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Abstract 

In this project, we study Autonomous Systems and Stability. we concentrate on a 

particular type of separable equations, called autonomous, where the independent 

variable does not appear explicitly in the equation. For these systems we find a few 

qualitative properties of their solutions without actually computing the solution. 

And study two-dimensional nonlinear autonomous systems. We start reviewing the 

critical points of two-by-two linear systems and classifying them as attractors, 

repellers, centers, and saddle points. We then introduce a few examples of two-by-

two nonlinear systems. We define the critical points of nonlinear systems. We then 

compute the linearization of these systems and we study the linear stability of these 

two-dimensional nonlinear systems .  
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Introduction 

By the end of the seventeenth century Newton had invented differential equations, 

discovered his laws of motion and the law of universal gravitation. He combined 

all of them to explain Kepler laws of planetary motion. Newton solved what now is 

called the two-body problem. Kepler laws correspond to the case of one planet 

orbiting the Sun. People then started to study the three-body problem. For example 

the movement of Earth, Moon, and Sun. This problem turned out to be far more 

difficult than the two-body problem and no solution was ever found. Around the 

end of the nineteenth century Henri Poincar´e proved a breakthrough result. The 

solutions of the three body problem could not be found explicitly in terms of 

elementary functions, such as combinations of polynomials, trigonometric 

functions, exponential, and logarithms. This led him to invent the so-called 

Qualitative Theory of Differential Equations. In this theory one studies the 

geometric properties of solutions–whether they show periodic behavior, tend to 

fixed points, tend to infinity, etc. This approach evolved into the modern field of 

Dynamics. In this chapter we introduce a few basic concepts and we use them to 

find qualitative information of a particular type of differential equations, called 

autonomous equations. 
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CHAPTER ONE 

  Background 

   Definition 1.1:  Equation [T. Apostol  , 1967] 

 

An equation is a mathematical statement containing an equals sign. Numbers may 

be represented by unknown variables. To solve an equation, the value of these 

variables must be found 

Definition 1.2: Differential Equation [G. Simmons 1991] 

 

A differential equation (DE) is an equation in solving a function and its 

derivatives. 

Example : A few differential equation  

1:  
𝑑𝑦

𝑑𝑥
 = sinx 

2:   
𝑑𝑦

𝑑𝑥
 = 

𝑥+1

𝑦−2
 

Definition 1.3: Partial Differential equation: [S. Hassani 2006] 

 A partial differential equation (or briefly a PDE) is a mathematical equation that 

involves two or more independent variables, an unknown function (dependent on 

those variables), and partial derivatives of the unknown function with respect to the 

in depended variables. 
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Definition 1.4: Ordinary Differential equation [R. Churchill 1958] 

In mathematics, an ordinary differential equation (ODE) is a differential equation 

containing one or more functions of one independent variable and its derivatives. 

He term ordinary is used in contrast with the term partial differentia equation 

which may be with respect to more then one independent variable. 

Definition1.5: Order of a differential equations [R. Churchill 1958] 

 

The order of a differential equation is the highest order of the derivatives of the 

unknown function appearing in the equation in the simplest cases, equations may 

be solved by direct integration. 

Example 1.5:  

1: 
𝑑𝑦

𝑑𝑥
=𝑒𝑥   first order  

2: 
𝑑4𝑦

𝑑𝑥4
 +y=0  fourth order 

Definition 1.6 : Degree [Nagy 2021,18,January] 

 

Is the highest power of the highest derivative in which occurs in the D.E 

Definition 1.7: Linear O.D.E [G. Simmons 1991] 

 

A differential equation in any order is said to be linear if satisfies 

1 The dep.v is exist and of the first degree.  

2 The derivatives y′ y" y′" exist and each of them of the first degree.  
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3 The dep.v and the derivatives not multiply each other. 

Definition 1.8:  Non-Linear Differential Equation [Nagy 2021,18,January] 

 

When an equation is not linear in unknown function and its derivatives, then it is 

said to be a nonlinear differential equation. It gives diverse solutions which can be 

seen for chaos. 
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CHAPTER TWO 

2.1. Flows on the Line: In this section we use these equations to present a new 

method to study qualitative properties of their solutions. Knowing the exact 

solution to the equation will help us understand how this new method works. 

