{1}{0.893})} = 9.3 \approx 10 \text{ stages}$$

Hight of Absorber = Number of stages imes Plate spacing

$$= N \times Lt$$
$$= 10 \times 0.9$$
$$= 9m$$

# **Mechanical Design of Absorber**



Inlet gas

| Component       | Kg/hr   | M .wt | K mol /hr | Mol% y |
|-----------------|---------|-------|-----------|--------|
| O <sub>2</sub>  | 309.53  | 32    | 9.673     | 5.16   |
| N <sub>2</sub>  | 4618.26 | 28    | 164.938   | 87.98  |
| NO              | 93.81   | 30    | 3.127     | 1.66   |
| NO <sub>2</sub> | 448.81  | 46    | 9.743     | 5.20   |
| Total           | 5469.76 |       | 187.481   |        |

#### Liquid density

Density of H2O at 35 °C  $\rho_l = 994 \text{ kg/m3}$ L = 484.94 kg/hr

L = 0.135 kg/s

G = 5469.76 kg/hr

G= 1.519 kg/s

$$F_{L.V} \left(\frac{0.135}{1.519}\right) \left(\frac{9.12}{994}\right)^{0.5} = 0.01$$
$$V_W^* = \left[\frac{K_4 \rho V(\rho L - \rho V)}{13.1F_P \left(\frac{\mu_L}{\rho_L}\right)^{0.1}}\right]^{0.5}$$

Where:

 $V_w^* =$  gas mass flow rate per unit cross – sectional area kg/m<sup>2</sup>.s

 $K_4 = constant$ 

 $\mu_L$  = liquid viscosity kg/m.s

 $F_P$ = packing factor.

Design pressure drop for absorber from from15 to 50 mmH2O /m packing Select  $\Delta p = 42$  mmH2O /Packing

For  $F_{L.V} = 0.01$  and  $\Delta P = 42 \text{ mmH2O} / \text{m}$  packing

 $K_4 = 3$ 

 $F_p = 170 \text{ m}^{-1}$  table 11.2

Viscosity of H2O at 35°C

 $\mu_L = 0.722 \ \mu_L = 0.722 * 10^{-3} \ \text{kg/m.s}$ 

$$V_{W}^{*} = \left(\frac{3 \times 9.12(998 - 9.12)}{0.772 \times 10^{-3}}\right)^{0.5}$$
  
= 7.052Kg/m<sup>2</sup>.s  
$$A = \frac{G}{V_{W}^{*}}$$

A= cross-sectional area of column  $m^2$ .

$$A = \frac{1.519}{7.052} = 0.215m^{2}$$
$$A = \frac{\pi}{4}D^{2}$$
$$0.215 = \frac{\pi}{4}D^{2}$$
$$D = 0.52 \text{ m}$$

# Height of column

Z=HOG.NOG

Where :

Z= height of packing m.

HOG = over all height of gas phase transfer unit m.

NOG = number of transfer unit .

HOG was obtained from table (15.4) "separation process engineering" For ceramic packing with size 2 in  $\rightarrow$  HOG = 0.65 m

Absorption with chemical reaction ,vapour pressure of NO2 over the solution can be negligible .

$$P_A^* = 0$$

$$P_A^* = P_A^\circ X_A$$

$$\frac{P_A^*}{P_T} = \frac{P_A^\circ}{P_T} X_A$$

$$y^*{}_A = m x_A$$

$$m = (\frac{P\underline{A}}{P_T}) = 0 \rightarrow y^*_A = 0$$

$$NOG = \int_{y_2}^{y_1} \frac{dy}{y_2}$$

For absorption with chemical reaction  $y^*=0$ 

NOG = 
$$\int_{y_2}^{y_1} \frac{dy}{y} = \ln \frac{y_1}{y_2}$$
  
 $y_1 = 0.052$   
 $y_2 = \frac{\frac{3.85}{40}}{\frac{163.55}{32} + \frac{4618.26}{28} + \frac{10.07}{30} + \frac{3.84}{46}} = 0.0005$   
NOG =  $\ln \frac{0.052}{0.0005} = 4.64$   
 $Z = (0.65) (4.64)$   
 $= 3.02 \text{ m}$   
**Pipe sizing**

$$d=293~G^{0.53}~\rho^{\text{-}0.37}$$

where:

d = optimum pipe diameter mm .

G = fluid mass flow rate kg/s.

 $\rho = fluid \ density \ kg/m3$  .

# <u>inlet gases</u>

G = 5469.76 kg/hr = 1.519 kg/s

$$\rho = 9.12 \text{ kg/m3}$$

 $d = 293 (1.519)^{0.53} (9.12)^{-0.37} = 162 mm$ 

#### outlet gases

G = 4795.72 kg/hr = 1.332 kg/s  $\rho = 8.79 \text{ kg/m}^3$  d = 293 (1.332)0.53 (8.79)-0.37 = 153 mm **inlet liquid**  G = 484.94 kg/hr = 0.135 kg/s  $\rho = 994 \text{ kg/m3}$   $d = 293 (0.135)^{0.53} (994)^{-0.37} = 8 \text{mm}$  **outlet liquid**  G = 1158.4 kg/hr = 0.322 kg/s $\rho = 1390 \text{ kg/m3}$ 

 $d = 293 (0.322)^{0.53} (1390)^{-0.37} = 11mm$ 

Mechanical design

#### Shell

$$e = \frac{P_i \underline{-} D\underline{i}}{2F - pi} + c$$

where

e = thickness of shell mm.

 $Pi = Design pressure N/mm^2$ .

Di = shell inside diameter mm.

 $f = design stress N/mm^2$ .

C = corrosion constant mm.

d = 0.52 m = 520 mm

operating pressure = 8 bar

design pressure pi = 1.1 \* (8-1) = 7.7 atm = 0.77 N/mm<sup>2</sup>

C = 2 mm

At T= 35 °C design stress of high silicon iron

$$e = \frac{0.77 \times 520}{2 \times 135 - 0.77} + 2 = 3.48$$
mm

### **Ellipsoidal head**

$$e = \frac{pi \times Di}{2Jf - 0.2pi}$$

where

e = thickness of ellipsoidal head mm.

J = joint factor = 0.8  

$$e = \frac{0.77 \times 520}{2 \times 0.8 \times 135 - 0.2 \times 0.77} + 2 = 3.85 \text{mm}$$

#### weight loads

weight of vessel (shell)

 $W_V = C_V \pi \rho_m D_m g (H_v + 0.8 D_m) t^* 10^{-3}$ 

 $W_V$  = total weight of shell excluding internal fitting N .

 $C_V = constant.$ 

 $\rho_m$  = density of vessel material kg/m3.

 $H_V$  = height (length) of shell m .

 $D_m$  = mean diameter of shell m.

t = wall thickness mm

$$t = e = 3mm$$

$$C_{V} = 1.15$$

$$\rho_{m} = 7100 \text{ kg/m}^{3}$$

$$D_{m} = (Di + t^{*}10^{-3})$$

$$D_{m} = (0.52+3^{*}10^{-3}) = 0.523m$$

$$H_{v} = 3.02 \text{ m}$$

$$W_{v} = 1.15\pi \text{ *}7100^{*}0.523 \text{ *}9.81 (3.02 + 0.8 \text{ *}0.523)(3^{*}10^{-}3)$$

$$W_{v} = 1358 \text{ N}$$
**Weight of fluid**  

$$W_{f} = v \rho g$$
Where  

$$W_{f} = \text{Weight of fluid N}.$$

$$V = \text{volume of fluid m3}.$$

$$\rho = \text{density of fluid kg /m3}.$$

$$W_{f} = \frac{\pi}{4} (0.52)^{2} (3.02) (1390) (9.81) = 8746 \text{ kg/m}^{3}$$

 $W = w_v + w_f$  total weight

W= 1358+ 8746 =10104 N

Added 10% above total weight

W = 1.1 (10104) = 11114 N

# design of bracket support

 $F_{bs} = 60 \ L_c \ t_c$ 

Where

 $F_{bs} = design \ load \ per \ bracket \ N.$ 

Lc = depth of bracket mm.  $t_c$  = thickness of plate mm. use four brackets  $F_{bs} = \frac{11114}{4} = 2779 \text{ N}$ Take tc = 3 mm 2779= 60 \*3 L<sub>c</sub> L<sub>c</sub> = 16mm



#### <u>Analysis Stress (σ):</u>

Longitudinal Stress  $\sigma_L$  :

 $\sigma_l = \frac{P \times d}{4 \times 0.0338}$  $= \frac{7.7 \times 0.52}{4 \times 0.0338} = 26 \frac{N}{m^2}$ 

#### Dean weight stress $\sigma_w$ :

$$\sigma_w = \frac{w_{total}}{\pi(D_i + e)e}$$
$$= \frac{11.114}{3.14(0.52 + 0.0385)0.0385} = \frac{1.64N}{m^2}$$

Bending stress  $\sigma_b$ :

$$\sigma_b = \pm \frac{M}{L_v} \left(\frac{d_i}{2} + e\right)$$
$$L_v = \frac{\pi}{64} \times \left(\frac{d_i}{0} + \frac{d_i}{4}\right)$$

Where;  $d_0 = d_i + (2^*e) = 0.52 + (2^*0.0385) = 0.59 \text{ m}$  $L_v = \frac{\pi}{64} (0.59^4 + 1.2^4) = 0.118 \text{ m}$ 

$$\begin{split} & \underset{2}{\overset{\text{M}=fw}{2}} \mathcal{H}_{\nu} )^{2} = \frac{14378.43}{2} \ (7)^{2} = 35227N.m \\ & \sigma_{b} = \pm \frac{35227}{0.118} \ (\frac{0.52}{2} + 0.0385) = \pm 89.1123 \ N/m^{2} \end{split}$$

 $\sigma_z$ (downwind) = $\sigma_l - \sigma_w - \sigma_b$ = 26.45N/m<sup>2</sup>

 $\sigma_z(\text{upwind}) = \sigma_l - \sigma_w - \sigma_b = 62 \text{ N/m}^2$ 

# Elastic Stability $\sigma_{c;}$

$$\sigma_c = 2 \times 10^4 \left(\frac{e}{d_o}\right) = 2 \times 10^4 \left(\frac{0.0385}{0.52}\right) = 148.07 \frac{N}{m^2}$$

| Туре                       | Packed            |
|----------------------------|-------------------|
| Length packing             | 3.02m             |
| Dimeter                    | 0.52m             |
| Volum $=\frac{\pi}{4}D^2L$ | 0.614             |
| Temp. °C                   | 35°C              |
| Pressure bar               | 8 bar             |
| Material of count          | High silicon iron |
| Shell thickness            | 3.48mm            |

| thickness of ellipsoidal head    | 3.85mm                   |
|----------------------------------|--------------------------|
| total weight                     | 11114N                   |
| Longitudinal Stress $\sigma_L$   | 26N/m <sup>2</sup>       |
| Dean weight stress $\sigma_w$ :  | 1.64N/m <sup>2</sup>     |
| $\sigma_z$ (downwind)            | 26.45N/m <sup>2</sup>    |
| $\sigma_z$ (upwind)              | 62N/m <sup>2</sup>       |
| Elastic Stability $\sigma_{c}$ ; | 148.07 N/m <sup>2</sup>  |
| Bending stress $\sigma_b$ ;      | 89.1123 N/m <sup>2</sup> |

# Chapter 6

# Conclusion

# Conclusion

our exploration of nitric acid production has traversed through the fundamental principles, methodological intricacies, and design considerations essential for understanding and optimizing this vital industrial process.

