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Abstract 

  We simulate the phonon scattering rate spectra of silicon at room 

temperature(300k) and liquid nitrogen (77k). The technique takes into account 

silicon's nonparabolic, ellipsoidal band structure of the first conduction band, as 

well as the effects of acoustic and intervalley phonon scattering. Using coupling 

factors derived from deformation potential theory and Fermi's Golden Rule, the 

explicit expression for intervalley phonon scattering is obtained. Deformation 

potentials are also used to formulate acoustic phonon scattering. Silicon has been 

chosen because of its importance for device applications, and is at the heart of 

semiconductor technology for transistors, integrated circuits, and many electronic 

devices. In this study multivalley model considered in order to take into account 

the presence of several valleys in the first conduction band of the silicon. The 

effects of nonparabolicity, and band anisotropy included as well. Analytical band 

was utilized in this project to get over difficulties caused by the detailed band 

structure's complexity, which is generally too hard to handle. Optical phonons are 

dominated scattering process in silicon and the scattering rate increase with 

temperature. The calculated values of scattering rate at band edge are 

1.2 × 1014𝑠−1 and 3.1 × 1013𝑠−1 at 300𝑘 and 77𝑘 , respectively.  
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CHAPTER ONE 

Introduction to Covalent Semiconductor Band- Structure 

1.1 Introduction: 

 The study of charge transport in semiconductors is essential for both basic 

physics and electronic device applications. On the one hand, transport phenomena 

analysis provides information about electronic interactions in crystals [1], band 

structure [2], lifetimes, impact ionization [3,4], and other topics. The applied 

aspect of the problem, on the other hand, is even more critical, because modern 

nanoelectronics, whose influence in all human activities appears to be growing 

all the time, is heavily reliant on a sophisticated understanding of many aspects 

of charge transport in semiconductors. 

In general, charge transport is a difficult problem to solve, both mathematically 

and physically. Except for a few cases, the integro-differential equation that 

describes the problem (the Boltzmann transport equation) does not provide 

simple solutions. 

The standard form of BTE for electron in semiconductor in the absence of 

magnetic field, and generation / recombination process is [5] : 

(
𝜕𝑓

𝜕𝑡
)

𝑡𝑟𝑎𝑛𝑠
+ (

𝜕𝑓

𝜕𝑡
)

𝑑𝑖𝑓𝑓
+ (

𝜕𝑓

𝜕𝑡
)

𝑑𝑟𝑖𝑓𝑡
= (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
                           ………………1.1 

Where 𝑓 ≡ 𝑓(𝒓, 𝒌, 𝑡),  is the distribution function, which is the probability 

density of finding the particle at time, within the infinitesimal phase space 

volume, centered at the phase point (𝒓, 𝒌 ).  

𝑓(𝑟, 𝑘⃗⃗, 𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑖𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 
                                    

The terms on the left-hand side LHS of (1.1), indicate, respectively, the 

dependence of the distribution function on time, space, and momentum.  The time 
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dependence (transient term) may result from oscillating external fields, whereas 

a space-dependence (diffusion term) of the distribution function can be caused by 

charge or temperature gradients, and the last term caused by applied fields (drift 

term).  The right-hand side RHS of (1.1), is the collision term or collision integral, 

the collision term (
𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
, accounts for all the scattering events which alter the 

distribution function. 

Scattering process involve rapidly varying potentials that perturb the periodicity 

of lattice which is typically of the order of lattice constant, hence such events   

must be treated quantum mechanically as mentioned. 

The electron scattering from an initial state ( scattering -in ) |𝒌 >,to other empty 

state |𝒌 >,  (scattering-out) depends on three factors: the first one is the 

probability of finding that electron in the initial state 𝑓(𝒓, 𝒌, 𝑡), the second factor 

is the transition probability per unit time S(k ,𝒌,),that an electron with initial wave 

vector k ,   scatter to the final empty state with a wave vector 𝒌,, and the last factor 

is the probability of non-occupation for final momentum state. 

Scattering mechanisms affect the nature of carrier transport and, as a result, the 

shapes of distribution functions [6]. The electron interacts with various scattering 

centers during the scattering process in crystal. In general, scattering is caused by 

either the intrinsic behavior of crystal-like lattice vibration or by other sources 

such as electrostatic fields associated with impurities [7]. 

Because the scattering term is independent and is considered the key to all 

extended transition equations, it will be treated in this project without solving the 

Boltzmann equation explicitly. 

Chapter one introduces preliminary physical considerations as the theoretical 

foundation for this work. Starting with the general feature of covalent 

semiconductor band structure, and the band structure of silicon are briefly 
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discussed. A simple analytical formula for silicon's first conduction band, 

including first order band correction, had been expressed. The associated 

quantities with analytical bands, such as density of state, density of state effective 

mass, and conductivity effective mass, were derived in detail using the standard 

analytical approach. The treatments and discussions have been limited to electron 

motion and its interactions with lattice vibration in nonpolar semiconductors.  

Before qualifying on the total scattering rate, the most important scattering in 

silicon, lattice vibration, was briefly discussed in chapter two. Master equations 

for calculating the scattering rate and results are given in chapter three.  

1.2 Basic Properties of Diamond Structure  

  Silicon has the diamond cubic crystal structure with a lattice parameter 𝑎0 of 

0.543 nm. The nearest neighbor distance is 0.235 𝑛𝑚. The diamond cubic crystal 

structure has an FCC lattice with a basis of two silicon atoms. The structure 

depicted in Figure 1.1 consists of two basis atoms and may be thought of as two 

inter-penetrating face cantered cubic (FCC) lattices, one displaced from the other 

by a translation  
𝑎°

4
(1,1,1) of along a body diagonal. 

                  

                [a]                                                                     [b] 

Figure 1.1: (a) Crystallographic unit cell (unit cube) of the diamond structure. 

