OZONE DEPLETION IN THE STRATOSPHERE

First we'll focus on the "GOOD" ozone located in the STRATOSPHERE (the ozone that is being <u>depleted</u> leading to an ozone "hole")

WHY IT'S THERE

to: the natural "Chapman Mechanism

(a series of photochemical reactions)

THE CHAPMAN MECHANISM

(first proposed in 1930s)

ozone is continuously produced and destroyed

 through PHOTOCHEMICAL REACTIONS in the stratosphere

> involves oxygen (O_2), molecular oxygen (O), photons of UV radiation, and OZONE (O_3).

The Chapman Mechanism

Ozone exists in the upper atmosphere as a consequence of photochemical reactions between molecular oxygen and sunlight:

> $O_2 + O_2 + O_2 + sunlight$ --> $O_2 + O + O + O_2$ --> $O_3 + O_3$

The Chapman Mechanism

(another view)

7

In theory:

a balance of ozone is established over time

> prevents much of the harmful UV radiation from reaching the earth's surface.

Leads to an "Equilibrium" or "Steady State"

STEADY STATE =

a condition in which the STATE of a system component (e.g. reservoir)

is CONSTANT over time.

Steady state can be achieved in a reservoir:

- a) if there are no inflows or outflows, *or*
 - b) if the rate of inflow = the rate of outflow.

Any imbalance in these rates leads to a change in the level of the reservoir.

11

TEMPERATURE

with increasing altitude in the stratosphere

WHY???

Why is there an increase in temperature with altitude in the STRATOSPHERE?

- 1. It is the closest layer to the sun, hence it is closest to the solar "heat source."
- 2. It receives large amounts of UV radiation from the sun <u>PLUS</u> it has a high concentration of ozone to absorb this UV.
- 3. It is the layer which contains most of the GH gases that absorb IR radiation emitted by the Earth's surface.

13

THE DESTRUCTION OF STRATOSPHERIC OZONE

The Chapman Mechansim "balance" is being disrupted by the introduction of CFC's and other similar gases into the stratosphere:

CFCs are photo-dissociated into FREE CHLORINE ATOMS (CI) and other molecular fragments by UV rays

 Chlorine (and other gases such as Nitric oxide, NO) act as catalysts in ozone loss reactions

15

CATALYST =

A compound that increases the rate of a chemical reaction and is itself unchanged by the reaction

Through chemical reactions:

the chlorine removes ozone from the stratosphere

and also frees more chlorine atoms to begin the process all over again Missing Element – Catalytic Destruction of Ozone

- Four main "families" of chemicals responsible for catalyzing ozone destruction:
- 1. Nitrogen oxides: NO_x

NO + NO₂

- Hydrogen oxides: HO_x
 OH + HO₂
- 3. Chlorine: ClO_x
 - CI + CIO
- 4. Bromine: BrO_x
 - Br + BrO

A common type of catalytic destruction cycle (there are others)

$$Y+O_3 \rightarrow YO+O_2$$

 $YO+O \rightarrow Y+O_2$

17

Sources of Catalysts

Stratospheric NO_x

- Source: tropospheric N₂O
- Natural sources (mostly)
- 10% increase since 1850 (ie, due to anthropogenic activities...mostly fertilizer application)
- Stratospheric HO_x
 - Source: tropospheric CH₄, H₂, H₂O
 - Much is natural, however...
 - 150% increase in tropospheric CH₄ since 1850 (agricultural activities; landfills; other sources)
- Stratospheric Cl and Br
 - Almost entirely due to human activity
 - Sources: tropospheric CFCs, HCFCs, halons

CFCs

• Lecture Question

- What are CFCs? What are they used for?
- CFCs are *chlorofluorocarbons*; they are small molecules that contain chlorine, fluorine and carbon atoms. Usually there are only 1-2 carbon atoms.
- CFCs are sometimes called *Freons* (that was their trade name for DuPont)
- CFCs are referred to by a number. The most common CFCs are: CFC-11, CFC-12, CFC-113 (formulas on the next page)
- HCFCs are CFCs that contain hydrogen. This makes them more reactive to the OH radical, decreasing their tropospheric lifetime. That means that, on a pound-perpound basis, HCFCs ("soft CFCs") destroy less stratospheric ozone than CFCs ("hard CFCs") because a smaller fraction of HCFCs "survive" to reach the stratosphere