Commencing with an introduction to nitric acid and its significance in various industries, we underscored the importance of efficient and sustainable production methods to meet growing demands. This laid the foundation for our comprehensive analysis of production methodologies and their associated material and energy balances.

Through meticulous material and energy balance calculations, we quantified the inputs, outputs, and energy requirements of nitric acid production, providing valuable insights into process efficiency and resource utilization. This quantitative assessment informed our subsequent design considerations and optimization efforts.

Our focus on reactor and absorber design exemplifies the intersection of theory and practice in nitric acid production. By applying engineering principles to develop efficient and reliable systems, we aimed to enhance product quality, minimize waste generation, and improve overall process performance.

In conclusion, our report encapsulates the multidimensional nature of nitric acid production, integrating theoretical insights with practical applications to address key challenges and opportunities in the field. By leveraging advances in process optimization, equipment design, and sustainability practices, we pave the way for continued innovation and improvement in nitric acid production technologies.

As we conclude this project, we recognize the ongoing imperative for research, collaboration, and knowledge exchange in advancing nitric acid production methods. By embracing interdisciplinary approaches and fostering industry partnerships, we can collectively propel the field towards greater efficiency, sustainability, and economic viability.
# References

1- Krick Othmer, "Encyclopedia of Chemical Technology", VoL.15, 3th Edition, Jonh Wiley, 1982

2- George Charles Lowrison, "Fertilizer Technology", Eillis Horwood Limited, 1989

3- R. Perry and C. Chilton,"Perry's Chemical Engineer's Hand Book", 7th Ed., Mcgra W-Hill, 1997

4- Vincent Sauchelli, "Fertilizer Nitrogen its Chemistry and Technology", Rinhold Publishing Corporation", 1964.

5- Howard F. Rase, "Chemical Reactor Design For Process Plants", Vol. one & two, John Wiley, 1977

6- Octave Leven Spiel," Chemical Reaction Engineering", 2nd Ed., John Wiley, 1972

7- J. M. Coulson J. Richardson, "Chemical Engineering Design", Vol.6, 3rd Ed., Pergamon Press, 1983

8- P.J.C. Kaasenbrood, "Chemical Reaction Engineering", Pergamon Press, 1968

9- Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, "Analysis, Synthesis, and Design of Chemical Processes ",3rd Edition, Prentice-Hall, 2009

10- W. Dekker, E. Snoeck and H. Kramers, "Chemical Engineering Science", 1959

11- (2012, january 15). Retrieved december 1, 2013, from Saudi Presidency of Meteorology and

Enviroment: Http://www.pme.gov.sa

12-(2009, may 27). Retrieved December 1, 2013, from Vermont Safty Information Resources, Inc. : Http://www.siri.org

13- Richard M. Felder, Ronald W. Rousseau, " Elementary Principles of Chemical Processes ", Third edition, 2005

14- Fritz Ullmann, "Ullmann's Encyclopedia of Industrial Chemistry ", John Wiley and Sons, 1999

15- Neil S. Chlager, Jayne Weisblatt, and David E. Newton, "Chemical Compounds",

2001

16- Max. S. Peters, Klans D. Timmerhans, "Plan Design and Econmics for chemical Engineering 3-rd Ed, McGraw-Hill, 1990.

17- Christie J. Geankoplis, "Transport Processes and Separation Process Principles", 5

th Edition, Prentice Hall, 2003

18-J. M. Smith, H. C. Van Ness, M. M. Abbott, "Introduction to Chemical Engineering

Thermodynamics", 7th Edition, McCraw-Hill, 2005

19- W. S. Norman, "Absorption, Distillation and Cooling Tower", Longmans, 1962

# Appendix (Physical Properties Data)

| Table B.1 | Selected | Physical | Property | Data <sup>a</sup> |
|-----------|----------|----------|----------|-------------------|

| Compound                                | Formula                                      | Mol. Wt.        | SG<br>(20°/4°)       | $T_{\rm m}(^{\circ}{\rm C})^b$ | $\Delta \hat{H}_{m}(T_{m})^{c,j}$<br>kJ/mol | $T_{\rm b}(^{\circ}{\rm C})^d$ | $\Delta \hat{H}_{v}(T_{\rm b})^{e,f}$<br>kJ/mol | $T_{\rm c}({\rm K})^f$ | Pc(atm)" | (ΔĤ₁°) <sup>h,j</sup><br>kJ/mol | $(\Delta \hat{H}_c^{\circ})^{i,j}$<br>kJ/mol |
|-----------------------------------------|----------------------------------------------|-----------------|----------------------|--------------------------------|---------------------------------------------|--------------------------------|-------------------------------------------------|------------------------|----------|---------------------------------|----------------------------------------------|
| Acetaldehyde                            | CHICHO                                       | 44.05           | 0.78318              | -123.7                         | 12125                                       | 20.2                           | 25.1                                            | 461.0                  |          | -166.2(g)                       | -1192.4(g)                                   |
| Acetic acid                             | CH <sub>3</sub> COOH                         | 60.05           | 1.049                | 16.6                           | 12.09                                       | 118.2                          | 24.39                                           | 594.8                  | 57.1     | -486.18(1)                      | -871.69(1)                                   |
|                                         |                                              |                 |                      |                                |                                             |                                |                                                 |                        |          | -438.15(g)                      | -919.73(g)                                   |
| Acetone                                 | C <sub>1</sub> H <sub>6</sub> O              | 58.08           | 0.791                | -95.0                          | 5.69                                        | 56.0                           | 30.2                                            | 508.0                  | 47.0     | -248.2(1)                       | -1785.7(1)                                   |
| 0.0000000000000000000000000000000000000 | 0.000                                        | 2010/2010/00/00 |                      |                                |                                             |                                |                                                 |                        |          | -216.7(g)                       | -1821.4(g)                                   |
| Acetylene                               | C <sub>2</sub> H <sub>2</sub>                | 26.04           |                      |                                |                                             | 81.5                           | 17.6                                            | 309.5                  | 61.6     | +226.75(g)                      | -1299.6(g)                                   |
| Ammonia                                 | NH                                           | 17.03           |                      | -77.8                          | 5.653                                       | -33.43                         | 23.351                                          | 405.5                  | 111.3    | -67.20(1)                       | (or                                          |
|                                         | 10000                                        |                 |                      |                                |                                             |                                |                                                 |                        |          | -46.19(g)                       | -382.58(g)                                   |
| Ammonium<br>hydroxide                   | NH4OH                                        | 35.03           | 5 <b></b>            |                                |                                             |                                | _                                               | -                      | -        | -366.48(aq)                     | _                                            |
| Ammonium                                | NH4NO3                                       | 80.05           | 1.72525*             | 169.6                          | 5.4                                         |                                | Decompose                                       | s at 210°C             | 2        | -365.14(c)<br>-399.36(aq)       |                                              |
| Ammonium<br>sulfate                     | $(NH_4)_2SO_4$                               | 132.14          | 1.769                | 513                            |                                             |                                | Decompose<br>after m                            | s at 513°C<br>elting   | 3        | -1179.3(c)<br>-1173.1(aq)       |                                              |
| Aniline                                 | C <sub>4</sub> H <sub>2</sub> N              | 93.12           | 1.022                | -6.3                           | 2 <u></u> 22                                | 184.2                          |                                                 | 699                    | 52.4     |                                 |                                              |
| Benzaldehyde                            | C <sub>6</sub> H <sub>5</sub> CHO            | 106.12          | 1.046                | -26.0                          | _                                           | 179.0                          | 38.40                                           |                        | -        | -88.83(1)<br>-40.04(g)          | -3520.0(1)                                   |
| Benzene                                 | $C_6H_6$                                     | 78.11           | 0.879                | 5.53                           | 9.837                                       | 80.10                          | 30.765                                          | 562.6                  | 48.6     | +48.66(1)<br>+82.93(g)          | -3267.6(1)<br>-3301.5(g)                     |
| Benzoic acid                            | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> | 122.12          | 1.266 <sup>15°</sup> | 122.2                          |                                             | 249.8                          |                                                 |                        |          | _                               | -3226.7(g)                                   |
| Benzyl alcohol                          | C <sub>7</sub> H <sub>8</sub> O              | 108.13          | 1.045                | -15.4                          | 12                                          | 205.2                          | 1                                               |                        |          |                                 | -3741.8(1)                                   |
| Bromine                                 | Br <sub>2</sub>                              | 159.83          | 3.119                | 7.4                            | 10.8                                        | 58.6                           | 31.0                                            | 584                    | 102      | 0(1)                            | -                                            |
| 1,2-Butadiene                           | C <sub>4</sub> H <sub>6</sub>                | 54.09           | -                    | -136.5                         |                                             | 10.1                           | -                                               | 446                    | _        |                                 |                                              |
| 1,3-Butadiene                           | $C_4H_6$                                     | 54.09           | -                    | -109.1                         |                                             | -4.6                           |                                                 | 425                    | 42.7     |                                 | () <del></del> -1                            |
| n-Butane                                | $C_4H_{10}$                                  | 58.12           |                      | -138.3                         | 4.661                                       | -0.6                           | 22.305                                          | 425.17                 | 37.47    | -147.0(1)<br>-124.7(g)          | -2855.6(1)<br>-2878.5(g)                     |
| Isobutane                               | $C_4H_{10}$                                  | 58.12           |                      | -159.6                         | 4.540                                       | -11.73                         | 21.292                                          | 408.1                  | 36.0     | -158.4(1)                       | -2849.0(1)                                   |
|                                         |                                              |                 |                      |                                |                                             |                                |                                                 |                        |          | -134.5(g)                       | -2868.8(g)                                   |
| 1-Butene                                | C <sub>4</sub> H <sub>8</sub>                | 56.10           | -                    | -185.3                         | 3.8480                                      | -6.25                          | 21.916                                          | 419.6                  | 39.7     | +1.17(g)                        | -2718.6(g)                                   |
| Calcium<br>carbide                      | CaC <sub>2</sub>                             | 64.10           | 2.2218*              | 2300                           | -                                           | <u></u><br>7070                |                                                 | -                      | -        | -62.76(c)                       | Same                                         |
| Calcium<br>carbonate                    | CaCO <sub>3</sub>                            | 100.09          | 2.93                 |                                | E                                           | ecompose                       | ⊧s at 825°C                                     |                        |          | -1206.9(c)                      | -                                            |
| Calcium<br>chloride                     | CaCl <sub>2</sub>                            | 110.99          | 2.15215*             | 782                            | 28.37                                       | >1600                          | 2221                                            |                        | 12       | -794.96(c)                      |                                              |