(b) The primitive basis vectors of the face cantered cubic (FCC) lattice and the 

two atoms forming the basis are highlighted. 



9 

 

In cubic semiconductors such as Si or Ge the two atoms of the basis are identical 

and the structure is called the diamond structure. If the two basis atoms are 

different, the structure is called the zinc-blende structure. Many III-V 

semiconductors such as GaAs, InAs, or InP are of zinc-blende type. 

 The translation vector, define the distance vectors that all atoms in the cluster are 

translated through to form another cluster in the solid, is given by  

𝑹 = 𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑                                                       ………………(1.2) 

and the reciprocal lattice vector is  

𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑                                                              ……………….(1.3) 

In which  (𝑛1, 𝑛2, 𝑛3)𝑎𝑛𝑑 ( ℎ, 𝑘, 𝑙)  are integers. 

1.3 Brillouin Zone of Silicon  

The first Brillouin zone (BZ) represents the central (Wigner-Seitz) cell of the 

reciprocal lattice. It contains all points nearest to the enclosed reciprocal lattice 

point. The boundaries of the first BZ are determined by planes which are 

perpendicular to the reciprocal lattice vectors pointing from the center of the cell 

to the lattice points nearest to the origin of the cell at their midpoints. For   silicon, 

reciprocal lattice vectors correspond to a body cantered cubic (bcc) lattice in the 

reciprocal space. The Wigner-Seitz cell of this BCC lattice is the first Brillouin 

zone (BZ). This primitive unit cell reflects the full symmetry of the lattice and is 

equivalent to the cell obtained by taking all points that are closer to the center of 

the cell than to any other lattice point. The first Brillouin zone has the shape of a 

truncated octahedron. It can be visualized as a set of eight hexagonal planes 

halfway between the center of the cell and the lattice points at the corner, and six 
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square planes halfway to the lattice points in the center of the next cell, figure 

(1.2a) .  [8] 

 

                

                   [a]                                                        [b] 

Figure 1.2: (a) First Brillouin zone of the FCC lattice. (b) The inset gives the 

locations of certain symmetry points and symmetry lines in the BZ.[8] 

Table1.1: Summary of the symmetry points and directions in the brillouin zone [9] 

 

The Brillouin zone with the points and directions of high-symmetry marked using 

Greek letters and Roman letters for points on the surface [9] , figure 1.2b .         
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Table 1.1 summarizes these symmetry points and directions. These points and 

directions are of importance for interpreting the band structure plots. 

1.4 Band structure of silicon  

 The electronic band structure of a solid describes the range of energy levels that 

electrons may have within it, as well as the ranges of energy that they may not 

have (called band gaps or forbidden bands). The lower conduction bands (at the 

top of the figure) and the upper valence bands of silicon are shown in fig. (1.3). 

The band gap extends from the top of the valence band at the point to the bottom 

of the conduction band near the point [10] . Within the gap, no propagating, wave-

like states exist, so that optical transitions from conduction to valence band must 

have an energy greater than the band gap. Similarly, optical absorption occurs 

when the photon energy is larger than the band gap. Now, we notice that, at the 

point labeled, the lowest conduction connects to a second conduction band. From 

detailed transport simulations, it is now thought that these low energy photons are 

coming from optical transitions from the second conduction band to the first 

conduction band near, which is a totally unexpected result. Thus, it is clear that 

the carriers are getting distributed through large regions of the Brillouin zone, and 

exist in a great many bands, rather than merely staying around the minima of the 

conduction band. Thus, the transport itself becomes even more complicated in 

some sense, if we are to clearly study the detailed physics of scattering in 

semiconductors and in semiconductor devices. In using the full band structure, 

e.g., the coupling strength for the electron–phonon interaction can be determined 

throughout the Brillouin zone, and varies with the momentum state (that is, where 

the electron actually sits in the Brillouin zone). Approaches, upon the initial and 

final momentum states such as the cellular Monte Carlo. take into account this  
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Figure 1.3: The band structure of Si, 

computed with an empirical pseudo-

potential method. The band gap 

exists in the region from 0 to 1.2 eV, 

where no wave states exist.[11]  

 

 

momentum dependent coupling strength to improve the Monte Carlo approach. 

Today, such full-band Monte Carlo simulation approaches are available in many 

universities, as well as from a number of commercial vendors. However, one must 

still be somewhat careful, as not all full-band approaches are equal and not all 

Monte Carlo approaches are equivalent. This extends to the band structure, the 

nature of the lattice vibrations, the details of the electron–phonon interactions, 

and the details of the transport physics and the methodology by which this physics 

is incorporated within the code. One cannot simply acquire a code and use it to 

get meaningful results without understanding its assumptions and its limitations. 

1.4.1 The General Feature of Covalent Semiconductor Band- Structure 

Energy band structure is constructed by calculating the allowed energy 

eigenvalues against the wave vector along different crystallographic directions.   

To simplified the basic feature of the band structure of covalent semiconductors 

of group four, one can concern the general model. Such model consists of one 

conduction band with three-valiance bands, as illustrated in figure 1.4. The 

minima of conduction band located at Γ point where (𝒌 = 0) at L point where 

(𝒌 =
𝜋

𝑎°
,

𝜋

𝑎°
,

𝜋

𝑎°
), here being the lattice parameter, and along ∆  lines k=(k,0,0). The 

topes of valance band are located at Γ point [12] . The band gap becomes direct 

if the conduction band minima located at Γ point (which is the same reference 
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point that represents the top of valance band), otherwise the band gap is indirect 

i.e., when the location of the first conduction band minima at some point except 

the central point Γ. 

 

 Figure 1.4: The general model of semiconductor band structure. 

This work focuses on the first conduction band only. For such study the electrons 

which contribute to charge transport, even at high fields, are those in the six 

equivalent valleys along the direction, at about 85% from center of the Brillion 

zone. The contribution of other secondary minima neglects because of small 

density of state effective mass. 

