

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/Institute	Erbil Technical Engineering College			
Department	Mechanical and Energy Engineering Techniques			
Module Name	Two Phase Flow			
Module Code	TPF104			
Degree	Technical Diploma	Bachler		
	High Diploma	Master D		
Semester	Fall			
Qualification	Thermal Powers – Heat and Mass Transfer			
Scientific Title	Assistance Professor			
ECTS (Credits)	05			
Module type	Prerequisite	Core 🔳 Assist.		
Weekly hours				
Weekly hours (Theory)	(03)hr Class	(06) Total hrs Workload		
Weekly hours (Practical)	()hr Class	()Total hrs Workload		
Number of Weeks	15			
Lecturer (Theory)	Asst. Prof. Dr. Mohammed Jawdat Barzanjy			
E-Mail& Mobile NO.	Mohammed.barzanjy@su.edu.krd			
	07507313308			
Lecturer (Practical)				
E-Mail & Mobile NO.				
Websites				

بەر يو مبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

Course Book

Course Description	 Two phase flow with or without phase change is commonly encountered in a variety of engineering processes. The power generation, nuclear reactor technology, food production, chemical process, aerospace and automotive industries are all driving forces in this complex field. Due to its universality in applications, a thorough understanding of two phase flow is of utmost important. Present course is driven by this requirement. Two Phase Flow, is a well established topic in Mechanical and chemical engineering, taught to the post – graduate students as follows: 1. A theoretical weekly program of three hours. 2. A workload weekly program of six hours.
Course objectives	 Acquire specialized knowledge in modelling the engineering problems and solve by new methods with good accuracy. Use the update advanced numerical methods and compare the results with the engineering analysis methods results Opportunity of deep analysis of advanced engineering and numerical methods.
Student's obligation	 For the student to achieve a level of excellence in the subject, the following items should be given utmost consideration: a. Class attendance on regular basis for the purpose of learning. b. Active participation in class discussions. c. Reviewing the lecture notes and topics on weekly basis, noting the ambiguous points, if any, and requesting clarification during instructor office hours d. Giving adequate and sufficient priority to preparing for weekly, monthly and final tests.
Required Learning Materials	Due to very equations and rules driving, the essence of teaching program is presented on white board. Sometimes, some explanations of details are prepared on MS power point. There are also assignments and seasonal projects appointed to individual students or groups that help the evaluation process and also support team work effort.

	Task		Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review				
		Homework			
	Assignments	Class Activity	05		
		Report	05		
		Seminar	10		
Evaluation		Essay			
		Project			
	Quiz		10		
	Lab).			
	Midterm Exam		20		
	Final Exam		50		
	Total		100		
	Upo	n completion of the	e subject, studen	its will be able t	to:
	a. Obtain fundamental knowledge in the area of modes of Two Phase				
	Flow	·.			
	b. Apply their knowledge, skills and hand-on experience to the analysis of				
Specific learning	flow in change phase.				,
outcome:	c. Extend their knowledge of mechanical engineering to different				
	situations of engineering context and professional practice in				
	Transforming Phenomenon.				
	d. Recognize the need for and an ability to engage in life-long learning				
	a. Necognize the need for and an ability to engage in me-long learning.				
	1. Ghiaasiaan, S. M., Two-Phase flow, Boiling, and Condensation,				
		Cambridge Univers	ity Press.		
	2. Brennen, C.E., Fundamentals of Multiphase Flow, Cambridge				
Course References:	University Press.				
	3 Collier I. G. and Thoma I. P. Convective Poiling and Condensation				nd Condensation.
	3rd ed., Oxford University Press.				
				Sraw Hill Higher	
	Education.				

Course topics (Theory)	Week	Learning Outcome
What is Two Phase Flow ?	1	
Flow regimes and notation	2	
Flow patterns and flow regime maps	3	
Momentum equation for two-phase flow	4	
Flow in bubble columns	5	
Mid – Semester Examination	6	
Pressure drop	7	
Bubble rise velocity		
Slug flow in vertical tubes	8	
Seminar	9	
The homogeneous model for two-phase flow	10	
Momentum equation for the homogeneous flow model		
Friction factors for the homogeneous model	11	
Two-phase multiplier	12	
Separated flow models - I	13	
Separated flow models – II	14	
Final Semester Examinations	15	

Questions Example Design

<u>Note</u>: Attempt all the questions.

Q1. Choose the correct answer for each of the following:		
1. Mass transfer takes place	(a) in a multi phase	
	(b) in a double phase	
	(c) only in a single phase	
2. The fluid moves under the influence of an	(a) Forced convection	
external force is	(b) Natural convection	
	(c) Free convection	
3. If there is any variation in density within the fluid	(a) Forced convection	
phase, the currents develop	(b) Natural convection	
	(c) Diffusion	
4. Momentum transfer as given by	(a) $J_A = -D_{AB} \frac{dC_A}{dz}$	
	(b) $q = -k \frac{dT}{dz}$	
	(c) $\tau = -\mu \frac{d\nu}{dz}$	
5. Reynolds postulated that the mechanisms for	(a) f / 2	
identical. Accordingly,	(b) f / 3	
	(c) f / 4	
6. Based on data collected in both (Laminar and Turbulent) flow regimes, they found that:	(a) $j_D = j_H = \frac{f}{4}$	
	(b) $j_D = j_H = \frac{f}{3}$	
	(c) $j_D = j_H = \frac{f}{2}$	
7. $Sh = 0.664 \text{ Re}_L^{1/2} Sc^{1/3}$	(a) (Laminar) Re $_{L} < 2-5*10^{5}$	
	(b) (Laminar) Re $_{L} < 2 - 4*10^{5}$	
	(c) (Laminar) Re $_{L} < 2 - 3*10^{5}$	