| Calcium<br>hydroxide           | Ca(OH) <sub>2</sub>                                                  | 74.10              | 2.24                |                     |         | (-H2O at 58              | 80°C)  |       |      | -986.59(c)                | -                       |
|--------------------------------|----------------------------------------------------------------------|--------------------|---------------------|---------------------|---------|--------------------------|--------|-------|------|---------------------------|-------------------------|
| Calcium oxide                  | CaO                                                                  | 56.08              | 3.32                | 2570                | 50      | 2850                     | -      |       | 1000 | -635.6(c)                 | —                       |
| Calcium<br>phosphate           | Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>                      | 310,19             | 3.14                | 1670                |         | _                        |        |       | -    | -4138(c)                  |                         |
| Calcium<br>silicate            | CaSiO <sub>3</sub>                                                   | 116.17             | 2.915               | 1530                | 48.62   |                          |        |       | -    | -1584(c)                  |                         |
| Calcium<br>sulfate             | CaSO <sub>4</sub>                                                    | 136.15             | 2.96                |                     | -       | -                        |        | _     | -    | -1432.7(c)<br>-1450.4(aq) | -                       |
| Calcium<br>sulfate<br>(gypsum) | CaSO4·2H2O                                                           | 172.18             | 2.32                |                     | (-1.5 H | <sub>2</sub> O at 128°C) |        |       |      | -2021(c)                  | 1 <u></u>               |
| Carbon<br>(graphite)           | С                                                                    | 12.010             | 2.26                | 3600                | 46.0    | 4200                     |        | 112   |      | 0(c)                      | -393.51(c)              |
| Carbon<br>dioxide              | CO <sub>2</sub>                                                      | 44.01              |                     | -56.6<br>at 5.2 atm | 8.33    | (Sublimes at             | –78°C) | 304.2 | 72.9 | -412.9(1)<br>-393.5(g)    | -                       |
| Carbon<br>disulfide            | $CS_2$                                                               | 76.14              | 1.26122*/20*        | -112.1              | 4.39    | 46.25                    | 26.8   | 552.0 | 78.0 | +87.9(1)<br>+115.3(g)     | -1075.2(1)<br>1102.6(g) |
| Carbon<br>monoxide             | со                                                                   | 28.01              | -                   | -205.1              | 0.837   | -191.5                   | 6.042  | 133.0 | 34.5 | -110.52(g)                | -282.99(g)              |
| Carbon<br>tetrachloride        | CCL                                                                  | 153.84             | 1.595               | -22.9               | 2.51    | 76.7                     | 30.0   | 556.4 | 45.0 | -139.5(1)<br>-106.7(g)    | -352.2(1)<br>-385.0(g)  |
| Chlorine                       | Cl,                                                                  | 70.91              | _                   | -101.00             | 6.406   | -34.06                   | 20.4   | 417.0 | 76.1 | 0(g)                      |                         |
| Chlorobenzene<br>Chloroethane  | C <sub>6</sub> H <sub>5</sub> Cl<br>C <sub>2</sub> H <sub>5</sub> Cl | 112.56<br>See ethy | 1.107<br>l chloride | -45                 |         | 132.10                   | 36.5   | 632.4 | 44.6 | -                         |                         |

\*Adapted in part from D. M. Himmelblau, *Basic Principles and Calculations in Chemical Engineering*, 3rd Edition, 01974, Tables D.1 and E.1. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ. \*Melting point at 1 atm. \*Heat of fusion at  $T_m$  and 1 atm.

"Boiling point at 1 atm. "Heat of vaporization at T<sub>b</sub> and 1 atm. "Critical temperature.

\*Critical pressure.

\*Critical pressure. \*Heat of formation at 25°C and 1 atm. \*Heat of formation at 25°C and 1 atm. Standard states of products are  $CO_2(g)$ ,  $H_2O(1)$ ,  $SO_2(g)$ , HCl(aq), and  $N_2(g)$ . To calculate  $\Delta \hat{H}_c^0$  with  $H_2O(g)$  as a product, add +4.01*n*<sub>w</sub> to the tabulated value, where *n*<sub>w</sub> = moles  $H_1O$  formed/mole fuel burned. \*To convert  $\Delta \hat{H}$  to keal/mol, divide given value by 4.184; to convert to Btu/lb-mole, multiply by 430.28.

(continued)

Physical Property

' Tables

629

628 Appendix B

## Table B.1 (Continued)

| Co                       | mpound                         | Formula                                            | Mol. Wt.        | SG<br>(20°/4°)       | $T_{\rm es}(^{\circ}{\rm C})^{h}$ | $\Delta H_{\rm m}(T_{\rm m})^{\prime}$ kJ/mol | $T_{\rm b}(^{\rm n}{\rm C})^d$ | $\Delta H_{\rm v}(T_{\rm b})^{\rm e}$<br>kJ/mol | ,<br><i>T</i> <sub>c</sub> (K) <sup><i>t</i></sup> | $P_{\rm c}({\rm atm})^g$ | (ΔH <sub>1</sub> °) <sup>s,j</sup><br>kJ/mol | (ΔH <sub>c</sub> °) <sup>i</sup><br>kJ/mo |
|--------------------------|--------------------------------|----------------------------------------------------|-----------------|----------------------|-----------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------|----------------------------------------------|-------------------------------------------|
| Ch                       | loroform<br>pper               | CHCl <sub>3</sub><br>Cu                            | 119.39<br>63.54 | 1.489<br>8.92        | -63.7<br>1083                     | 13.01                                         | 61.0<br>2595                   | 304.6                                           | 536.0                                              | 54.0                     | -131.8(1)<br>0(c)                            | - 373(                                    |
| Cu<br>st                 | pric<br>ilfate                 | CuSO <sub>4</sub>                                  | 159.61          | 3.606**              |                                   | 2 ( 77                                        | Decomposes                     | s > 600°C                                       |                                                    | 10.1                     | - 769.9(c)<br>- 843.1(aq)                    |                                           |
| Cy                       | cionexane                      | C6H12                                              | 84.10           | 0.779                | 0.7                               | 2.0//                                         | 80.7                           | 30,1                                            | 553.7                                              | 40,4                     | -123.1(g)                                    | -3919.9(                                  |
| Cy                       | clopentane                     | CsH <sub>10</sub>                                  | 70.13           | 0.745                | -93.4                             | 0.609                                         | 49.3                           | 27.30                                           | 511.8                                              | 44.55                    | -105.9(1)<br>-77.2(g)                        | -3290.9(<br>-3319.5(                      |
| <i>n</i> -1              | Decane                         | C <sub>10</sub> H <sub>22</sub>                    | 142.28          | 0.730                | -29.9                             |                                               | 173.8                          | -                                               | 619.0                                              | 20.8                     | -249.7(1)                                    | -6778.3<br>-6829.7                        |
| Di                       | ethyl ether                    | (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O    | 74.12           | 0.708                | -116.3                            | 7.30                                          | 34.6                           | 26.05                                           | 467                                                | 35.6                     | -272.8(1)                                    | -2726.7(                                  |
| Ed                       | nyl acetate                    | $C_2H_6$<br>$C_4H_8O_2$                            | 88.10           | 0.901                | -185.5<br>-83.8                   |                                               | 77.0                           |                                                 | 523.1                                              | 37.8                     | -463.2(1)                                    | - 2246.4                                  |
| Ett                      | nyl alcohol                    | C <sub>2</sub> H <sub>5</sub> OH                   | 46.07           | 0.789                | -114.6                            | 5.021                                         | 78.5                           | 38.58                                           | 516.3                                              | 63.0                     | -277.63(I)                                   | -1366.9                                   |
| Eth                      | thanor)<br>tyl benzene         | $C_8H_{10}$                                        | 106.16          | 0.867                | -94.67                            | 9,163                                         | 136.2                          | 35.98                                           | 619.7                                              | 37.0                     | -12.46(I)                                    | -4564.9                                   |
| Ed                       | wl bromide                     | C.H.Br                                             | 108.98          | 1.460                | -119.1                            |                                               | 38.2                           |                                                 | 504                                                | 61.5                     | +29.79(g)<br>-54.4(g)                        | -4607.1                                   |
| Et                       | vl chloride                    | C.H.CI                                             | 64.52           | 0.90315*             | -138.3                            | 4.452                                         | 13.1                           | 24.7                                            | 460.4                                              | 52.0                     | - 105.0(g)                                   | - 22                                      |
| 3-E                      | Ethyl                          | CaHis                                              | 114.22          | 0,717                |                                   | 140.500                                       | 118.5                          | 34.27                                           | 567.0                                              | 26.4                     | -250.5(1)                                    | - 5407.1                                  |
| he                       | exane                          |                                                    |                 |                      |                                   |                                               |                                |                                                 |                                                    |                          | -210.9(g)                                    | -5509.8                                   |
| Eti                      | hylene                         | $C_2H_4$                                           | 28.05           |                      | -169.2                            | 3.350                                         | -103.7                         | 13.54                                           | 283.1                                              | 50.5                     | +52.28(g)                                    | -1410.9                                   |
| Etl                      | veol                           | $C_2H_6O_2$                                        | 62.07           | 1.11319              | -13                               | 11.23                                         | 197.2                          | 56.9                                            | -                                                  |                          | -451.5(l)<br>-387.1(g)                       | -1179.5                                   |
| Fer                      | ric oxide                      | Fe <sub>2</sub> O <sub>1</sub>                     | 159.70          | 5.12                 |                                   |                                               | Decomposes                     | at 1560°C                                       |                                                    |                          | -822.2(c)                                    |                                           |
| Fe                       | rrous oxide                    | FeO                                                | 71.85           | 5.7                  |                                   |                                               |                                | DOMESSIC IN A                                   | and a                                              |                          | -266.5(c)                                    |                                           |
| Fei                      | rrous<br>ilfide                | FeS                                                | 87.92           | 4.84                 | 1193                              | 100                                           | -                              |                                                 |                                                    | 1                        | -95.1(c)                                     |                                           |
| For                      | rmaldehyde                     | H <sub>2</sub> CO                                  | 30.03           | 0.815-20*            | -92                               |                                               | -19.3                          | 24.48                                           | -                                                  |                          | -115.90(g)                                   | -563.4                                    |
| Fo                       | rmic acid                      | CH <sub>2</sub> O <sub>2</sub>                     | 46.03           | 1.220                | 8,30                              | 12.68                                         | 100.5                          | 22.25                                           | -                                                  | 100                      | -409.2(1)<br>-362.6(g)                       | -262.8                                    |
| Glj<br>He                | vcerol<br>lium                 | C <sub>3</sub> H <sub>8</sub> O <sub>3</sub><br>He | 92.09<br>4.00   | 1.260 <sup>50°</sup> | 18.20<br>-269.7                   | 18.30<br>0.02                                 | 290.0<br>268.9                 | 0.084                                           | 5.26                                               | 2 26                     | -665.9(1)<br>0(g)                            | - 1661.1                                  |
| 2.9551500.00             | 049420                         |                                                    | 12/201          |                      |                                   | on 15                                         |                                |                                                 | -                                                  |                          | 1010 1011                                    |                                           |
| leptane                  | C <sub>7</sub> H <sub>16</sub> | 100.20                                             | 0.684           | - 90.59              | 14.03                             | 98.43                                         | 31.69                          | 540.2                                           | 27.0                                               | -224.4(1)<br>-187.8(g)   | -4816.9(1)<br>-4853.5(g)                     |                                           |
| Hexane                   | C <sub>6</sub> H <sub>14</sub> | 86.17                                              | 0.659           | -95.32               | 13.03                             | 68.74                                         | 28.85                          | 507.9                                           | 29.9                                               | -198.8(1)<br>-167.2(g)   | -4163.1(1)<br>-4194.8(g)                     |                                           |
| drogen                   | H <sub>2</sub>                 | 2.016                                              |                 | -259.19              | 0.12                              | -252.76                                       | 0.904                          | 33.3                                            | 12.8                                               | 0(g)                     | -285.84(g)                                   |                                           |
| drogen<br>omide          | HBr                            | 80.92                                              | 0.000           | -86                  | 1777-1                            | -67                                           | 1000                           | 10772                                           | 200                                                | -36.23(g)                | 1000                                         |                                           |
| drogen                   | HCL                            | 36.47                                              | _               | -114.2               | 1.99                              | -85.0                                         | 16.1                           | 324.6                                           | 81.5                                               | -92.31(g)                |                                              |                                           |
| drogen                   | HCN                            | 27.03                                              | -               | -14                  |                                   | 26                                            |                                | $\rightarrow$                                   |                                                    | +130.54(g)               | -                                            |                                           |
| drogen                   | HE                             | 20.0                                               |                 | - 83                 |                                   | 20                                            |                                | 503.2                                           |                                                    | -268.6(a)                |                                              |                                           |
| uoride                   | m                              | 20.07                                              | 0.000           | 0.3                  |                                   | 200                                           | (199)<br>(199)                 |                                                 |                                                    | -316.9(aq,               | 12                                           |                                           |
| drogen                   | H <sub>2</sub> S               | 34.08                                              |                 | -85.5                | 2.38                              | -60.3                                         | 18.67                          | 373.6                                           | 88.9                                               | -19.96(g)                | -562.59(g)                                   |                                           |
| linde                    | 313                            | 262.0                                              | 4.02            | 112.2                |                                   | 194.3                                         |                                | 826.0                                           |                                                    | 0(                       |                                              |                                           |
| nne                      | 12<br>Fe                       | 55.85                                              | 77              | 1535                 | 15.1                              | 2800                                          | 354.0                          | 820.0                                           | 1220                                               | 0(c)                     |                                              |                                           |
| ad                       | Ph                             | 207.21                                             | 11 33720*/20*   | 327.4                | 5.10                              | 1750                                          | 179.9                          | _                                               |                                                    | 0(c)                     | _                                            |                                           |
| ad oxide                 | PbO                            | 223 21                                             | 95              | 886                  | 11.7                              | 1472                                          | 213                            | -                                               |                                                    | -2192(c)                 |                                              |                                           |
| onesium                  | Mø                             | 24 32                                              | 1.74            | 650                  | 92                                | 1120                                          | 131.8                          | _                                               | _                                                  | 0(c)                     |                                              |                                           |
| ignesium                 | MgCl <sub>2</sub>              | 95.23                                              | 2.32525*        | 714                  | 43.1                              | 1418                                          | 136.8                          | -                                               | 122                                                | -641.8(c)                |                                              |                                           |
| agnesium                 | Mg(OH) <sub>2</sub>            | 58.34                                              | 2.4             |                      | Decompose                         | s at 350°C                                    |                                | -                                               |                                                    |                          | -                                            |                                           |
| agnesium                 | MgO                            | 40.32                                              | 3.65            | 2900                 | 77.4                              | 3600                                          | -                              |                                                 |                                                    | -601.8(c)                | 1                                            |                                           |
| ercury                   | Ho                             | 200.61                                             | 13 546          | -38.87               | 322                               | 356.9                                         | -                              |                                                 | -                                                  | $\theta(c)$              | 12.22                                        |                                           |
| ethane                   | CH.                            | 16.04                                              | 13.340          | -182.5               | 0.94                              | 161.5                                         | 8 179                          | 190.70                                          | 45.8                                               | -74 85(0)                | -890 36(a)                                   |                                           |
| thyl                     | CHO                            | 74 08                                              | 0.933           | -98.9                |                                   | 57.1                                          | 0.175                          | 506.7                                           | 46 30                                              | -409.40)                 | -1595(1)                                     |                                           |
| etate                    | CH OU                          | 77.04                                              | 0.702           | -07.0                | 3.167                             | 617                                           | 75 77                          | \$17.20                                         | 70 50                                              | 102.4(1)                 | 726 600                                      | Phys                                      |
| Anyi alcoho<br>Methanol) | i chion                        | .32,04                                             | 0.792           | -97,9                | 5.107                             | 494,7                                         | 33.27                          | 313.20                                          | 70.31                                              | -201.2(g)                | -764.0(g)                                    | ical l                                    |
| ethyl<br>mine            | CH <sub>5</sub> N              | 31,06                                              | 0.699 11        | 92.7                 | _                                 | -6.9                                          |                                | 429.9                                           | 73.60                                              | -28.0(g)                 | -1071.5(1)                                   | Prope                                     |
| ethyl<br>hloride         | CH3CI                          | 50.49                                              | ((777)          | -97.9                | 638                               | -24                                           | 5391                           | 416.1                                           | 65.80                                              | -81.92(g)                | 1.1                                          | erty                                      |
| 109919999                |                                |                                                    |                 |                      |                                   |                                               |                                |                                                 |                                                    |                          |                                              | Tat                                       |
|                          |                                |                                                    |                 |                      |                                   |                                               |                                |                                                 |                                                    |                          | Constinue to                                 | -                                         |