The actual energy-wave vector relationship for full band structure is quite 

complicated. Figure 1.5, shows multiple conduction bands. In addition, crossings 

among these bands make the identification of individual bands somewhat 

ambiguous, on other hand a full band structure approach is time consuming 

procedure, for that reason it is out of this calculation. In terms of electron transport 

in semiconductors, it is usually too difficult to deal with the complication of the 

detailed band structure, hence analytical band becomes candidate to overcome 

such difficulties. In these models, the energy-wave vector relation expressed 

analytically with adjustable parameters to capture some features of the full band 

structure without losing the credibility. There are usually two levels of 
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approximation used in this case, simply parabolic, and non-parabolic bands. For 

the second level a correction included for higher order effects in the dispersion 

relationship. 

 

 

 Figure 1.5: Conduction band structure of silicon. The dark solid line is the first 

conduction band. 

1.4.2 Parabolic Band 

For parabolic spherical (isotropic) band, the energy-wave vector relation is 

quadratic: 

𝜀(𝒌) =
ħ2𝑘2

2𝑚∗
                                                                        ………………….(1.4) 

Where  𝑚∗, is the effective electron mass at the conduction band minimum. 

For such bands the electron energy proportional linearly with square wave- 

vector. 

 

1.4.3 Non-Parabolic Band 



15 

 

For values of wave vector, far from the minima of conduction band; the simple 

relationship between the energy and wave vector cannot be valid, and the non-

parabolicity occurs. For electrons in conduction band, a simple analytical way of 

introducing the non-parabolicity is to consider an energy-wave vector relation of 

type, 

𝛾(𝜀) = 𝜀(1 + 𝛼𝜀) = 𝛾(𝒌) =
ħ2𝑘2

2𝑚∗
                                       …………………(1.5) 

Where the coefficient of non-parabolicity, and has the dimensions of an inverse 

energy. 

The nonparabolicity factor, related to other band quantities or simply given as 

reciprocal of band gap. In cases the non-parabolicity factor related to admixture 

of conduction band states, and valance band states, is given by: 

𝛼 =
(1+

𝑚∗

𝑚°
)

2

𝜀𝑔
                                                          …………………(1.6) 

Where 𝑚°, the electron is mass in vacuum, and 𝜀𝑔 is the energy gap, hence, 

smaller bandgap materials have stronger mixing of CB, and VB states, therefore 

a stronger nonparabolicity. When (1.6) is applied to silicon, where 𝑚∗ ≅ 0.26𝑚°, 

and 𝜀° ≅ 1.12𝑒𝑣,   therefore 𝛼, is around 0.47ev. For case of this study the value 

of 𝛼 is 0.5e𝑣−1. [ ] 

For parabolic band one can substitute (𝛼=0) in equations (1.5) and (1.6) so, 

𝑚𝑐 = 𝑚∗. 

1.4.4 Ellipsoidal Bands  

In the treatment of spherical energy surfaces it was found that the matrix element 

was independent of the direction in momentum space and was independent of the 

wave vector (in the equipartition limit). In a many-valley semiconductor, such as 
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the conduction band of silicon or germanium, this is no longer the case. Because 

the constant energy surfaces are ellipsoidal, shear strains as well as dilational 

strains can produce deformation potentials. The shear strain still leads to a term 

that depends on the vector direction of 𝑞, and it should be expected that band edge 

shifts will depend on all six components of the shear tensor. Thus, there might be 

as many as six deformation potentials. However, in the semiconductors of 

interest, such as Si and Ge, the valleys are ellipsoidal and cantered on the high 

symmetry < 100 > and < 111 > axes, see figure 1.6,   so that the symmetry 

properties allow a reduction to just two independent potentials. These are the 

dilational potential 𝐸𝑑  and the uniaxial shear potential.  

 

                                 [a]                                                [b] 

Figure 1.6: Constant energy surface for unstrained Si. (a) Six-fold degenerate 

conduction band valleys located along the directions ∆. (b) Equi-energy surface 

of the heavy-hole valence band. 

 It should be remarked that both transverse modes are incorporated here in the 

general treatment. The differences above lead to different scattering rates for each 

principal axis within a single ellipsoidal valley. The summation over the multiple 

valleys (for the current) returns the overall system to cubic symmetry (unless the 

valleys are taken out of equilibration with each other). 
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1.5 Density of States and Effective Masses of Electron 

The energy distribution of states, or density of states DOS, is an essential 

component in determining the macroscopic properties of semiconductors,                                                                                         

such as carrier distribution, concentrations, velocity, average energy, and 

mobility, etc.,  because it is contains integrated information over the analytical 

band structure .In principle, when the average of specific coefficient been 

calculate; the contribution from each occupied states have to be added 

(integrated) over a range of energy, however, to do so, first one need to know the 

DOS in energy space. The density of states in wave vector space per unit volume 

of the crystal is constant, and it is equal to
1

(2𝜋)3
 . In the reason of that each state 

can occupied two electrons with opposite spin, this number will be doubled. The 

number of states dh , in an element of volume dk in the wave vector space per 

unit volume of crystal is: 

𝑑ℎ =
2

(2𝜋)3
𝑑𝒌 =

1

4𝜋3
𝑑𝒌                                                              ………………(1.7) 

the DOS in the energy space, in general, is not constant as in the case of wave 

vector space. For nonparabolic band 

ℎ(𝜀) =
1

2𝜋2ħ3
× (2𝑚∗)

3

2 𝛾(𝜀)
1

2 𝛾 ,(𝜀)                                            ………………(1.8) 

where 𝛾(𝜀) is given by equation (1.5) and  𝛾 ,(𝜀) is the first derivation of 𝛾(𝜀) 

respect to 𝜀. 

