Ministry of Higher Education and Scientific research

Department of Biology

College of Science

Salahaddin University - Erbil

Subject: Genetics

Course Book – (Year 4)

Lecturer's name Mohamed Ali Saleem, M.Sc.

Academic Year: 2023/2024

First Semester

Course Book

1. Course name	Genetics					
2. Lecturer in charge	Mohamed Ali Saleem					
3. Department/College	ge Biology / Science					
4. Contact	e-mail: mohammed.saleem@su.edu.krd					
	Tel: 0750 413 21 45					
5. Time (in hours) per	Theory: 2					
week	Practical: 2					
6. Office hours	To be Return to the schedule on the office door					
7. Course code	SBG 406					
8. Teacher's academic	I graduated from Salahaddin University-Erbil in 2004, accepted in post					
profile	graduate MSc. In 2007 I finished my MSc degree and start as Assistant					
	Lecturer Teaching Practical Genetics, Practical Microbial Genetics,					
	Practical Biology, Practical Zoology, and Practical Ecophysiology. In 2020,					
	accepted in PhD degree in Molecular Genetics. From 2017 till now I am in					
	charge in teaching Genetics theory for 4 th class students. For 8 years					
	(Between 2010-2016) and (2018-2020) I worked as a Member of the					
	Examination Committee for College of Science.					
	My experience:					
	 Assist. Lecturer in College of Science 2010. 					
	Lecturer in College of Science 2014.					
	 Rapporteur of Biology Department/ College of Science from 					
	September 2010 till 2016 and 2018 till 2020.					
	 Member of editorial board of Zanco Journal of Pure and Applied 					
	Sciences/ Salahaddin University- Erbil from 2019-2020.					
	 Member of National Ranking Committee of Salahaddin University- 					
	Erbil from 2019-2021					
	 Head of Biology Department February 2022 till now. 					
9. Keywords	Genetics, Principles of Genetics, Animal Genetics, Plant Genetics,					
	Population Genetics, Sex and Environment, Chromosomal aberrations,					
	Genetic basis of cancer, Molecular biology.					
10. Course overview:						

10. Course overview:

Course description, objectives, and format

Genetics is one of the basic science courses that comprise the biology curriculum of the four years of Science College. The overall goal of these courses is to provide with the knowledge and understanding of the scientific principles that are the basis of current approaches to know the genetic basis of organisms. The application of these scientific principles and knowledge to the practice of science and diseases, including the development of life-long learning and problem-solving skills, is emphasized. The genetic course consists of 12 lectures (1st semester) and covers topics are integrated with the concurrent agriculture, medicine, statistics, pathology, and integrated problems.

Lectures from basic sciences, clinical disciplines and microbiology teach the fundamental principles of genetic and how these principles apply to the diagnosis and treatment of these problems in above fields.

Course learning objectives

By the end of this course, students will be able to apply their basis background in genetics to the practice of agriculture, scientific research, including the effective diagnosis, treatment and prevention of genetic disease. Detailed learning objectives are provided for each lecture.

11. Course objective:

Each lecture is accompanied by a power point presentation. Information from the presentation and assigned reading is important for mastering the learning objectives which are the primary focus of exam questions.

Example:

-History of Genetics, 1-Blending theory, 2-Acquired character inheritance, 3-Pangenesis theory,

4- Performation and Epigenesis, 5-Cell theory (Classical and modern interpretation)

-The subject matter of genetics includes: Heredity; The molecular nature of the genetic material; The ways in which genes, which determine the characteristics of organisms, control life functions; The distribution and behavior of genes in populations.

-Genetics four major subdisplines: Transmission Genetics; Molecular Genetics; Population Genetics; Quantitative Genetics

- Gene Expression, Genome, chromatin, chromosome, Gene (Mendelian factor), Allele, Homozygous, Heterozygous, Genotype, Phenotype.

Characteristics of Organisms Used for Genetic Studies, General Features

-Viruses, Eschirichia.coli, Human, Drosophila melanogaster, Maize, Arabidopsis thaliana.

-Methods of genetic study, 1- Planned breeding, 2- Pedigree analysis

-Why do Pedigrees? Goals of Pedigree Analysis, Symbols used in pedigree analysis

-Autosomal recessive trait, Autosomal dominant trait

-Complete dominance, -incomplete dominance, Codominance, Overdominance, Heterosis.

-Lethal genes, a-Dominant genes with recessive lethal effect, b- Recessive gene with recessive lethal effect.

- Multiple alleles

- Multiple genes (Polygeny)

- Qualitative genetics

-Quantitative traits

- Epistasis, epistatic gene, hypostatic gene, Types of epistasis, Classical ratio, Dominant epistasis, Recessive epistasis, Duplicate genes with cumulative effect, Duplicate dominant genes, Duplicate recessive genes, Dominant and recessive interaction.

12. Assessment scheme

Examinations

There will be at least one obligate exam through the semester, the exam will contain multiplechoice, true-or-false, short answer questions, long answer questions, give the reasons, solving the problems, make the diagram, etc.