630 Appendix B

| Compound               | Formula                                        | Mol. Wt. | SG<br>(20°/4°) | $T_{\mathfrak{m}}(^{\mathfrak{a}}\mathbf{C})^{\mathfrak{b}}$ | $\Delta \hat{H}_{m}(T_{m})^{c,i}$<br>kJ/mol | $T_{\rm b}(^{\circ}{\rm C})^d$ | $\Delta \hat{H}_{v}(T_{b})^{e,j}$<br>kJ/mol | $T_{\rm c}({\rm K})^{\prime}$ | P <sub>c</sub> (atm) <sup>y</sup> | (ΔĤ <sub>I</sub> °) <sup>A.J</sup><br>kJ/mol | (ΔĤ <sub>c</sub> °) <sup>i,j</sup><br>kJ/mol |
|------------------------|------------------------------------------------|----------|----------------|--------------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|
| Methyl ethyl<br>ketone | C₄H <sub>8</sub> O                             | 72.10    | 0.805          | -87.1                                                        | -                                           | 78.2                           | 32.0                                        | -                             | -                                 | -                                            | -2436(1)                                     |
| Naphthalene            | CioHs                                          | 128.16   | 1.145          | 80.0                                                         | -                                           | 217.8                          |                                             | -                             |                                   | _                                            | -5157(p)                                     |
| Nickel                 | Ni                                             | 58.69    | 8.90           | 1452                                                         |                                             | 2900                           |                                             | -                             | -                                 | 0(c)                                         |                                              |
| Nitric acid            | HNO <sub>3</sub>                               | 63.02    | 1.502          | -41.6                                                        | 10.47                                       | 86                             | 30.30                                       | _                             | -                                 | -173.23(I)<br>-206.57(aq)                    | -                                            |
| Nitrobenzene           | C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> N | 123.11   | 1.203          | 5.5                                                          |                                             | 210.7                          |                                             |                               |                                   |                                              | -3092.8(1)                                   |
| Nitrogen               | N <sub>2</sub>                                 | 28.02    |                | -210.0                                                       | 0.720                                       | -195.8                         | 5,577                                       | 126.20                        | 33.5                              | 0(g)                                         |                                              |
| Nitrogen<br>dioxide    | NO <sub>2</sub>                                | 46.01    |                | -9.3                                                         | 7.335                                       | 21.3                           | 14.73                                       | 431.0                         | 100.0                             | +33.8(g)                                     | -                                            |
| Nitric oxide           | NO                                             | 30.01    |                | -163.6                                                       | 2.301                                       | -151.8                         | 13.78                                       | 179.20                        | 65.0                              | +90.37(g)                                    | -                                            |
| Nitrogen<br>pentoxide  | $N_2O_5$                                       | 108.02   | 1.6318*        | 30                                                           | -                                           | 47                             |                                             |                               | -                                 | _                                            | -                                            |
| Nitrogen<br>tetraoxide | $N_2O_4$                                       | 92.0     | 1.448          | -9.5                                                         | -                                           | 21.1                           |                                             | 431.0                         | 99.0                              | +9.3(g)                                      | -                                            |
| Nitrous                | $N_2O$                                         | 44.02    | 1.226-89       | -91.1                                                        | -                                           | -88.8                          |                                             | 309.5                         | 71.70                             | +81.5(g)                                     | -                                            |
| n-Nonane               | C <sub>9</sub> H <sub>20</sub>                 | 128.25   | 0.718          | -53.8                                                        | -                                           | 150.6                          | $\rightarrow$                               | 595                           | 23.0                              | -229.0(1)                                    | -6124.5(1)<br>-6171.0(9)                     |
| n-Octane               | $C_8H_{18}$                                    | 114.22   | 0.703          | -57.0                                                        | -                                           | 125.5                          |                                             | 568.8                         | 24.5                              | -249.9(1)<br>-208.4(p)                       | -5470.7(1)<br>-5512.2(g)                     |
| Oxalic acid            | C-H-O                                          | 90.04    | 1.90           |                                                              | Decompose                                   | s at 186°C                     |                                             |                               |                                   | -826.8(c)                                    | -251.9(s)                                    |
| Oxvgen                 | O2                                             | 32.00    |                | -218.75                                                      | 0.444                                       | -182.97                        | 6.82                                        | 154.4                         | 49.7                              | 0(g)                                         | _                                            |
| n-Pentane              | CsH12                                          | 72.15    | 0.6318"        | -129.6                                                       | 8 3 9 3                                     | 36.07                          | 25.77                                       | 469.80                        | 33.3                              | -173.0(1)                                    | -3509.5(1)                                   |
|                        |                                                |          |                |                                                              |                                             |                                |                                             |                               |                                   | -146.4(g)                                    | -3536.1(g)                                   |
| Isopentane             | C <sub>5</sub> H <sub>12</sub>                 | 72.15    | 0.6219         | -160.1                                                       |                                             | 27.7                           |                                             | 461.00                        | 32.9                              | -179.3(1)                                    | -3507.5(1)                                   |
| 202                    |                                                |          |                |                                                              |                                             |                                |                                             |                               |                                   | -152.0(g)                                    | -3529.2(g)                                   |
| I-Pentene              | C <sub>5</sub> H <sub>10</sub>                 | 70.13    | 0.641          | -165.2                                                       | 4.94                                        | 29.97                          |                                             | 474                           | 39.9                              | -20.9(2)                                     | -3375.8(g)                                   |
| Phenol                 | C <sub>b</sub> H <sub>5</sub> OH               | 94.11    | 1.07125        | 42.5                                                         | 11.43                                       | 181.4                          | -                                           | 692.1                         | 60.5                              | -158.1(1)                                    | -3063.5(s)                                   |
|                        |                                                |          |                |                                                              |                                             |                                |                                             |                               |                                   | -90.8(g)                                     |                                              |
| Phosphoric             | H <sub>3</sub> PO <sub>4</sub>                 | 98.00    | 1.83418"       | 42.3                                                         | 10.54                                       | $(-\frac{1}{2}H_2)$            | ) at 213°C)                                 |                               |                                   | -1281.1(c)                                   |                                              |
| acid                   |                                                |          |                |                                                              |                                             | •                              |                                             |                               |                                   | - 1278.6(aq,<br>1H <sub>2</sub> O)           | 1.55                                         |
| Phosphorus<br>(red)    | P <sub>4</sub>                                 | 123.90   | 2.20           | 590 <sup>43</sup> atm                                        | 81.17                                       | Ignites i                      | n air, 725°C                                | -                             | -                                 | -17.6(c)<br>0(c)                             | -                                            |