Since we concern with ellipsoidal / nonparabolicity band structure, as the case of 

this study, equation (1.8) also used for DOS of such case, but properly defined 

effective mass has to be used. For nonparabolicity band, one can use the Kan 

dispersion law (1.5), so equation (1.8), written as: 

ℎ(𝜀) =
1

2𝜋2ħ3 [2(𝑚𝑥𝑚𝑦𝑚𝑧)
1

3]

3

2

 𝛾(𝜀)
1

2 𝛾 ,(𝜀)                              ………………..(1.9) 
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effective mass for density of state for ellipsoidal constant energy surface can be 

expressed as: 

 𝑚𝐷 = (𝑚𝑥𝑚𝑦𝑚𝑧)
1

3                                                             ………………...(1.10) 

Equation(1.10) applied for single band minima. Nevertheless, most 

semiconductors have one band minimum at k=zero as well as several equivalent 

anisotropic band minima at k≠ 𝑧𝑒𝑟𝑜. The effective mass of these anisotropic 

minima is characterized by a longitudinal mass along the corresponding 

equivalent direction, and two equal transverse masses in the plane perpendicular 

to the longitudinal direction, hence, density of state DOS is given by well known 

form 

ℎ(𝜀) =
√2

𝜋2ħ2
(𝑚𝑡

2𝑚𝑙)2𝛾(𝜀)
1

2 𝛾 ,(𝜀)                                           ..………………...(1.11) 

 So, the effective mass for density of states is: 

 𝑚∗ = 𝑚𝐷 = (𝑚𝑙𝑚𝑡
2)

1

2                                                      ………………….(1.12) 

 For silicon, 𝑚𝑙 = 0.98𝑚° and 𝑚𝑡 = 0.19𝑚°, hence: 

𝑚∗ = (0.98 × 0.192)
1
3𝑚° ≅ 0.32𝑚° 
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CHAPTER TWO 

SCATTERING PROSSES IN SILICON    

2.1 Introduction  

  When lattice atoms vibrate around it is equilibrium position it is exciting 

phonons, these phonons create from the collection motion of atoms, and can 

interact with electron as particles obeying the principles of conservation energy, 

and momentum. Phonons can scatter through several mechanisms as they travel 

through the material. These scattering mechanisms are: Umklapp phonon-phonon 

scattering, phonon-impurity scattering, phonon-electron scattering, and phonon-

boundary scattering. Each scattering mechanism can be characterized by a 

relaxation rate 
1

𝜏
  which is the inverse of the corresponding relaxation time. 

Because of much of scattering in semiconductors is due to lattice vibration, hence 

it is convenient to describe some of it is basic properties. Interest semiconductors 

such as silicon, has dual periodicity lattice. There are two types of scattering 

phonon with electron such as acoustic and optical scattering. 

2.2 Acoustic Scattering 

One of the most common phonons scattering processes is the interaction of the 

electrons with the acoustic modes of the lattice through a deformation potential. 

If the neighboring atom vibrates in phase, the phonon corresponding to this 

motion called acoustic phonons. Here, a long-wavelength acoustic wave moving 

through the lattice can cause a local strain in the crystal that perturbs the energy 

bands due to the lattice distortion. This change in the bands produces a weak 

scattering potential, which leads to a perturbing energy. 

𝛿(𝐸) = 𝛯1∆= 𝛯1∇. 𝒖𝑞                                                  …………………….(2.1) 
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Where  𝛯1 is the deformation potential for a particular band and 𝛥 is the dilation 

of the lattice produced by a wave, whose Fourier coefficient is 𝒖𝑞 . We note here 

that any static displacement of the lattice is a displacement of the crystal as a 

whole and does not contribute, so that it is the wave-like variation of the 

amplitude within the crystal that produces the local strain in the bands. This 

variation is represented by the dilation, which is just the desired divergence of the 

wave. Because the divergence operator produces a factor proportional to 𝑞 in the 

polarization direction (along the direction of propagation), only the longitudinal 

acoustic modes couple to the carriers in a spherically symmetry band (the case of 

ellipsoidal bands will be treated later). The fact that the resulting interaction 

potential is now proportional to 𝑞 (i.e., first order in the phonon wave vector) and 

leads to this term being called a first-order interaction. The matrix element may 

now be calculated by considering the proper sum over both the lattice and the 

electronic wave functions. 

One thing that should be recalled is that the acoustic modes have very low energy. 

The phonon dispersion curve for typical semiconductor shown in fig.(1.4), which 

is similar to dispersion curve of silicon that illustrated in same figure. It is noted 

from this curve that for small wave number |𝒒|, the dispersion relation for 

acoustic phonons apparent liner and the corresponding energy is small. When an 

electron will interact with a low energy phonon, it is assumed that the event 

happens in the same valley. This type of interaction named by intravalley acoustic 

scattering and its assumed elastic If the velocity of sound is 5× 105 𝑐𝑚

𝑠
 , a wave 

vector corresponding to 25% of the zone edge yields an energy only of the order 

of 10meV. This is a very large wave vector, so for most practical cases the 

acoustic mode energy will be less than a millivolt. This will be important later 

when this matrix element is introduced into the scattering formulas above. 

Scattering processes in which the phonon energies are small and may be ignored 
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are termed elastic scattering events. Spherical energy surface and parabolic 

bands: 

𝛤(𝑘) =
𝐸1

2𝑘𝐵𝑇

2𝜋𝜌𝑚𝑣𝑠
2ħ4

𝐸
1

2                                                                     ………………(2.2) 

2.3 Non-Polar Optical Scattering  

The vibration in opposite phase induced optical phonons. In the tetrahedrally 

coordinated semiconductors, there are two atoms per unit cell site and optical 

mode vibrations are allowed, where the two atoms vibrate relative to each other. 