19

STRATOSPHERIC OZONE PRODUCTION AND LOSS

Chapman reactions

$O_2 + h\nu(\lambda < 243 nm) \rightarrow O + O$	oxygen photolysis
$O + O_2 + M \rightarrow O_3 + M$	ozone formation
$\mathbf{O} + \mathbf{O}_3 \rightarrow \mathbf{O}_2 + \mathbf{O}_2$	ozone destruction
$O_3 + h\nu(\lambda < 310nm) \rightarrow O(^1D) + 0$	02
$O_3 + hv(\lambda < 1180nm) \rightarrow O + O_2$	oxygen photolysis

NO2 photolysis (lower stratosphere) + TROPOSPHERE

$$NO_2 + hv(\lambda < 243 nm) \rightarrow NO + O \quad NO_2 \text{ photolysis}$$

$$O + O_2 + M \rightarrow O_3 + M \qquad \text{ozone formation}$$

Catalytic destruction

$$\begin{array}{c} X + O_3 \rightarrow XO + O_2 \\ XO + O \rightarrow X + O_2 \end{array}$$
Net $O + O_3 \rightarrow O_2 + O_2 \end{array}$

ozone destruction

[X = H, OH, NO, Cl, Br, etc]

CHAPMAN MECHANISM FOR STRATOSPHERIC D3

Reactions 283 very fast + 0 \$ 03 in steady state

$$k_2[0_2][M][0] = J_3[0_3]$$
 defines ratio [0]/[0_3]:

$$[0] = [0_3] \cdot \frac{J_3}{k_2[0_2][M]}$$

Reactions 2.3 INTERCONVERT the ODD OXYGEN', [0]+[0]]

Time scale for Reactions 1 s 4: hrs at 40 km, years at 20 km Rate of change of odd Oxygen

$$\frac{d([0]+[0_3])}{dt} = 2J_1[0_2] - 2k_4[0][0_3]$$

Steady state only in upper stratosphere: = 0; [0] from (j)
$$[0_2]^2 = 2J_1[0_2], \quad k_2[0_2][M]$$

 $\begin{bmatrix} 0_3 \end{bmatrix}^{-1} = \frac{1}{2k_4} \cdot \frac{1}{J_3}$ since $\begin{bmatrix} 0_2 \end{bmatrix} = 0.21 \begin{bmatrix} M \end{bmatrix}$ $\begin{bmatrix} 0_2 \end{bmatrix} = \frac{1}{2k_4} \cdot \frac{1}{2k_4} = \frac{1}{2k_4} \cdot \frac{1}{2k_4} = \frac{1}{2k_4} \cdot \frac{1}{2k_4} \cdot \frac{1}{2k_4} = \frac{1}{2k_4} \cdot \frac{1}{2k_4} \cdot \frac{1}{2k_4} \cdot \frac{1}{2k_4} = \frac{1}{2k_4} \cdot \frac{$

$$\begin{bmatrix} O_3 \end{bmatrix} = J_1^{1/2} \begin{pmatrix} \kappa_2 \\ k_4 J_3 \end{pmatrix} \quad 0.21 \begin{bmatrix} M \end{bmatrix}^{1/2}$$

effect of ultitude \checkmark CONSTRUCT

THEREFORE [03] MUST GO THROUGH A MAXIMUM

21

RELEASE OF ACTIVE SPECIES IN THE STRATOSPHERE

- BY PHOTOLYSIS :

$$CFCl_{3} \xrightarrow{hv} CFcl_{2} + Cl$$

$$CF_{3}Br \xrightarrow{hv} CF_{3} + Br$$

$$N_{2}O \xrightarrow{hv} N_{2} + O('b)$$

- BY REACTION :

$$\begin{array}{rcl} 0('b) + N_2 0 & \rightarrow & 2 \times 0 \\ 0H & + & CH_2 \mathcal{U} & \rightarrow & H_2 0 + & CF_2 0 + & CL \\ 0H & + & CH_3 & Br & \rightarrow & H_2 0 + & CH_2 0 + & Br \\ 0('b) + & H_2 0 & \rightarrow & 2 & OH \\ 0H & + & CH_4 & \rightarrow & H_2 0 + & CH_3 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$$