| Phosphorus<br>(arbita) | P4                               | 123.90 | 1.82    | 44.2    | 2.51     | 280          | 49.71        | _     |       |                        |                           |
|------------------------|----------------------------------|--------|---------|---------|----------|--------------|--------------|-------|-------|------------------------|---------------------------|
| Phosphorus             | $P_2O_3$                         | 141.95 | 2 387   |         | Sublime  | s at 250°C   |              | -     | -     | -1506.2(c)             | -                         |
| Propane                | CiHs                             | 44.09  |         | -187.69 | 3.52     | -42.07       | 18.77        | 369.9 | 42.0  | -119.8(1)              | -2204.0(1)                |
| 2010/02/201            | 1.00/07/21/07/0                  |        |         |         |          |              |              |       |       | -103.8(g)              | -2220.0(g)                |
| ropylene               | CiHe                             | 42.08  |         | -185.2  | 3.00     | -47.70       | 18.42        | 365.1 | 45.4  | +20.41(g)              | -2058.4(g)                |
| Propyl                 | C.H.OH                           | 60.09  | 0.804   | -127    | _        | 97.04        |              | 536.7 | 49.95 | -300.70(1)             | -2010.4(1)                |
| alcohol                | 54779999999776                   |        |         |         |          |              |              |       |       | -255.2(g)              | -2068.6(g)                |
| sopropyl<br>alcohol    | C <sub>3</sub> H <sub>7</sub> OH | 60.09  | 0.785   | -89.7   |          | 82.24        | 177          | 508.8 | 53.0  | -310.9(1)              | -1986.6(1)                |
| -Propyl<br>benzene     | C9H12                            | 120.19 | 0.862   | -99.50  | 8.54     | 159.2        | 38.24        | 638.7 | 31.3  | -38.40(1)<br>+ 7.82(g) | -5218.2(1)<br>-5264.48(g) |
| dioxide                | SiO <sub>2</sub>                 | 60.09  | 2.25    | 1710    | 14.2     | 2230         | -            |       | -     | -851.0(c)              | -                         |
| odium<br>bicarbonate   | NaHCO <sub>3</sub>               | 84.01  | 2.20    |         | Decompos | ses at 270°C |              | -     |       | -945.6(c)              | -                         |
| odium<br>bisulfate     | NaHSO <sub>4</sub>               | 120.07 | 2.742   | -       | -        | -            | -            |       |       | -1126.3(c)             | 1                         |
| odium<br>carbonate     | Na <sub>2</sub> CO <sub>3</sub>  | 105.99 | 2.533   |         | Decompos | es at 854°C  |              | -     | 271   | -1130.9(c)             |                           |
| odium<br>chloride      | NaCl                             | 58.45  | 2.163   | 808     | 28.5     | 1465         | 170.7        |       |       | -411.0(c)              |                           |
| odium<br>cyanide       | NaCN                             | 49.01  |         | 562     | 16.7     | 1497         | 155          |       | -     | -89.79(c)              | -                         |
| odium                  | NaOH                             | 40.00  | 2.130   | 319     | 8.34     | 1390         |              |       |       | -426.6(c)              |                           |
| ydroxide               |                                  |        |         |         |          |              |              |       |       | -469.4(aq)             |                           |
| sdium<br>litrate       | NaNO <sub>3</sub>                | 85.00  | 2.257   | 310     | 15.9     | Decor        | nposes at 38 | so c  |       | -466.7(c)              | 1                         |
| odium<br>nitrite       | NaNO <sub>2</sub>                | 69,00  | 2.1680  | 271     |          | Decon        | poses at 32  | arc.  | -     | -359.4(c)              |                           |
| odium<br>sulfate       | Na <sub>2</sub> SO <sub>4</sub>  | 142.05 | 2.698   | 890     | 24.3     |              | -            | -     | -     | -1384.5(c)             |                           |
| odium<br>sulfide       | Na <sub>2</sub> S                | 78.05  | 1.856   | 950     | 6.7      | -            | -            |       | -     | -373.2(e)              |                           |
| odium<br>sulfite       | Na <sub>2</sub> SO <sub>3</sub>  | 126,05 | 2.63315 |         | Decor    | nposes       |              |       | -     | - 1090.3(c)            | 1.227                     |
|                        |                                  |        |         |         |          |              |              |       |       |                        | (continued)               |

634 Appendix B

TUDE

| Table B1 (Cor          | tinuad)                        |          |                |                    |                                              |                                               |                                                 |                        |                                   |                                              |     |
|------------------------|--------------------------------|----------|----------------|--------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------|-----------------------------------|----------------------------------------------|-----|
| Table bil (Co          | unded)                         | -        |                |                    |                                              |                                               |                                                 |                        |                                   |                                              | -   |
| Compound               | Formula                        | Mol. Wt. | SG<br>(20°/4°) | $T_n(^{\circ}C)^b$ | $\Delta H_{\rm m}(T_{\rm m})^{cJ}$<br>kJ/mol | $T_{\mathbf{k}}(^{\mathbf{a}}\mathbf{C})^{d}$ | $\Delta \hat{H}_{v}(T_{\rm b})^{e,j}$<br>kJ/mol | $T_{\rm c}({\rm K})^f$ | P <sub>c</sub> (atm) <sup>g</sup> | (ΔĤ <sub>I</sub> °) <sup>κ.j</sup><br>kJ/mol | J.  |
| Sodium<br>thiosulfate  | $Na_2S_2O_3$                   | 158.11   | 1.667          | -                  |                                              | -                                             | -                                               | -                      | -                                 | -1117.1(c)                                   |     |
| Sulfur<br>(rhombic)    | S <sub>X</sub>                 | 256.53   | 2.07           | 113                | 10.04                                        | 444.6                                         | 83.7                                            | -                      | -                                 | 0(c)                                         |     |
| Sulfur<br>(monoclinic) | S <sub>8</sub>                 | 256.53   | 1.96           | 119                | 14.17                                        | 444.6                                         | 83.7                                            | -                      | -                                 | +0.30(c)                                     |     |
| Sulfur<br>dioxide      | SO2                            | 64.07    | -              | -75.48             | 7.402                                        | - 10.02                                       | 24.91                                           | 430.7                  | 77.8                              | -296.90(g)                                   |     |
| Sulfur<br>trioxide     | SO3                            | 80.07    | -              | 16.84              | 25.48                                        | 43.3                                          | 41.80                                           | 491.4                  | 83.8                              | -395.18(g)                                   |     |
| Sulfuric<br>acid       | H <sub>2</sub> SO <sub>4</sub> | 98.08    | 1.834'8'       | 10.35              | 9.87                                         | Decompo                                       | oses at 340°C                                   | -                      | -                                 | -811.32(1)<br>-907.51(aq)                    |     |
| Toluene                | C <sub>2</sub> H <sub>8</sub>  | 92.13    | 0.866          | -94.99             | 6.619                                        | 110.62                                        | 33.47                                           | 593.9                  | 40.3                              | +12.00(1)<br>+50.00(g)                       | 1 1 |
| Water                  | H <sub>2</sub> O               | 18.016   | 1.004*         | 0.00               | 6.0095                                       | 100.00                                        | 40.656                                          | 647.4                  | 218.3                             | -285.84(1)<br>-241.83(g)                     |     |
| m-Xylene               | C8H10                          | 106.16   | 0.864          | -47.87             | 11.569                                       | 139.10                                        | 36,40                                           | 619                    | 34.6                              | -25.42(1)<br>+17.24(g)                       | -   |
| o-Xylene               | C8H10                          | 106.16   | 0.880          | -25.18             | 13.598                                       | 144.42                                        | 36.82                                           | 631.5                  | 35.7                              | -24.44(l)<br>+18.99(g)                       | -   |
| p-Xylenc               | C <sub>8</sub> H <sub>10</sub> | 106.16   | 0.861          | 13.26              | 17.11                                        | 138.35                                        | 36.07                                           | 618                    | 33.9                              | -24.43(1)<br>17.95(g)                        | 1 1 |
| Zinc                   | Zn                             | 65.38    | 7.140          | 419.5              | 6.674                                        | 907                                           | 114.77                                          | -                      | -                                 | ()(c)                                        |     |

#### Table B.2 Heat Capacities"

Physical Property database Ouickly integrates tabulated heat capacities Form 1:  $C_p[kJ/(mol^{-n}C)]$  or  $[kJ/(mol^{-K})] = a + bT + cT^2 + dT^3$ Form 2:  $C_p[kJ/(mol^{-n}C)]$  or  $[kJ/(mol^{-K})] = a + bT + cT^{-2}$ Example:  $(C_p)_{\text{actioncip}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$ , where T is in °C. Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal

| Compound             | Formula                           | Mol.<br>Wt. | State | Form | Temp.<br>Unit | $a \times 10^3$ | $b \times 10^{5}$ | $c\times 10^8$          | $d \times 10^{12}$ | Range<br>(Units<br>of T) |
|----------------------|-----------------------------------|-------------|-------|------|---------------|-----------------|-------------------|-------------------------|--------------------|--------------------------|
| Acetone              | CH <sub>2</sub> COCH <sub>3</sub> | 58.08       | ĩ     | 1    | °C            | 123.0           | 18.6              |                         |                    | -30-60                   |
|                      |                                   |             | g     | 1    | °C            | 71.96           | 20.10             | -12.78                  | 34.76              | 0-1200                   |
| Acetylene            | $C_2H_2$                          | 26.04       | g     | 1    | °C            | 42.43           | 6.053             | -5.033                  | 18.20              | 0-1200                   |
| Air                  |                                   | 29.0        | g     | 1    | °C            | 28.94           | 0.4147            | 0.3191                  | -1.965             | 0-1500                   |
|                      |                                   |             | g     | 1    | K             | 28.09           | 0.1965            | 0.4799                  | -1.965             | 273-1800                 |
| Ammonia              | NH <sub>3</sub>                   | 17.03       | g     | 1    | °C            | 35.15           | 2.954             | 0.4421                  | -6.686             | 0-1200                   |
| Ammonium sulfate     | (NIL)2SO4                         | 132.15      | c     | 1    | ĸ             | 215.9           |                   |                         |                    | 275 328                  |
| Benzene              | C <sub>6</sub> H <sub>6</sub>     | 78.11       | 1     | I    | °C            | 126.5           | 23.4              |                         |                    | 6-67                     |
|                      |                                   |             | 8     | 1    | °C            | 74.06           | 32.95             | -25.20                  | 77.57              | 0-1200                   |
| Isobutane            | C <sub>4</sub> H <sub>10</sub>    | 58.12       | g     | 1    | °C            | 89.46           | 30.13             | -18.91                  | 49.87              | 0-1200                   |
| n-Butane             | C4H10                             | 58.12       | g     | 1    | °C            | 92.30           | 27.88             | -15.47                  | 34.98              | 0-1200                   |
| Isobutene            | $C_4H_8$                          | 56.10       | g     | 1    | °C            | 82.88           | 25.64             | -17.27                  | 50.50              | 0-1200                   |
| Calcium carbide      | CaC <sub>2</sub>                  | 64.10       | C     | 2    | K             | 68.62           | 1.19              | $-8.66 \times 10^{10}$  |                    | 298-720                  |
| Calcium carbonate    | CaCO <sub>1</sub>                 | 100.09      | с     | 2    | K             | 82.34           | 4.975             | $-12.87 \times 10^{10}$ |                    | 273-1033                 |
| Calcium hydroxide    | Ca(OH)1                           | 74.10       | C     | 1    | K             | 89.5            |                   |                         |                    | 276-373                  |
| Calcium oxide        | CaO                               | 56.08       | с     | 2    | K             | 41.84           | 2.03              | $-4.52 \times 10^{10}$  |                    | 273-1173                 |
| Carbon               | С                                 | 12.01       | c     | 2    | K             | 11.18           | 1.095             | $-4.891 \times 10^{10}$ |                    | 273-1373                 |
| Carbon dioxide       | CO <sub>2</sub>                   | 44.01       | g     | 1    | °C            | 36.11           | 4.233             | -2.887                  | 7.464              | 0-1500                   |
| Carbon monoxide      | CO                                | 28.01       | 8     | 1    | °C            | 28.95           | 0.4110            | 0.3548                  | -2.220             | 0-1500                   |
| Carbon tetrachloride | CCI4                              | 153.84      | ĩ     | 1    | K             | 93.39           | 12.98             |                         |                    | 273-343                  |
| Chlorine             | Cl <sub>2</sub>                   | 70.91       | g     | 1    | °C            | 33.60           | 1.367             | -1.607                  | 6.473              | 0-1200                   |
| Copper               | Cu                                | 63.54       | c     | 1    | K             | 22.76           | 0.6117            |                         |                    | 273-1357                 |