These phonons are rather energetic, being of the order of to (or more) in energy, 

and lead to inelastic scattering processes, since there is a significant gain or loss 

of energy by the carrier during the scattering process. The importance of the 

inelastic scattering processes is quite clear, since the previous processes were 

essentially elastic. Hence, we need the optical phonons to relax the energy that is 

obtained from the electric field. We now want to turn to the details of these 

inelastic processes. Although one normally thinks of scattering occurring just 

within a single minimum, or valley, of the band, these optical phonons can also 

cause inter-valley or inter-band scattering. Such examples are scattering from the 

light-hole valence band to the heavy-hole valence band by a mid-zone phonon 

near the Γ point, or a Γ-to-L valley scattering in the conduction band by a zone-

edge optical (or high-energy acoustic) phonon. The phonon dispersion curve for 

typical semiconductor shown in figure 1.4, which is similar to dispersion curve 

of silicon that illustrated in same figure. when the electron interact with higher 

energy phonon such that the electron transferred to other valley, then the 

interaction named by intervalley optical scattering and treated as inelastic 

mechanism. 
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2.4 Intervalley Phonon Scattering 

An electron can be scattered from one valley to another one both by acoustical 

and optical phonons. Intervalley scattering can be treated as a deformation-

potential interaction in the same way as intravalley scattering by optical phonons. 

For optical phonon, the dispersion relation, see fig.2.1 shown a little variation 

with phonon wave number, similarly to above analysis, if the final state of interact 

electron lies in the same valley, then the scattering of type intravalley, oppositely, 

if the final state of electron lies in deferent valley, then the scattering of type 

            

           [a]                                                                   [b] 

Figure 2.1: Dispersion curves of lattice vibrations for,(a) typical semiconductor, 

and (b) for silicon TA, LA, are transverse, longitudinal acoustic phonons, and   

LO, TO, are the transverse, longitudinal optical phonons respectively. 

intervalley. The associated energy with intervalley phonons is comparable with 

electron energy; hence the mechanism is inelastic.  This type of phonons plays a 

dominant rule for scattering process in silicon. The number of phonons at 

equilibrium 𝑁𝑞, at a given temperature 𝑇, with quantized energy ħ𝑤 , can be 

accounted by using Bose -Einstein statistic [7]  
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𝑁𝑞 =
1

𝑒
ħ𝑤

𝐾𝐵𝑇−1
                                                                            ……………… (2.3) 

𝑁𝑞 =
𝐾𝐵𝑇

ħ𝑤
                                                                                ……………… (2.4) 

 Among the electron phonon interaction, the phonon created (emission process) 

and annulated (absorption process), and for any interaction the momentum, and 

energy of interacted particles must be conserved. If the electron is initially at state 

with wave vector k, and kinetic energy 𝜀(𝒌), after interaction the electron rich 

state with a wave vector 𝒌,, and final energy 𝜀(𝒌,). The conservation rules for 

energy and momentum written as: 

𝜀(𝒌′ ) = 𝜀(𝒌) +  ħ𝑤      absorption                                                …..………..(2.5) 

𝜀(𝒌′)  =  𝜀(𝒌) −  ħ𝑤   emission                                                  ..……………(2.6) 

𝒒 =  𝒌′ − 𝒌 + 𝑮           absorption                                               …………….(2.7) 

𝒒 =  𝒌 − 𝒌′ + 𝑮           emission                                                  …………….(2.8) 

 

Where G, is reciprocal lattice vector. Recalling that the phonon emission does not 

occur unless the initial electron energy exceeds the specified phonon energy. For 

this reason, the calculations which related to intervalley scattering must be taken 

with care below the threshold energies. 

2.4.1 Equivalent X-X Intervalley Scattering 

This scattering process is subdivided into 𝑓 − 𝑡𝑦𝑝𝑒 and 𝑔 − 𝑡𝑦𝑝𝑒 processes. A 

process is referred to as 𝑓 − 𝑡𝑦𝑝𝑒, if the initial and final orientations are different, 

otherwise as 𝑔 − 𝑡𝑦𝑝𝑒 process. The transition probability of this mechanism is  
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𝜆=𝑍𝑓
𝜋𝐷𝑋𝑋

2

𝜌𝑤𝑋𝑋
(𝑁𝑋𝑋 +

1

2
∓

1

2
) 𝑔𝑥(𝜖𝑓)                                         ………………..(2.9) 

Where 𝜀𝑓 is: 

𝜀𝑓 = 𝜀𝑖 ∓ ħ𝑤𝑋𝑋                                                                        …………….(2.10) 

𝑁𝑋𝑋 is the equilibrium phonon number of the involved phonon type: 

𝑁𝑋𝑋 =
1

𝑒
(

ħ𝑤𝑋𝑋
𝐾𝐵𝑇𝐿

)
−1

                                                                      ……………..(2.11) 

𝑍𝑓 is the number of possible equivalent final valleys of the same type. For 𝑓 −

𝑡𝑦𝑝𝑒 scattering  𝑍𝑓 = 4and for 𝑔 − 𝑡𝑦𝑝𝑒 scattering 𝑍𝑓 = 1 ,𝐷𝑋𝑋 the coupling 

constant, ħ𝑤𝑋𝑋 is the corresponding phonon energy. The numerical values of the 

coupling constants and phonon energies are shown in Table 2.1. 

Table2.1: Numerical values for the intervalley X-X scattering rate. 
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2.4.2 Equivalent L-L Intervalley Scattering 

For this type of scattering there is no separation into 𝑓 − and 𝑔 − 𝑡𝑦𝑝𝑒 processes. 

The scattering rate is given as [13] : 

λ(𝜖𝑖) = 𝑍𝐿
𝜋𝐷𝐿𝐿

2

𝜌𝑤𝐿𝐿
(𝑁𝐿𝐿 +

1

2
∓

1

2
) 𝑔𝐿(𝜖𝑓)                              ………………..(2.12) 

Where 𝜖𝑓 is: 

𝜖𝑓 = 𝜖𝑖 ∓ ħ𝑤𝐿𝐿                                                                      ………………(2,13) 

𝑁𝐿𝐿 is the equilibrium phonon number of the involved phonon type: 

𝑁𝐿𝐿 =
1

𝑒
(

ħ𝑤𝐿𝐿
𝑘𝐵𝑇𝐿

)
−1

                                                                     ………………(2.14) 

𝑍𝐿 =
7

2
 for the transition between two different orientations and 𝑍𝐿 =

1

2
 for 

scattering within the same orientation, 𝐷𝐿𝐿 denotes the corresponding coupling 

constant and  ħ𝑤𝐿𝐿 is the energy of the phonon involved in the scattering process.  