2.1: Autonomous Equations. 

Definition 2.1.1: [Nagy 2021,18,January] 

  A first order autonomous differential equation is 

𝑦′ = 𝑓(𝑦) 

where  𝑦′ =
𝑑𝑦

𝑑𝑡
  and the function 𝑓 does not depend explictly on 𝑡. 

Example 2.1.2: The following first order separable equations are autonomous: 

(a)  𝑦′ = 2𝑦 + 3. 

(b) 𝑦′ = sin (𝑦) 

(c) 𝑦′ = 𝑟𝑦 (1 −
𝑦

𝐾
). 

The independent variable 𝑡 does not appear explicitly in these equations. The 

following equations are not autonomous. 

(a) 𝑦′ = 2𝑦 + 3𝑡. 

(b) 𝑦′ = 𝑡2sin (𝑦). 

(c) 𝑦′ = 𝑡𝑦 (1 −
𝑦

𝐾
) 

Example 2.1.3: Find all solutions of the first order autonomous system 

𝑦′ = 𝑎𝑦 + 𝑏                        ,  𝑎, 𝑏 > 0 

Solution: 

This is a linear, constant coefficients equation, so it could be solved using the 
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integrating factor method. But this is also a separable equation, so we solve it as 

follows, 

    

∫  
𝑑𝑦

𝑎𝑦+𝑏
= ∫  𝑑𝑡 ⇒

1

𝑎
ln (𝑎𝑦

 so we get, 

𝑎𝑦 + 𝑏 = 𝑒𝑎𝑡𝑒𝑎𝑐0

                              

And denoting 𝑐 = 𝑒𝑎𝑐𝑜/𝑎, we get the expression.    𝑦(𝑡) = 𝑐𝑒𝑎𝑡 −
𝑏

𝑎
 

However, sometimes it is not so simple to grasp the qualitative behavior of 

solutions of an autonomous equation. Even in the case that we can solve the 

differential equation. 

Example 2.1.4: Sketch a qualitative graph of solutions to 𝑦′ = sin (𝑦), for 

different initial data conditions 𝑦(0) = 𝑦0. 

Solution: We first find the exact solutions and then we see if we can graph them. 

The equation is separable, then 

𝑦′(𝑡)

sin (𝑦(𝑡))
= 1 ⇒ ∫  

𝑡

0

𝑦′(𝑡)

sin (𝑦(𝑡))
𝑑𝑡 = 𝑡 

Use the usual substitution 𝑢 = 𝑦(𝑡), so  𝑑𝑢 = 𝑦′(𝑡)𝑑𝑡, so we get 

∫  
𝑦(𝑡)

𝑦0

𝑑𝑢

sin (𝑢)
= 𝑡 

In an integration table we can find that 
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ln [
sin (𝑢)

1 + cos (𝑢)
]|

30

𝑦(𝑡)

= 𝑡 ⇒ ln [
sin (𝑦)

1 + cos (𝑦)
] − ln [

sin (𝑦0)

1 + cos (𝑦0)
] = 𝑡. 

We can rewrite the expression above in terms of one single logarithm, 

ln [
sin (𝑦)

(1 + cos (𝑦))

(1 + cos (𝑦0))

sin (𝑦0)
] = 𝑡 

If we compute the exponential on both sides of the equation above we get an 

implicit expression of the solution, 

sin (𝑦)

(1 + cos (𝑦))
=

sin (𝑦0)

(1 + cos (𝑦0))
𝑒𝑡 

2.2: Critical Points and Linearization. 

Definition 2.2.1  [Richard courant 2008] 

A point 𝑦𝑐 is a critical point of 𝑦′ = 𝑓(𝑦) iff 𝑓(𝑦𝑐) = 0. A critical points is: 

(i) an Attractor (or sink), iff solutions flow toward the critical point; 

(ii) a Repeller (or source), iff solutions flow away from the critical point; 

(iii) Neutral, iff solution flow towards the critical point from one side and flow 

away from the other side. 