<sup>\*</sup>Adapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.I. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ. (continued)

Physical Property Tables 635

636 Appendix B

| Compound                      | Formula                                 | Mol.<br>Wt. | State | Form | Temp.<br>Unit | $a \times 10^3$ | $b \times 10^5$ | $c \times 10^8$         | $d \times 10^{12}$ | Range<br>(Units<br>of T) |
|-------------------------------|-----------------------------------------|-------------|-------|------|---------------|-----------------|-----------------|-------------------------|--------------------|--------------------------|
| Cumenc<br>(Isopropyl benzene) | $\mathbf{C}_{9}\mathbf{H}_{12}$         | 120.19      | g     | 1    | °C            | 139.2           | 53.76           | -39.79                  | 120.5              | 0-1200                   |
| Cyclohexane                   | C <sub>6</sub> H <sub>12</sub>          | 84.16       | g     | 1    | °C            | 94,140          | 49.62           | -31.90                  | 80.63              | 0-1200                   |
| Cyclopentane                  | CsHip                                   | 70.13       | g     | 1    | °C            | 73.39           | 39.28           | -25.54                  | 68.66              | 0-1208                   |
| Ethane                        | C <sub>2</sub> H <sub>0</sub>           | 30.07       | g     | 1    | °C            | 49.37           | 13.92           | -5.816                  | 7.280              | 0-1200                   |
| Ethyl alcohol                 | C2H5OH                                  | 46.07       | ĩ     | 1    | °C            | 103.1           |                 |                         |                    | 0                        |
| (Ethanol)                     | 110000000000000000000000000000000000000 |             | 1     | 1    | °C            | 158.8           |                 |                         |                    | 100                      |
| 20 E                          |                                         |             | g     | 1    | °C            | 61.34           | 15.72           | -8.749                  | 19.83              | 0-1200                   |
| Ethylene                      | C2H4                                    | 28.05       | g     | 1    | °C            | +40.75          | 11.47           | - 6.891                 | 17.66              | 0-1200                   |
| Ferric oxide                  | Fe Oi                                   | 159.70      | c     | 2    | K             | 103.4           | 6.711           | $-17.72 \times 10^{10}$ |                    | 273-1097                 |
| Formaldehyde                  | CH <sub>2</sub> O                       | 30.03       | g     | 1    | °C            | 34.28           | 4.268           | 0.0000                  | -8.694             | 01200                    |
| Helium                        | He                                      | 4.00        | g     | 1    | °C            | 20.8            |                 |                         |                    | 0-1200                   |
| n-Hexane                      | CoHIN                                   | 86.17       | ĩ     | 1    | °C            | 216.3           |                 |                         |                    | 20-100                   |
|                               |                                         |             | g     | 1    | °C            | 137.44          | 40.85           | -23.92                  | 57.66              | 0-1200                   |
| Hydrogen                      | H <sub>2</sub>                          | 2.016       | g     | 1    | °C            | 28.84           | 0.00765         | 0.3288                  | -0.8698            | 0-1500                   |
| Hydrogen bromide              | HBr                                     | 80.92       | 2     | 1    | °C            | 29.10           | -0.0227         | 0.9887                  | -4.858             | 0-1200                   |
| Hydrogen chloride             | HC1                                     | 36.47       | g     | 1    | °C            | 29.13           | -0.1341         | 0.9715                  | -4.335             | 0-1200                   |
| Hydrogen cyanide              | HCN                                     | 27.03       | g     | 1    | °C            | 35.3            | 2.908           | 1.092                   |                    | 0-1200                   |
| Hydrogen sulfide              | H <sub>2</sub> S                        | 34.08       | g     | 1    | °C            | 33.51           | 1.547           | 0.3012                  | -3.292             | 0-1500                   |
| Magnesium chloride            | MgCl <sub>2</sub>                       | 95.23       | c     | 1    | ĸ             | 72.4            | 1.58            |                         |                    | 273-991                  |
| Magnesium oxide               | MgO                                     | 40.32       | c     | 2    | K             | 45.44           | 0.5008          | $-8.732 \times 10^{10}$ |                    | 273-2073                 |
| Methane                       | CH4                                     | 16.04       | 8     | 1    | °C            | 34.31           | 5.469           | 0.3661                  | -11.00             | 0-1200                   |
|                               |                                         |             | 8     | 1    | ĸ             | 19.87           | 5.021           | 1.268                   | -11.00             | 273-1500                 |
| Methyl alcohol                | CH <sub>1</sub> OH                      | 32.04       | ĩ     | 1    | °C            | 75.86           | 16.83           |                         |                    | 0-65                     |
| (Methanol)                    |                                         |             | g     | 1    | °C            | 42.93           | 8.301           | -1.87                   | -8.03              | 0-700                    |
| Methyl cyclohexane            | C7H14                                   | 98.18       | 2     | 1    | °C            | 121.3           | 56.53           | -37.72                  | 100.8              | 0-1200                   |
| Methyl cyclopentane           | C. H 12                                 | 84.16       | 2     | 1    | °C            | 98.83           | 45.857          | -30.44                  | 83.81              | 0-1200                   |
| Nitric acid                   | NHO)                                    | 63.02       | 1     | 1    | °C            | 110.0           |                 |                         |                    | 25                       |
| Nitric oxide                  | NO                                      | 30.01       | 2     | 1    | °C            | 29,50           | 0.8188          | -0.2925                 | 0.3652             | 0-3500                   |

# Table B.2 (Continued)

| fable B.2 (Continued          | )                                |              |        | -          |               |                 |                   |                         |                    | Panaa           |
|-------------------------------|----------------------------------|--------------|--------|------------|---------------|-----------------|-------------------|-------------------------|--------------------|-----------------|
| Compound                      | Formula                          | Mol.<br>Wt.  | State  | Form       | Temp.<br>Unit | $a \times 10^3$ | $b \times 10^{5}$ | $c \times 10^8$         | $d \times 10^{12}$ | (Units<br>of T) |
| Cumene<br>(Isopropyl benzene) | C <sub>9</sub> H <sub>12</sub>   | 120.19       | g      | 1          | °C            | 139.2           | 53.76             | -39.79                  | 120.5              | 0-1200          |
| velohexane                    | C6H12                            | 84.16        | g      | 1          | °C            | 94.140          | 49.62             | -31.90                  | 80.63              | 0-1200          |
| lyclopentane                  | C <sub>5</sub> H <sub>10</sub>   | 70.13        | g      | 1          | °C            | 73.39           | 39.28             | -25.54                  | 68.66              | 0-1200          |
| thane                         | $C_2H_6$                         | 30.07        | g      | 1          | °C            | 49.37           | 13.92             | -5.816                  | 7.280              | 0-1200          |
| thy] alcohol                  | C <sub>2</sub> H <sub>5</sub> OH | 46.07        | ĩ      | 1          | °C            | 103.1           |                   |                         |                    | 0               |
| (Ethanol)                     |                                  |              | 1      | 1          | °C            | 158.8           |                   |                         |                    | 100             |
|                               |                                  |              | 0      | 1          | °C            | 61.34           | 15.72             | -8.749                  | 19.83              | 0-1200          |
| Ethylene                      | CaH                              | 28.05        | 0      | 1          | °C            | +40.75          | 11.47             | -6.891                  | 17.66              | 0-1200          |
| erric oxide                   | Fe <sub>2</sub> O <sub>2</sub>   | 159.70       | c      | 2          | K             | 103.4           | 6.711             | $-17.72 \times 10^{10}$ |                    | 273-1097        |
| ormaldehyde                   | CHO                              | 30.03        | 0      | 1          | °C            | 34.28           | 4 268             | 0.0000                  | -8 694             | 0.1200          |
| Ialium                        | He                               | 4.00         | 8      | 1          | °C            | 20.8            | 4.200             | 1.0000                  | 0.094              | 0-1200          |
| Havana                        | CH                               | 86.17        | 8      | i          | °C            | 216.3           |                   |                         |                    | 20 100          |
| Tiexane                       | C61114                           | 00.17        |        | 1          | °C            | 137 44          | 40.85             | - 23.02                 | 57.66              | 0 1200          |
|                               |                                  | 2016         | g      | 4          | 00            | 137.44          | 40.85             | - 23.92                 | 57.00              | 0-1200          |
| lydrogen                      | H <sub>2</sub>                   | 2.016        | g      |            | -0            | 28.84           | 0.00765           | 0.3288                  | -0.8698            | 0-1500          |
| fydrogen bromide              | HBr                              | 80.92        | g      | 4          | -C            | 29.10           | -0.0227           | 0.9887                  | -4.858             | 0-1200          |
| lydrogen chloride             | HCI                              | 36.47        | g      | 1          | °C            | 29.13           | -0.1341           | 0.9715                  | -4.335             | 0-1200          |
| lydrogen cyanide              | HCN                              | 27.03        | g      | 1          | °C            | 35.3            | 2.908             | 1.092                   | 10.0000            | 0-1200          |
| lydrogen sulfide              | $H_2S$                           | 34.08        | g      | 4          | °C            | 33.51           | 1.547             | 0.3012                  | -3.292             | 0-1500          |
| lagnesium chloride            | MgCl <sub>2</sub>                | 95.23        | с      | 1          | ĸ             | 72.4            | 1.58              |                         |                    | 273-991         |
| fagnesium oxide               | MgO                              | 40.32        | C      | 2          | K             | 45.44           | 0.5008            | $-8.732 \times 10^{10}$ |                    | 273-2073        |
| lethane                       | CH <sub>4</sub>                  | 16.04        | g      | 1          | °C            | 34.31           | 5.469             | 0.3661                  | -11.00             | 0-1200          |
|                               |                                  |              | 8      | 1          | к             | 19.87           | 5.021             | 1.268                   | -11.00             | 273-1500        |
| fethyl alcohol                | CH <sub>3</sub> OH               | 32.04        | 1      | 1          | °C            | 75.86           | 16.83             |                         |                    | 0-65            |
| (Methanol)                    |                                  |              | g      | 1          | °C            | 42.93           | 8.301             | -1.87                   | -8.03              | 0-700           |
| fethyl cyclohexane            | C7H14                            | 98.18        | g      | 1          | °C            | 121.3           | 56.53             | -37.72                  | 100.8              | 0-1200          |
| Aethyl cyclopentane           | C6H12                            | 84.16        | g      | 1          | °C            | 98.83           | 45.857            | -30.44                  | 83.81              | 0-1200          |
| litric acid                   | NHO <sub>3</sub>                 | 63.02        | Ĩ      | 1          | $^{\circ}C$   | 110.0           |                   |                         |                    | 25              |
| litric oxide                  | NO                               | 30.01        | g      | 1          | °C            | 29.50           | 0.8188            | -0.2925                 | 0.3652             | 0-3500          |
| Nitrogen                      | N <sub>2</sub>                   | 28.02        | g      | 1          | °C            | 29.00           | 0.2199            | 0.5723                  | -2.871             | 0-150           |
| Nitrogen dioxide              | NO <sub>2</sub>                  | 46.01        | g      | 1          | °C            | 36.07           | 3.97              | -2.88                   | 7.87               | 0-120           |
| Nitrogen tetraoxide           | N <sub>2</sub> O <sub>4</sub>    | 92.02        | g      | 1          | °C            | 75.7            | 12.5              | -11.3                   |                    | 0-300           |
| Nitrous oxide                 | N <sub>2</sub> O                 | 44.02        | g      | 1          | °C            | 37.66           | 4.151             | -2.694                  | 10.57              | 0-120           |
| Oxygen                        | 02                               | 32.00        | g      | 1          | °C            | 29.10           | 1.158             | -0.6076                 | 1.311              | 0-150           |
| n-Pentane                     | CsH12                            | 72.15        | ĩ      | 1          | °C            | 155.4           | 43.68             |                         |                    | 0-36            |
|                               | -91412                           |              | ø      | 1          | °Č            | 114.8           | 34.09             | -18.99                  | 42.26              | 0-120           |
| Propane                       | CiHe                             | 44.09        | 8      | 1          | °C            | 68.032          | 22.59             | -13.11                  | 31.71              | 0-120           |
| Propylene                     | CaHe                             | 42.08        | 8      | 1          | °C            | 59.580          | 17.71             | -10.17                  | 24.60              | 0-120           |
| Sodium carbonate              | Na CO-                           | 105.99       | c      | 1          | K             | 121             | 000000            |                         |                    | 288-371         |
| Sodium carbonate              | NacO                             | 286.15       | c.     | i          | K             | 535.6           |                   |                         |                    | 298             |
| decahydrate                   | -10H-O                           |              |        | 2002       |               | stored all      |                   |                         |                    | 2.20            |
| Sulfur                        | S                                | 32.07        | C      | - B -      | K             | 15.2            | 2.68              |                         |                    | 273_268         |
| Juitur                        | 3                                | 32.0/<br>(D) | hombi- | a .        | N             | 1.3.2           | 2.00              |                         |                    | 213-308         |
|                               |                                  | (Mo          | c      | ()<br>(ic) | к             | 18.3            | 1.84              |                         |                    | 368-392         |
| Sulfuric acid                 | H.SO.                            | 98.08        | 1      | -/         | 00            | 130 1           | 15 50             |                         |                    | 10-45           |
| Sulfur dioxida                | SO.                              | 64.07        |        | 1          | °C            | 38.01           | 3 004             | -3104                   | 8 606              | 0-150           |
| Sulfur trioxide               | 502                              | 90.07        | в      | 1          | 00            | 18 50           | 0.100             | -9.104                  | 33.000             | 0-100           |
| Sundr moxide                  | 503<br>C 11                      | 02.12        | B      |            | 00            | 140.00          | 32.4              | -0.040                  | 32.40              | 0-100           |
| Totuene                       | C7H8                             | 92.13        | 1      |            | 20            | 148.8           | 32.4              | 27.46                   | 80.22              | 0-110           |
|                               |                                  | 10.017       | g      |            | 20            | 94.16           | 38.00             | -27.80                  | 60.33              | 0-120           |
| Mature                        |                                  |              |        |            |               |                 |                   |                         |                    |                 |