Quizzes and weekly assignments:

The exam has (10) marks, the practical exam has (35) marks, so the final grade will be based upon the following criteria:

Mean of two examinations: 15%

Practical examination: 35%

Final examination: 50%

13. Student learning outcome:

At the end of your undergraduate teaching, you will be expected to be able to:

Ministry of Higher Education and Scientific research

- Recognize pattern of inheritance.
- Have knowledge of several Mendelian and chromosomal conditions.
- Recognize the genetic and environmental contribution to multifactorial conditions.
- To know the genetic and environmental basis of sex determination.
- Learned approaches which can be used for the diagnosis of genetic disease and carrier detection.
- Learned different forms of DNA testing (prenatal diagnosis, predictive testing, and diagnostic testing).
- Be familiar with the practice of the genetic counseling.
- Know when and where to get genetic advice and information.
- Be familiar with the major ethical issues.
- To know the effects of cytoplasmic inheritance.
- To know the population genetics and the factors affects the gene frequency in the population.

14. Course Reading List and References:

1- Tamarin, R.H. (2004). Principles of genetics (7th Edition). Wm. C. Brown publisher. U.S.A

2- Brooker, Robert J. (2021). Genetics: Analysis and Principles (7th Edition). Mc Graw Hill. U.S.A
6- Pierce B.A. (2020). Genetics, A Conceptual Approach (7th Edition). W.H. Freeman and Company. New York, U.S.A

15. The Topics				
Topics	Lectures			
Introduction	Course outline, how to study Genetics, the role of genetics in life, distribution			
	of marks, exams, and final exams			
History of	History of genetics, the genetic theories, the subject matter of genetics			
genetics	includes, genotype and phenotype			
Mendelian	Gregor Mendel (1822-1884), Genetic terminology, Punnett square, Mendel's			
inheritance	experimental methods, Mendel's 1st and 2nd laws, test cross and back cross			
Characteristics of	Viruses, E.coli, Human, Drosophila, maize, Arabidopsis thaliana, methods of			
Organisms Used	genetic study, pedigree analysis			
For Genetic Studie				
Type of dominance	Dominant/ recessive, incomplete dominance, Codominance, Overdominance,			
	Lethal genes, Multiple alleles (Polygenic inheritance)			
Epistasis	Dominant epistasis (12:3:1), Recessive epistasis (9:3:4), Duplicate genes with			
	cumulative effect (9:6:1), Duplicate dominant genes (15:1), Duplicate recessive			
	genes (9:7), Dominant and recessive interaction (13:3), Gene interactions (non-			
Sex-determination	epistatic interaction)			
system	Genetic mechanisms of sex determination, chromosomal basis of sex			
	determination, Genic balance			
	Exam.			
Sex	Haplodiploidy, Single gene effect, Sex determination and environment			
Determination and				
Environment				
Inheritance	Variation of sex-linkage, Pseudoautosomal Inheritance, Sex linked in Drosophila,			
related to sex	Criteria for an X-linked recessive trait and examples, Criteria for an X-linked			
(X-linked	dominant trait and examples.			
recessive and				
dominant traits)	V linked in heriteness and their eventues. Can influenced traits and their days its			
Y-linked traits,	Y-linked inheritance and their examples, Sex influenced traits, sex limited traits			

Sex influenced traits, sex limited traits	and their examples			
Linkage and recombination	Work of Bateson and Punnett, Coupling and repulsion, Linkage, Crossing over, Factors affecting crossing over, Methods of calculation of crossing over, Complete linkage, Mapping Genes			
Cytoplasmic inheritance	Organelle heredity, Infectious heredity, Maternal effect			
Chromosome aberrations, variation in chromosome number	History of cytogenetics, classification of chromosomes, aneuploidies of the sex chromosomes, aneuploidies of the somatic chromosomes, aneuploidy vs polyploidy			
Variation in	Deficiencies/Deletions; Duplications			
chromosome	The genetic material remains the same, but is rearranged; Inversions;			
structure	Translocations and their examples			
Population genetics	Defenition, Hardy-Weinberg principle and population equilibrium, Applying the Hardy-Weinberg Principle			
Changes in Gene Pools	Genetic drift, mutations, natural selection, non-random mating			
Introduction to cloning and recombinant DNA technology	DNA cloning, DNA sequencing, detection of disease genes, Polymerase chain reaction (PCR)			
Genetics of	Cancer is a genetic disease, cell cycle regulation and cancer, predisposition to			
cancer	cancer, causes of cancer, cancer and environment			

16. Examinations:

1. Compositional: In this type of exam the questions usually starts with Explain how, What are the reasons for...?, Why...?, How....?

With their typical answers

Examples should be provided

Question/ Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different:

- 1. Small families. Even large human families have 20 or fewer children.
- 2. Uncontrolled matings, often with heterozygotes.
- 3. Failure to truthfully identify parentage.

2. True or false type of exams:

In this type of exam a short sentence about a specific subject will be provided, and then students will comment on the trueness or falseness of this particular sentence. Examples should be provided

Q1/Write True and False in front of the following sentences, then correct the false. (15 Marks) 1-Although incorrect, the concept of pangenesis was highly influential and persisted until the late 1900s.

2- The genetic and molecular organization of the mouse and human genes are quite similar. **Answers/**1-F/1900 ---T/1800, 2-T.

3. Multiple choices:

In this type of exam there will be a number of phrases next or below a statement, students will match the correct phrase. Examples should be provided.

Question/ For each term in the left column, choose the best matching phrase in the right column.

				Answer
A	Karyotype	1	Crosses in which the male and female traits are reversed, thereby controlling whether a particular trait is transmitted by the egg or the pollen	A-4
В	Reciprocal crosses	2	The cross of an individual of ambiguous genotype with a homozygous recessive individual	B-1
С	Population genetics	3	Which deals with heredity in groups of individuals for traits that are determined by one or only a few genes	C-3
D	Test cross	4	The array of chromosomes in a given cell	D-2