If appropriate values of constants and P, T (= M) for 40 km, the value of $[0_3]$ is Too High ev A PACTAR oF 4. k_4 is much slower than originally the set thought. X = OH, H Hampson, 1965 $X = NO, NO_2 Crubzen, 1969$ X = Cl, ClO Cicerone, 1974CATALYTIC REACTIONS NITROGEN OXIDES No net reaction: NULL CYCLE for odd oxygen. $[NO] = [NO_2]. \underline{J_6}$ [03] k5 In the stratosphere [0] increases inth height, then 7) $NO_2 + 0 \rightarrow NO + O_2$ $k_7 = 9 \times 10^{-12}$ Reaction (7) removes odd oxygen and so ractimo (5)+ (1) guve CATALYTIC OZONE LOSS $[NO] = [NO_2] J_6 + k_7[0]$ [.03] k5 $-d[0]+[0_3] = k_5[N0][0_3] + k_7[N0_2][0] + J_6[N0_2]$ dt 2k7[N02][0] Substitute = ACCOUNTS FOR - 50% OF OZONE LOSS RATE DETERMINING STEP. -

23

NITREGEN OXIDES REDUCE EFFICIENCY OF 03 LOSS BY CIOX

NITROGEN OXIDES IN THE STRATOSPERE

REACTIVE SPECIES RESERVOIRS SOURCE GASES & O₃ heterogeneous reation

•••• heterogeneous reactions on sulphate aerosol

25

CHLORINE CHEMISTRY IN STRATOSPHERE

HYDROGEN CHEMISTRY IN THE STRATOSPHERE

OZONE LOSS via HOx

mesosphere	H + 0 ₃ → OH + 0 →	$\begin{array}{r} OH + O_2 \\ H + O_2 \end{array}$	≯	0+03 → 202
upper stratosphere	$\begin{array}{ccc} OH + O_3 \rightarrow \\ HO_1 + O \end{array} \rightarrow \end{array}$	$HO_2 + O_2$ $OH + O_2$	⇒	0+03 → 202
lower stratosphere	H02 + 03 →	OH + 202	\$	03+03 → 302

27

OZONE DEPLETION CYCLES INVOLVING HALOGENS THE LOWER STRATOSPHERE

Involving ClOx/NOx coupling

 $CIO + NO_2 = CIONO_2$ $CIONO_2 + hv = CI + NO_3$ $NO_3 + hv = NO + O_2$ $NO + O_3 = NO_2 + O_2$ $Cl + O_3 = ClO + O_2$

 $O_3 + O_3 = 3O_2$ net

Involving NOx/Halogen (X = Br or I) coupling

$$XO + HO_2 = HOX + O_2$$
$$HOX + hv = X + HO$$
$$OH + O_3 = HO_2 + O_2$$
$$X + O_3 = XO + O_2$$

 $net \qquad O_3 + O_3 = 3O_2$

BROMINE CHEMISTRY IN THE STRATOSPHERE

29

WHY ANTARCTICA?

ozone "hole(s)" REGIONALITY SEASONALITY

it is most severe overAntarctica in S.H. spring (Sep, Oct);

> a less severe depletion (not a true hole) occurs over the Arctic in
 N.H. spring (Feb, Mar)

special conditions that make ozone depletion most severe over polar regions (esp. Antarctica) are:

CIRCUMPOLAR CIRCULATION PATTERN

winter which isolates the stratosphere inside a vortex and acts like a "containment vessel" in which chemical reactions may occur in near isolation

presence of POLAR STRATOSPHERIC ICE CLOUDS -- on the surfaces of these extremely cold cloud particles certain chemical reactions are more efficient and faster

Key Concept