The numerical values of the coupling constants and phonon energies  for this type 

of scattering are shown in Table 2.2. 

Table 2.2: Numerical values for the intervalley L-L scattering rate.[13] 
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2.4.3 Non-Equivalent Intervalley Scattering 

This process involves transitions between all possible valleys in the conduction 

band. The scattering rate is given by [13] : 

 λ (𝜖𝑖) = 𝑍𝑗

𝜋𝐷𝑖𝑗
2

𝜌𝑤𝑖𝑗
(𝑁𝑖𝑗 +

1

2
∓

1

2
) 𝑔𝑗(𝜖𝑓)                                  ………………..(2.15) 

Where 𝜖𝑓  is: 

𝜖𝑓 = 𝜖𝑖 ∓ ħ𝑤𝑖𝑗 − ∆𝜀𝑖𝑗                                                           ………………(2.16) 

𝑁𝑖𝑗 is the equilibrium phonon number of the involved phonon type: 

𝑁𝑖𝑗 =
1

𝑒
(

ħ𝑤𝑖𝑗
𝑘𝐵𝑇𝐿

)
−1

                                                                     ……………….(2.17) 

and 𝛿𝜖𝑖𝑗 is given as: 

∆𝜖𝑖𝑗 = 𝜖𝑗,𝑚𝑖𝑛 − 𝜖𝑖,𝑚𝑖𝑛                                                        ………………...(2.18) 

Indices i  and  j stand for the initial and final valley, respectively, 𝑍𝑗 is the number 

of possible equivalent final valleys, 𝐷𝑖𝑗 is the corresponding coupling constant, 

ħ𝑤𝑖𝑗 is the respective phonon energy,  𝜖𝑖,𝑚𝑖𝑛 and  𝜖𝑗,𝑚𝑖𝑛 are the energy minima 

of the initial and the final valley, respectively. 

The numerical values of the coupling constants and phonon energies for this type 

of scattering are shown in Table 2.3. 
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Table 2.3: Numerical values for the non-equivalent intervalley scattering rate. 

 

2.5 Intravalley Scattering by Acoustic Phonons 

This type of scattering assumes that the initial and final states of an electron are 

within the same valley. The acoustic scattering mechanism is assumed to be 

elastic which is an approximation called equipartition. For this type of scattering 

the transition probability is given by: 

λ (𝜖) = 
2𝜋𝑘𝐵𝑇𝐿𝐷𝐴𝑖

2

ħ𝑢𝑠
2𝜌

𝑔𝑖(𝜖)                                                         ………………..(1.21) 

where i  is the valley index, 𝑇𝐿 is the lattice temperature, 𝐷𝐴𝑖 is the acoustic 

deformation potential of the  i-th valley, 𝑢𝑠  denotes the average sound velocity, 

𝜌 is the density of the crystal and 𝑔𝑖(𝐸) the density of states per spin in the i-th 

valley which is defined by the following formula: 

𝑔𝑖(𝜖) =
1

(2𝜋)3 ∫ 𝛿(𝜖 − 𝜖𝑖(𝒌))𝑑2𝑘
𝐵𝑍

                                      ……………….(1.22) 

For the analytical band structure, it follows from : 

𝑔𝑖(𝜖) =
1

(2𝜋)3

2𝑚𝑑𝑖
∗

ħ2 √𝛾𝑖(𝜖)(1 + 2𝛼𝑖𝜖)                                   ………………(1.23) 
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where 𝑚𝑑𝑖
∗  is the density of states effective mass for the ith valley, and  𝛾𝑖(𝐸) 

denotes the band-form function [14 ]: 

𝛾𝑖(𝜖) = 𝜖(1 + 𝛼𝜖𝑖)                                                                  …………….(1.24) 

The average sound velocity is defined as: 

𝑢𝑠 =
1

3
(2𝑢𝑡 + 𝑢𝑖)                                                                  ……………… (1.25) 

Where 𝑢𝑡  and 𝑢𝑖  are the transverse and longitudinal components of the sound 

velocity.  The numerical values for the parameters of the acoustic phonon 

scattering rate are given in table 2.4. 

Table 2.4: Numerical values for the acoustic phonon scattering rate 

 

2.6 Summery of Scattering in Pure Silicon 

For intrinsic silicon the effects of electron-electron, and impurity scattering need 

not be included, so important scattering governed by, long wave length (low 

energy) acoustic phonons, which called intravalley phonons, and short wave 

length (high energy) intervalley phonons. in principle, whenever electron interact 

with phonon a definite energy absorbed or emitted by the scattered electron 

disregarding on the type of phonon, however, in order to simplify the 

calculations; collisions treated as elastic processing if the absorbed (or emitted) 

energy is negligible compression to electron’s energy. The associated energy for 

intravalley acoustic phonon is very low so the process can be approximate as 
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elastic such that the final electron state falls in the same valley, while the 

associated energy with intervalley phonons high, and comparable to electron’s 

kinetic energy, hence the interaction is inelastic.  The momentum conservation   

ascertains if final electron state falls in other valley for intervalley scattering in 

silicon. As referred earlier, silicon has six equivalent valleys which illustrated in 

figure 2.5. The associated intervalley phonons called equivalent intervalley 

phonons. The electron’s transition within these valleys classified into two types:  

The first, g-type ,   which related to electron transient between parallel valleys, 

for example < 100 >→< 1̅00 >, and so on . For such transition there is only one 

choice for the final valley. The second one is f-type, this is happened between 

perpendicular valleys, for example < 100 >→< 010 >, < 01̅0 >, < 001̅ >.  