Physical Property Tables 637

80

## Table B.4 Antoine Equation Constants<sup>4</sup>

| T = C $T = C$ $p$ in turn rig, $T$ in $C$ | $\log_{10} p^*$ | $= A - \frac{B}{T+C}$ | p' in mm Hg, | T in °C |
|-------------------------------------------|-----------------|-----------------------|--------------|---------|
|-------------------------------------------|-----------------|-----------------------|--------------|---------|

Example: The vapor pressure of acetaldehyde at 25°C is determined as follows:

| log a. (25°C)      | = 8.00557 - | 1600.017     | - 2 0551 |
|--------------------|-------------|--------------|----------|
| 10g10 PC2H40(45 C) | - 0.00002   | 25 + 291.809 | = 4.9331 |

 $\implies p^{\star}_{C_2H_4O}(25^{\circ}C) = 10^{2.9551} = 902 \text{ mm Hg}$ 

| Compound              | Formula                                       | Range (°C)     | A       | В        | С       |
|-----------------------|-----------------------------------------------|----------------|---------|----------|---------|
| Acetaldehyde          | C₂H₄O                                         | -0.2 to 34.4   | 8.00552 | 1600.017 | 291.809 |
| Acetic acid           | $C_2H_4O_2$                                   | 29.8 to 126.5  | 7.38782 | 1533.313 | 222.309 |
| Acetic acid*          | $C_2H_4O_2$                                   | 0 to 36        | 7.18807 | 1416.7   | 225     |
| Acetic anhydride      | C4H6O3                                        | 62.8 to 139.4  | 7.14948 | 1444.718 | 199.817 |
| Acetone               | C <sub>1</sub> H <sub>9</sub> O               | -12.9 to 55.3  | 7.11714 | 1210.595 | 229.664 |
| Acrylic acid          | $C_3H_4O_2$                                   | 20.0 to 70.0   | 5.65204 | 648.629  | 154.683 |
| Ammonia*              | NH <sub>3</sub>                               | -83 to 60      | 7,55466 | 1002.711 | 247.885 |
| Aniline               | C <sub>6</sub> H <sub>7</sub> N               | 102.6 to 185.2 | 7.32010 | 1731.515 | 206.049 |
| Benzene               | C <sub>6</sub> H <sub>6</sub>                 | 14.5 to 80.9   | 6.89272 | 1203.531 | 219.888 |
| n-Butane              | n-C4H10                                       | -78.0 to -0.3  | 6.82485 | 943.453  | 239.711 |
| i-Butane              | i-C4H10                                       | -85.1 to -11.6 | 6.78866 | 899.617  | 241.942 |
| 1-Butanol             | C4H10O                                        | 89.2 to 125.7  | 7.36366 | 1305.198 | 173.427 |
| 2-Butanol             | C4H10                                         | 72.4 to 107.1  | 7.20131 | 1157.000 | 168.279 |
| 1-Butene              | C <sub>4</sub> H <sub>8</sub>                 | -77.5 to -3.7  | 6.53101 | 810.261  | 228.066 |
| Butvric acid          | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>  | 20.0 to 150.0  | 8.71019 | 2433.014 | 255.189 |
| Carbon disulfide      | CS <sub>2</sub>                               | 3.6 to 79.9    | 6.94279 | 1169.110 | 241.593 |
| Carbon tetrachloride  | CCl <sub>4</sub>                              | 14.1 to 76.0   | 6.87926 | 1212.021 | 226.409 |
| Chlorobenzene         | C <sub>6</sub> H <sub>5</sub> Cl              | 62.0 to 131.7  | 6.97808 | 1431.053 | 217.550 |
| Chlorobenzene*        | C <sub>6</sub> H <sub>5</sub> Cl              | 0 to 42        | 7.10690 | 1500.0   | 224.0   |
| Chlorobenzene*        | C <sub>6</sub> H <sub>5</sub> Cl              | 42 to 230      | 6.94504 | 1413.12  | 216.0   |
| Chloroform            | CHCl <sub>3</sub>                             | -10.4 to 60.3  | 6.95465 | 1170.966 | 226.232 |
| Chloroform*           | CHCl <sub>3</sub>                             | -30 to 150     | 6.90328 | 1163.03  | 227.4   |
| Cyclohexane           | C6H12                                         | 19.9 to 81.6   | 6.84941 | 1206.001 | 223.148 |
| Cyclohexanol          | CsH12O                                        | 93.7 to 160.7  | 6.25530 | 912.866  | 109.126 |
| n-Decane              | n-C10H22                                      | 94.5 to 175.1  | 6.95707 | 1503.568 | 194.738 |
| 1-Decene              | C10H20                                        | 86.8 to 171.6  | 6.95433 | 1497.527 | 197.056 |
| 1,1-Dichloroethane    | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> | -38.8 to 17.6  | 6.97702 | 1174.022 | 229.060 |
| 1,2-Dichloroethane    | $C_2H_4Cl$                                    | -30.8 to 99.4  | 7.02530 | 1271.254 | 222.927 |
| Dichloromethane       | $CH_2Cl_2$                                    | -40.0 to 40    | 7.40916 | 1325.938 | 252.616 |
| Diethyl ether         | $C_4H_{10}O$                                  | -60.8 to 19.9  | 6.92032 | 1064.066 | 228.799 |
| Diethyl ketone        | C <sub>5</sub> H <sub>10</sub> O              | 56.5 to 111.3  | 7.02529 | 1310.281 | 214.192 |
| Diethylene glycol     | $C_4H_{10}O_2$                                | 130.0 to 243.0 | 7.63666 | 1939.359 | 162.714 |
| Dimethyl ether        | C <sub>2</sub> H <sub>6</sub> O               | -78.2 to -24.9 | 6.97603 | 889.264  | 241.957 |
| Dimethylamine         | C <sub>2</sub> H <sub>7</sub> N               | -71.8 to 6.9   | 7.08212 | 960.242  | 221.667 |
| N,N-Dimethylformamide | C <sub>3</sub> H <sub>2</sub> NO              | 30.0 to 90.0   | 6.92796 | 1400.869 | 196.434 |
| 1,4-Dioxane           | $C_4H_8O_2$                                   | 20.0 to 105.0  | 7.43155 | 1554.679 | 240.337 |
| Ethanol               | C <sub>2</sub> H <sub>5</sub> O               | 19.6 to 93.4   | 8.11220 | 1592.864 | 226.184 |
| Ethanolamine          | C <sub>2</sub> H <sub>2</sub> NO              | 65.4 to 170.9  | 7.45680 | 1577.670 | 173.368 |
| Ethyi acetate         | C4HaO2                                        | 15.6 to 75.8   | 7.10179 | 1244.951 | 217.881 |
| Ethyl acetate*        | C4H8O2                                        | -20 to 150     | 7.09808 | 1238.710 | 217.0   |
| Ethyl chloride        | C2H3Cl                                        | -55.9 to 12.5  | 6.98647 | 1030.007 | 238.612 |
| Ethylbenzene          | C <sub>8</sub> H <sub>10</sub>                | 56.5 to 137.1  | 6.95650 | 1423.543 | 213.091 |

\*Adapted from T. Boublik, V. Fried, and E. Hala, The Vapour Pressures of Pure Substances, Elsevier, Amsterdam, 1973. If marked with an asterisk (\*), constants are from Lange's Handbook of Chemistry, 9th Edition, Handbook Publishers, Inc., Sandusky, OH, 1956.