بەر يو مبەر ايەتى دانيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

8. For very low (Re), the (Sh)	(a) $Sh = 2 + C \operatorname{Re}^{m} Sc^{1/2}$	
	(b) $Sh = 2 + C \operatorname{Re}^{m} Sc^{1/3}$	
	(c) $Sh = 3 + C \operatorname{Re}^{m} Sc^{1/3}$	
9. Mass transfer from the inner wall of a tube to a moving fluid is	(a) $Sh = 0.023$ Re ^{0.83} Sc ^{0.44}	
	(b) $Sh = 0.023$ Re ^{0.83} Sc ^{0.55}	
	(c) $Sh = 0.033$ Re ^{0.83} Sc ^{0.44}	
10. Henry's law is	(a) $P_{Ai} = C_{Ai} / H$	
	(b) $P_{Ai} = H / C_{Ai}$	
	(c) $P_{Ai} = H C_{Ai}$	
11. In the study of convective heat transfer, the heat flux is connected to heat transfer coefficient	(a) $Q/A = q = h(t_s - t_m)$	
as:	(b) $Q/A = q = h(t_m - t_s)$	
	(c) $Q/A = q = h.l(t_s - t_m)$	
12. The analogous situation in mass transfer is handled by an equation of the form:	(a) $N_{A} = k_{c} (C_{A} - C_{As})$	
	(b) $N_{A} = k_{c} (C_{As} - C_{A})$	
	(c) $N_{A} = k_{c} I (C_{As} - C_{A})$	
13. Prandtl Number = Pr =	(a) thermal diffusivity / mass diffusivity	
	(b) momentum diffusivity / mass diffusivity	
	(c) momentum diffusivity / thermal diffusivity	
14. Schmidt Number = Sc =	(a) thermal diffusivity / mass diffusivity	
	(b) momentum diffusivity / mass diffusivity	
	(c) momentum diffusivity / thermal diffusivity	
15. Lewis Number = Le =	(a) thermal diffusivity / mass diffusivity	
	(b) momentum diffusivity / mass diffusivity	
	(c) momentum diffusivity / thermal	

		diffusivity	
	16. the equation for energy transport by Convection and molecular Diffusion becomes	(a) $q = h\Delta T + \sum_{i} N_{i} \overline{H}_{i}$	
		(b) $q = h\Delta T + \sum_{i} N_{i} / \overline{H}_{i}$	
		(c) $q=h/\Delta T + \sum_{i} N_{i} \overline{H}_{i}$	
	17. The molar flux (NA) is calculated by diffusion through stagnant gas model as	(a) $N_{A} = \frac{-C}{1-y_{A}} \frac{dy_{A}}{dZ}$	
		(b) $N_A = \frac{-C D_{AB}}{1 - y_A} \frac{d y_A}{dZ}$	
		(c) $N_{A} = \frac{-D_{AB}}{1-y_{A}} \frac{dy_{A}}{dZ}$	
	18. To find humidity, we can write equation for the mass and energy fluxes as	(a) $N_{A} = k_{c} (C_{Ai} - C_{A}) = k_{y} (y_{Ai} + y_{A})$	
		(b) $N_{A} = k_{c} (C_{Ai} + C_{A}) = k_{y} (y_{Ai} - y_{A})$	
		(c) $N_A = k_c (C_{Ai} - C_A) = k_y (y_{Ai} - y_A)$	
	19. In the air - film surroundings, the wet - bulb, the mass and energy fluxes are coupled as	(a) $N_{\lambda} \lambda = q$	
		(b) $N_{A} / \lambda = -q$	
		(c) $N_A \lambda = -q$	
	20. in the wet – bulb Thermometer	(a) $T_{i} = T - \frac{\lambda}{C_{p}} (y_{Ai} - y_{A})$	
		(b) $T_i = T \frac{\lambda}{C_p} (y_{Ai} - y_A)$	
		(c) $T_{i} = T - \frac{2\lambda}{C_{p}} (y_{Ai} - y_{A})$	
Q2.	 A solid disc of benzoic acid (3 cm) in diameter is spin at (20 rpm) and (25°C). Calculate the rate of dissolution in a large volume of water. Diffusivity of benzoic acid in water is (1.0 * 10⁻⁵ cm² / s), and solubility is (0.003 g / cm³). The following mass transfer correlation is applicable: 		
			35 Marks
	Sh = 0.62 Re ½ Sc ^{1/3}		

Extra notes:

Due to a number of unforeseen reasons that may lead to shifting of the academic semester program, it may be subjected to modifications. Also extra curriculum hours may be needed to cover all the topics. The students shall be notified of the changes if and when they may occur.

External Evaluator