Hence, there are four choices for the final valleys among each f-type transition. 

The f-type,  and g-type transitions illustrated schematically in figure 1.2.The 

important parameter for each of these six modes (𝑓1, 𝑓2, 𝑓3, 𝑔1, 𝑔2, 𝑔3), are: 

associated phonons energy, and deformation coupling potential energy. For 

present work these parameters, which listed in table 1.6, are fixed during 

calculations. These parameters as well as the material constants are similar to 

those which have been used in for Monte Carlo simulation [15] which Used in 

Present calculations and listed in table   

 

 

Figure 2.2: Description of     

f-type, and g-type processes 

for silicon’s ellipsoidal equal 

energy. 
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Table 2.4 : Set of Physical Parameters for Silicon Used in Present calculations [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Name Symbol Value Unit  

)(1 TAf : equivalent energy,    

                coupling constant 1

1

f

f

D


 10103.0

019.0


 

meV

eV

/
 

 

)(2 LAf : equivalent energy  

               coupling constant 2

2

f

f

D


 10102

047.0


 

meV

eV

/
 

)(3 TOf : equivalent energy  

              coupling constant 3

3

f

f

D


 10102

059.0


 

meV

eV

/
 

)(1 TAg : equivalent energy  

              coupling constant 1

1

g

g

D


 10105.0

012.0


 

meV

eV

/
 

)(2 LAg : equivalent energy  

              coupling constant 2

2

g

g

D


 10108.0

018.0


 

meV

eV

/
 

)(3 LOg : equivalent energy  

               coupling constant 3

3

g

g

D


 101011

062.0


 

meV

eV

/
 

Acoustic deformation 

potential  

 0.9  eV  

Free electron mass 0m  -31109.1093897  kg  

Longitudinal effective mass  098.0 m  kg  

Transverse effective mass tm  019.0 m  kg  

Longitudinal sound velocity lu  5109  sm /  

Transverse sound velocity tu  5103.5   sm /  

Crystal density   2330 3/ mkg  

Non-parabolicity factor    5.0  1−eV  

acD

lm
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Chapter three 

Results and discussion   

For present work, both acoustic, and the intervalley scattering taken into account 

for silicon’s nonparabolicity /ellipsoidal energy surface. 

The scattering with crystal vibrations in the acoustic mode is taken into account 

in the elastic approximation, while the intervalley phonon interactions is 

considered in the inelastic approximation,  and thus the emission,  and absorption 

of phonons of energy j , where 𝑗 = (1,2, . . . . . . ,15), are considered .The 

following formulas have been used in recent study which  also reviewed in 

detailed  studies[15, 16]. The basic theory reviewed in [7] and references therein. 

1. For acoustic(intravalley) phonons the scattering rate 
ac

1
 as a function of 

electron energy is given by [14]: 

)()(
2

)(

1 2/1

24

2/322/1




=
S

BDac

ac u

TkmD


                                         (3.1) 

 Where )( ,   is given by equation (1.5), )(   is the first derivative of )(  respect 

to energy,    ,   is material concentration, su ,   is the average velocity of sound 

in the crystal,   where 𝑢𝑠 =
1

3
(2𝑢𝑡 + 𝑢𝑙),   where tu ,   ,  and lu ,   are the transverse,  

and longitude components of sound velocity [15].  

Equation (3.1) also valued for intermediate models such as: spherical 

/nonparabolic, where tl mm = ,   and ls uu = ,   or ellipsoidal /parabolic, where the 

nonparabolicity factor 0= . 

2. For one type intervalley phonons, since there are 15 probabilities, the scattering 

rate 
iv

1
 as a function of electron energy is given by [17] :  
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Where the parameters  ivD   ,,  are intervalley coupling, crystal density, 

phonon vibration frequency, respectively, and the functions  

2/1

2/1 )(
)( 












=







                                                        ( 3.3) 

 Where )(    is final electron energy, and the minus (or plus) sign refer to 

phonon emission (or absorption) as referred previously. Combination the 

acoustic, and intervalley scattering rates, hence the total scattering rate for 

acoustic, and one type of intervalley phonon becomes [14,17] 

ivac 

111
+=

               …………………………………             (3.4) 

Including all intervalley phonons in silicon, hence (3.4) can be written as   

  

1

𝜏
=

1

𝜏𝑎𝑐
+ ∑

1

𝜏(𝑗)
𝑖𝑣

15
𝑗=1                           …………………..                        (3.5) 

 Where the sum takes over all possible transition through the six valleys of silicon. 

The last equation applied for calculation of Total Scattering Rate (TSR) in present 

work. the calculation for TSR is based on coupling constants, and other 

parameters which listed in table 2.4.  

A MATLAB program has also been written to calculate equation (3.5), which can 

be found in the appendix. 
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According to equations (3.1), and (3.2), the total scattering rate 
)(

1


, explicitly 

proportional with the density of final states that given by (3.5), hence one can 

express that rate as a parameter multiplied by density of state   

)()(
1

)(

1 2/1

0




=                                           …….                                             (3.6) 

The total scattering rate 
)(

1


 is given by equation (3.5).  

Figure 3.1 illustrate the variation of total scattering rate with electron energy in 

first conduction band of silicon . It is noted that the scattering rate increase as 

electron energy increase because the increasing of density of state and the total 

electron–phonon scattering rate increases strongly with temperature . similar 

results are founded in lectures [18, 19], while optical phonons dominate the total 

electron–phonon scattering rate at 300 and 77 K, and the main contribution to the 

energy loss rate comes from optical modes which are inelastic.The calculated 

values of scattering rate at band edge are 1.2 × 1014𝑠−1 and 3.1 × 1013𝑠−1 at 

300𝑘 and 77𝑘 , respectively.  