(continued)

Physical Property Tables 641

| Compound                         | Formula                                      | Range (°C)      | A        | В        | C       |
|----------------------------------|----------------------------------------------|-----------------|----------|----------|---------|
| Ethylene glycol                  | C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> | 50.0 to 200.0   | 8.09083  | 2088.936 | 203.454 |
| Ethylene oxide                   | C <sub>2</sub> H <sub>4</sub> O              | 0.3 to 31.8     | 8.69016  | 2005.779 | 334.765 |
| 1.2-Ethylenediamine              | $C_2H_6N_2$                                  | 26.5 to 117.4   | 7.16871  | 1336.235 | 194.366 |
| Formaldehyde                     | HCHO                                         | -109.4 to -22.3 | 7.19578  | 970.595  | 244,124 |
| Formic acid                      | CH <sub>2</sub> O <sub>2</sub>               | 37.4 to 100.7   | 7.58178  | 1699.173 | 260,714 |
| Glycerol                         | C1H8O3                                       | 183.3 to 260.4  | 6.16501  | 1036.056 | 28.097  |
| n-Heptane                        | n-C7H16                                      | 25.9 to 99.3    | 6.90253  | 1267.828 | 216.823 |
| i -Heptane                       | i -C7H16                                     | 18.5 to 90.9    | 6.87689  | 1238.122 | 219.783 |
| 1-Heptene                        | C2H14                                        | 21.6 to 94.5    | 6.91381  | 1265.120 | 220,051 |
| n-Hexane                         | n-C6H14                                      | 13.0 to 69.5    | 6.88555  | 1175.817 | 224,867 |
| i-Hexane                         | 1 -C6H14                                     | 12.8 to 61.1    | 6.86839  | 1151.401 | 228,477 |
| I-Hexene                         | C.H12                                        | 15.9 to 64.3    | 6.86880  | 1154,646 | 226.046 |
| Hydrogen Cyanide                 | HCN                                          | -16.4 to 46.2   | 7.52823  | 1329.49  | 260,418 |
| Methanol                         | CHIOH                                        | 14.9 to 83.7    | 8.08097  | 1582.271 | 239,726 |
| Methanol*                        | CH <sub>1</sub> OH                           | -20 to 140      | 7.87863  | 1473.11  | 230.0   |
| Methyl acetate                   | C1H6O2                                       | 1.8 to 55.8     | 7.06524  | 1157,630 | 219,726 |
| Methyl bromide                   | CH <sub>1</sub> Br                           | -70.0 to 3.6    | 7.09084  | 1046.066 | 244.914 |
| Methyl chloride                  | CH <sub>3</sub> Cl                           | -75.0 to 5.0    | 7.09349  | 948.582  | 249 336 |
| Methyl ethyl ketone              | C4H4O                                        | 42.8 to 88.4    | 7.06356  | 1261.339 | 221.969 |
| Methyl isobutyl ketone           | C <sub>6</sub> H <sub>12</sub> O             | 21.7 to 116.2   | 6.67272  | 1168,408 | 191,944 |
| Methyl methacrylate              | C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> | 39.2 to 89.2    | 8,40919  | 2050.467 | 274 369 |
| Methylamine                      | CH <sub>4</sub> N                            | -83.1 to -6.2   | 7.33690  | 1011.532 | 233 286 |
| Methylcyclohexane                | Caller                                       | 25.6 to 101.8   | 6.82827  | 1273.673 | 221 723 |
| Naphthalene                      | CtoHe                                        | 80 3 to 179 5   | 7.03358  | 1756 328 | 204.842 |
| Nitrobenzene                     | C.H.NO.                                      | 134.1 to 210.6  | 7.11562  | 1746.586 | 201 783 |
| Nitromethane                     | CH <sub>1</sub> NO <sub>2</sub>              | 55.7 to 136.4   | 7.28166  | 1446.937 | 227.600 |
| n-Nonane                         | n-CoH-                                       | 70 3 to 151 8   | 6 93764  | 1430.459 | 201 808 |
| 1-Nonene                         | CoHee                                        | 66.6 to 147.9   | 6.95777  | 1437 862 | 205 814 |
| n-Octane                         | n-CoHia                                      | 52.9 to 126.6   | 6.91874  | 1351 756 | 209.100 |
| i-Octane                         | i-CaHea                                      | 41.7 to 118.5   | 6 88814  | 1319 529 | 211 625 |
| 1-Octene                         | C.H.                                         | 44.9 to 122.2   | 6.93637  | 1355 779 | 213 022 |
| #-Pentane                        | n-C-H-                                       | 13 3 to 36.8    | 6 84471  | 1060 793 | 231 541 |
| /-Pentane                        | i-CiHa                                       | 163 to 28.6     | 6 73457  | 002010   | 229 564 |
| 1-Pentanol                       | CH-O                                         | 74 7 to 156.0   | 7 18746  | 1287 625 | 161 330 |
| 1-Pentene                        | CH                                           | 17.8 to 30.7    | 6 84268  | 1043.206 | 722 344 |
| Phenol                           | CHO                                          | 107.2 to 181.8  | 7 13301  | 1516 790 | 174 954 |
| 1-Propanol                       | CHO                                          | 60 7 to 104 6   | 7 74416  | 1417 686 | 108.463 |
| 2-Propanol                       | CHIO                                         | 57 3 to 89 3    | 7 74621  | 1350 517 | 197 527 |
| Propionie seid                   | CHO                                          | 72.4 10 128.3   | 7.714061 | 1733.419 | 217 724 |
| Propione acia<br>Propulane ovida | CHO                                          | -74710 140.5    | 7.01443  | 1/25.410 | 217.724 |
| Puridine                         | CHIN                                         | 67 3 to 152 0   | 7.04115  | 1372 700 | 214 070 |
| Statene                          | C.H.                                         | 70.0 to 144.9   | 7.04113  | 1507 414 | 214.277 |
| Toluene                          | C <sub>s</sub> H <sub>s</sub>                | 35 3 10 144.0   | 4.00023  | 1007.404 | 214,903 |
| 1.1.1.Trichloroethane            | C.H.Cl.                                      | -5410169        | 9.64244  | 3126 671 | 219,099 |
| 1.1.2.Trichloroethane            | CHC                                          | 50.0 to 113.7   | 6.05105  | 1314 410 | 302.709 |
| Trichloroeth lana                | CHCL                                         | 17.8 10 86 5    | 6 51 877 | 1019 403 | 103 124 |
| Viewl asserate                   | CHO                                          | 71 8 to 77.0    | 7.21010  | 1206 120 | 226.655 |
| Wintyr acetate                   | H.O                                          | (110 (0 72.0    | 9.10965  | 1260.200 | 220.033 |
| Water                            | HO                                           | 60 to 150       | 0.10/03  | 1449 210 | 235.000 |
| water -                          | mCH                                          | 50.7 to 140.0   | 7.90081  | 1008.210 | 228,000 |
| m-Aylene                         | m-CsHi0                                      | 57.2 to 140.0   | 7.00646  | 1400.185 | 214.827 |
| O-AVIENE                         | 0-0-81110                                    | 122.3 10 143.4  | 7.00134  | 14/0 5/5 | 213.872 |

|                |         | $\hat{V}(m^3/kg)$ |       | $\hat{U}(kJ/kg)$ |        | Ĥ(kJ/kg) |             |        |
|----------------|---------|-------------------|-------|------------------|--------|----------|-------------|--------|
| $T(^{\circ}C)$ | P(bar)  | Water             | Steam | Water            | Steam  | Water    | Evaporation | Steam  |
| 0.01           | 0.00611 | 0.001000          | 206.2 | zero             | 2375.6 | +0.0     | 2501.6      | 2501.6 |
| 2              | 0.00705 | 0.001000          | 179.9 | 8.4              | 2378.3 | 8.4      | 2496.8      | 2505.2 |
| 4              | 0.00813 | 0.001000          | 157.3 | 16.8             | 2381.1 | 16.8     | 2492.1      | 2508.9 |
| 6              | 0.00935 | 0.001000          | 137.8 | 25.2             | 2383.8 | 25.2     | 2487.4      | 2512.6 |
| 8              | 0.01072 | 0.001000          | 121.0 | 33.6             | 2386.6 | 33.6     | 2482.6      | 2516.2 |
| 10             | 0.01227 | 0.001000          | 106.4 | 42.0             | 2389.3 | 42.0     | 2477.9      | 2519.9 |
| 12             | 0.01401 | 0.001000          | 93.8  | 50.4             | 2392.1 | 50.4     | 2473.2      | 2523.6 |
| 14             | 0.01597 | 0.001001          | 82.9  | 58.8             | 2394.8 | 58.8     | 2468.5      | 2527.2 |
| 16             | 0.01817 | 0.001001          | 73.4  | 67.1             | 2397.6 | 67.1     | 2463.8      | 2530.9 |
| 18             | 0.02062 | 0.001001          | 65.1  | 75.5             | 2400.3 | 75.5     | 2459.0      | 2534.5 |
| 20             | 0.0234  | 0.001002          | 57.8  | 83.9             | 2403.0 | 83.9     | 2454.3      | 2538.2 |
| 22             | 0.0264  | 0.001002          | 51.5  | 92.2             | 2405.8 | 92.2     | 2449.6      | 2541.8 |
| 24             | 0.0298  | 0.001003          | 45.9  | 100.6            | 2408.5 | 100.6    | 2444.9      | 2545.5 |
| 25             | 0.0317  | 0.001003          | 43.4  | 104.8            | 2409.9 | 104.8    | 2442.5      | 2547.3 |
| 26             | 0.0336  | 0.001003          | 41.0  | 108.9            | 2411.2 | 108.9    | 2440.2      | 2549.1 |
| 28             | 0.0378  | 0.001004          | 36.7  | 117.3            | 2414.0 | 117.3    | 2435.4      | 2552.7 |
| 30             | 0.0424  | 0.001004          | 32.9  | 125.7            | 2416.7 | 125.7    | 2430.7      | 2556.4 |
| 32             | 0.0475  | 0.001005          | 29.6  | 134.0            | 2419.4 | 134.0    | 2425.9      | 2560.0 |
| 34             | 0.0532  | 0.001006          | 26.6  | 142.4            | 2422.1 | 142.4    | 2421.2      | 2563.6 |
| 36             | 0.0594  | 0.001006          | 24.0  | 150.7            | 2424.8 | 150.7    | 2416.4      | 2567.2 |
| 38             | 0.0662  | 0.001007          | 21.6  | 159.1            | 2427.5 | 159.1    | 2411.7      | 2570.8 |
| 40             | 0.0738  | 0.001008          | 19.55 | 167.4            | 2430.2 | 167.5    | 2406.9      | 2574.4 |
| 42             | 0.0820  | 0.001009          | 17.69 | 175.8            | 2432.9 | 175.8    | 2402.1      | 2577.9 |
| 44             | 0.0910  | 0.001009          | 16.04 | 184.2            | 2435.6 | 184.2    | 2397.3      | 2581.5 |
| 46             | 0.1009  | 0.001010          | 14.56 | 192.5            | 2438.3 | 192.5    | 2392.5      | 2585.1 |
| 48             | 0.1116  | 0.001011          | 13.23 | 200.9            | 2440.9 | 200.9    | 2387.7      | 2588.6 |
| 50             | 0.1234  | 0.001012          | 12.05 | 209.2            | 2443.6 | 209.3    | 2382.9      | 2592.2 |
| 52             | 0.1361  | 0.001013          | 10.98 | 217.7            | 2446   | 217.7    | 2377        | 2595   |
| 54             | 0.1500  | 0.001014          | 10.02 | 226.0            | 2449   | 226.0    | 2373        | 2599   |
| 56             | 0.1651  | 0.001015          | 9.158 | 234.4            | 2451   | 234.4    | 2368        | 2602   |
| .58            | 0.1815  | 0.001016          | 8.380 | 242.8            | 2454   | 242.8    | 2363        | 2606   |
| 60             | 0.1992  | 0.001017          | 7.678 | 251.1            | 2456   | 251.1    | 2358        | 2609   |
| 62             | 0.2184  | 0.001018          | 7.043 | 259.5            | 2459   | 259.5    | 2353        | 2613   |
| 64             | 0.2391  | 0.001019          | 6.468 | 267.9            | 2461   | 267.9    | 2348        | 2616   |
| 66             | 0.2615  | 0.001020          | 5.947 | 276.2            | 2464   | 276.2    | 2343        | 2619   |
| 68             | 0.2856  | 0.001022          | 5.475 | 284.6            | 2467   | 284.6    | 2338        | 2623   |

Table B.5 Properties of Saturated Steam: Temperature Table\*

"From R. W. Haywood, Thermodynamic Tables in SI (Metric) Units, Cambridge University Press, London, 1968.  $\hat{V}$  = specific volume,  $\hat{U}$  = specific internal energy, and  $\hat{H}$  = specific enthalpy. Note: kJ/kg × 0.4303 = Btu/lb<sub>w</sub>.

(continued)