In this section we keep the convention used in the Example 2.1.3, filled dots denote 

attractors, and white dots denote repellers. We will use a a half-filled point for 

neutral points. We recall that attractors have arrows directed to them on both sides, 

while repellers have arrows directed away from them on both sides. A neutral point 

would have an arrow pointing towards the critical point on one side and the an 

arrow pointing away from the critical point on the other side. We will usually 

mention critical points as stationary solutions when we describe them in a yt-plane, 

and we reserve the name critical point when we describe them in the phase line, the 

𝑦-line. 

We also talked about stable and unstable solutions. Here is a precise definition. 

Definition 2.2.2. [S. Hassani 2006] 

 Let 𝑦0 be a a constant solution of 𝑦′ = 𝑓(𝑦), and let 𝑦 be a solution with initial 

data 𝑦(0) = 𝑦1. The solution given by 𝑦0 is stable iff given any 𝜖 > 0 there is a 
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𝛿 > 0 such that if the initial data 𝑦1 satisfies |𝑦1 − 𝑦0| < 𝛿, then the solution 

values 𝑦(𝑡) satisfy |𝑦(𝑡) − 𝑦0| < 𝜖 for all 𝑡 > 0. Furthermore, if lim𝑡→∞  𝑦(𝑡) =

𝑦0, then 𝑦0 is asymptotically stable. If 𝑦0 is not stable, we call it unstable. 

𝑓(𝑦) = 𝑓(𝑦0) + 𝑓′(𝑦0)(𝑦 − 𝑦0) + 𝑜((𝑦 − 𝑦0)
2). 

Denote  𝑓0 = 𝑓(𝑦0), then 𝑓0
′ = 𝑓′(𝑦0), and introduce the variable 𝑢 = 𝑦 − 𝑦0. 

Then we get 

𝑓(𝑦) = 𝑓0 + 𝑓0
′𝑢 + 𝑜(𝑢2) 

Let us use this Taylor expansion on the right hand side of the equation 𝑦′ = 𝑓(𝑦), 

and recalling that 𝑦′ = (𝑦0 + 𝑢)′ = 𝑢′, we get 

𝑦′ = 𝑓(𝑦) ⇔  𝑢′ = 𝑓0 + 𝑓0
′𝑢 + 𝑜(𝑢2) 

If 𝑦0 is a critical point of 𝑓, then 𝑓0 = 0, then 

𝑦′ = 𝑓(𝑦) ⇔  𝑢′ = 𝑓0
′𝑢 + 𝑜(𝑢2) 

From the equations above we see that for 𝑦(𝑡) close to a critical point 𝑦0 the right 

hand side of the equation 𝑦′ = 𝑓(𝑦) is close to 𝑓0
′𝑢. Therefore, one can get 

information about a solution of a nonlinear equation near a critical point by 

studying an appropriate linear equation. We give this linear equation a name. 

Definition 2.2.3: [G. Simmons 1991] 

  The linearization of an autonomous system 𝑦′ = 𝑓(𝑦) at a critical point 𝑦𝑐 is the 

linear differential equation for the function u given by   𝑢′ = 𝑓′(𝑦𝑐)𝑢. 

Remark 2.2.4: [G. Simmons 1991] The prime notation above means, 𝑢′ =
𝑑𝑢

𝑑𝑡
, and 

𝑓′ =
𝑑𝑓

𝑑𝑦
. 

Example 2.2.5: Find the linearization of the equation 𝑦′ = sin (𝑦) at the critical 

point 𝑦𝑛 = 𝑛𝜋. Write the particular cases for 𝑛 = 0,1 and solve the linear 

equations for arbitrary initial data. 