The parameter 
0

1


   in equation (3.6) can be calculated by plotting 

)(

1


,   vs. 

)()(2/1   ,  hence 0 ,   represent the inverse of the slope. Appling this method, 

the calculated values for 0  in this calculation are:  


















=

−

−

eVforseV

eVforseV

062.01098.1

062.01007.4

2/114

2/114

0



                 ….                        (3.7) 

 When lattice temperature is 300𝑘.  

 While for lattice temperature 77𝑘, the obtained values for 0 ,   are: 
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















=

−

−

eVforseV

eVforseV

028.01043.3

028.01019

2/114

2/114

0



           …….               (3.8) 

 

 

Figure 3.1 : Total scattering rate of the first conduction band of silicon at 77 and  

300K  including multi sub bands, acoustic and optical phones.     

Conclusions 

We successfully modeled the electron -phonon interaction in silicon  via 

calculating the total scattering rate which is the inverse of relaxation time between 

electron-phonon collision . The multi sub band, intervalley and intravalley 

phonons and ellipsoidal energy surfaces of first conduction band of silicon are 

included in this model. A suitable MATLAB software have been bullied to 

maintain the calculations.    
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Appendix 

MATLAB script file for scattering rate 

calculations  

 

 
clc 

format short 

for kk=1:2 

    switch kk 

     case 1 

TL=77                      % lattice temp 

e_gap=1.17; % energy gap of silicon at 77k 

  

case 2 

  

TL=300 ;                     % lattice temp 

e_gap=1.12                  % energy gap of silicon  at 300k 

    end 

  

eg=(e_gap*1000); 

egc=round(eg*1.5) 

n=2000; 

e=0; 

dxi=zeros(1,15); 

k23i=zeros(1,15); 

k32i=zeros(1,15); 

k22i=zeros(1,15); 

k33i=zeros(1,15); 

hd1=zeros(1,n); 

t2=zeros(1,n); 

t3=zeros(1,n); 

E=zeros(1,n); 

tot=zeros(1,n); 

ech=1.60217733e-19;          % electron charge  

Ej=zeros(1,n); 

format short e 

% M=zeros(1,n); 

e=0; h=0.001; 

m0=9.1093897e-31;         % free electron mass 

b=0.5; 

mt=.19*m0;                 % transverse electron mass 

ml=.98*m0;                 % longitudnal electron mass    

roo=2330; 

dac=9.0;                   % deformation potential of acousic 

phonon  

hb=6.582122025e-16; 

kt=(TL/300)*0.02585215; 
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hbwi=1e-3*[12 18 19 19 19 19 47 47 47 47 58 58 58 58 61 ];   % 

phonon freq.  see table 2.1 

wi=hbwi./hb; 

di=1e10*[ 0.5 0.8 0.3 0.3 0.3 0.3 2 2 2 2 2 2 2 2 11];  % 

deformation potntal ev/m  , see table 2.1 

di=0; 

 ds=di.^2./wi;                                          % 

square deformation/w  , equation (2.17) 

ut=5.34e3;                                           % 

transverse component of sound velocity  

ul=9.04e3;                                  % longitude 

component of sound velocity  

us=(2*ut+ul)/3;                 % sound velocity  

  

zac=2^0.5*dac^2*(mt^2*ml)^0.5*kt/(pi*hb^4*roo* us^2);      %  

acoustic Parameter 

ziv=(mt^2*ml)^0.5*ds./(2^0.5*pi*hb^3*roo);                 % 

intervally  Parameter 

pri=hbwi./kt; 

p1i=exp(pri);      % exp(hw/kt) 

mi=1./(p1i-1);    %  phonon occupation number 

Nq=1/(exp(hw/kt)-1) , see equation (2.11) 

  

for j=1:n 

e=e+h; 

E(j)=e; 

  

  

      

k2=e+b*e^2;     % gamma energy dispersion law gama(e),  see 

equatoin (2.3) 

k3=1+2*b*e;     % 1 st derivitive of gama(e)=gama' , see 

equations 2.9 , 2.17 , 2.18 

  

k5=k2^0.5;      %  =gama^0.5 

  

  

 hd1(j)=k5.*k3 ; % density of state =gamma^.5 x gamma' , see 

equation 2.9 

  

  

  

k22i=(e+hbwi)+b*(e+hbwi).^2 ;  % gamma at (e+hw) 

k32i=1+2*b*(e+hbwi);           % gamma' at (e+hw) 

  

% transform the energy to vector matrix 

on=ones(1,15); 

ei=e*on; 

  

dxi=ei-hbwi ;  % the differnce between the enrgy and 

intervally phonnon energy 
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k23i=dxi+b*dxi.^2;               % gamma(e-hw) 

k33i=1+2*b*dxi;                  % gamma'(e-hw)  

     for i =1:15                % see equation 2.20b 

         if dxi(i)<0 

            k23i(i)=0; 

            k33i(i)=0; 

          end 

      end 

       

       

aai=k22i.^0.5.*k32i;           % gamma(e+hw)^0.5 *gamma'(e+hw)      

hhi=k23i.^0.5.*k33i;           % gamma(e-hw)^0.5 *gamma'(e-hw)  

t1(j)=zac*hd1(j); 

t2(j)=sum(ziv.*mi.*(aai+p1i.*hhi)); 

t3(j)=t1(j)+t2(j); 

% t3(j)=t3(j)/sqrt(ech); 

sca_rate(j)=hd1(j)/t3(j); 

end 

  

tp1=t3(eg); 

tp2=t3(egc); 

grid on 

hold on 

% plot(hd1,t3/sqrt(ech))  

plot(E,t3/sqrt(ech)) 

xlabel('electron energy (ev)') 

ylabel('scattering rate (1/s)' )  

legend ('lattice temp.=77K','lattice temp.=300K') 

end 

 