Solution: If we write the nonlinear system as 𝑦′ = 𝑓(𝑦), then 𝑓(𝑦) = sin (𝑦). We 

then compute its 𝑦 derivative, 𝑓′(𝑦) = cos (𝑦). We evaluate this expression at the 
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critical points, 𝑓′(𝑦𝑛) = cos (𝑛𝜋) = (−1)𝑛. The linearization at 𝑦𝑛 of the 

nonlinear equation above is the linear equation for the unknown function 𝑢𝑛 given 

by 

𝑢𝑛
′ = (−1)𝑛𝑢𝑛 

The particular cases 𝑛 = 0 and 𝑛 = 1 are given by 

𝑢0
′ = 𝑢0,  𝑢1

′ = −𝑢1 

It is simple to find solutions to first order linear homogeneous equations with 

constant coefficients. The result, for each equation above, is 

𝑢0(𝑡) = 𝑢0(0)𝑒𝑡,  𝑢1(𝑡) = 𝑢1(0)𝑒−𝑡 

Theorem 2.2.6 [S. Hassani 2006] 

 (Stability of Linear Equations). The constant coefficent linear  equation 𝑢′ = 𝑎𝑢, 

with 𝑎 ≠ 0, has only one critical point 𝑢0 = 0. And the constant solution defined 

by this critical point is unstable for 𝑎 > 0, and it is asymptotically stable for 𝑎 < 0. 

Proof : of Theorem 2.2.1: The critical points of the linear equation 𝑢′ = 𝑎𝑢 are the 

solutions of 𝑎𝑢 = 0. Since  𝑎 ≠ 0, that means we have only one critical point, 

𝑢0 = 0. Since the linear equation is so simple to solve, we can study the stability of 

the constant solution 𝑢0 = 0 from the formula for all the solutions of the equation, 

𝑢(𝑡) = 𝑢(0)𝑒𝑎𝑡. 

The graph of all these solutions is sketch . in the case that 𝑢(0) ≠ 0, we see that 

for 𝑎 > 0 the solutions diverge to ±∞ as 𝑡 → ∞, and for 𝑎 < 0 the solutions 

approach to zero as 𝑡 → ∞. 
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Theorem 2.2.7: [Nagy 2021,18,January] 

(Stability of Nonlinear Equations). Let 𝑦𝑐 be a critical point of the autonomous 

system 𝑦′ = 𝑓(𝑦). 

(a) The critical point 𝑦𝑐 is stable iff 𝑓′(𝑦𝑐) < 0. 

(b) The critical point 𝑦𝑐 is unstable iff 𝑓′(𝑦𝑐) > 0. 

Furthermore, If the initial data 𝑦(0) ≃ 𝑦𝑐, is close enough to the critial point 𝑦𝑐, 

then the solution with that initial data of the equation 𝑦′ = 𝑓(𝑦) are close enough 

to 𝑦𝑐 in the sense 

𝑦(𝑡) ≃ 𝑦𝑐 + 𝑢(𝑡) 

where 𝑢 is the solution to the linearized equation at the critical point 𝑦𝑐, 

𝑢′ = 𝑓′(𝑦𝑐)𝑢,  𝑢(0) = 𝑦(0) − 𝑦𝑐 
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2.3:  Population Growth Models. 

Definition 2.3.1: [R. Churchill 1958] 

 The logistic equation describes the organism's population function 𝑁 in time as the 

solution of the autonomous differential equation 

𝑁′ = 𝑟𝑁 (1 −
𝑁

𝐾
) 

where the initial growth rate constant 𝑟 and the carrying capacity constant 𝐾 are 

positive.. 

 

 

Example 2.3.2: Find the exact expression for the solution to the logistic equation 

for population growth 

𝑦′ = 𝑟𝑦 (1 −
𝑦

𝐾
) ,  𝑦(0) = 𝑦0,  0 < 𝑦0 < 𝐾 

Solution: This is a separable equation, 

𝐾

𝑟
∫  

𝑦′𝑑𝑡

(𝐾 − 𝑦)𝑦
= 𝑡 + 𝑐0 

The usual substitution 𝑢 = 𝑦(𝑡), so 𝑑𝑢 = 𝑦′𝑑𝑡, implies 

𝐾

𝑟
∫  

𝑑𝑢

(𝐾 − 𝑢)𝑢
= 𝑡 + 𝑐0.  ⇒  

𝐾

𝑟
∫  

1

𝐾
[

1

(𝐾 − 𝑢)
+

1

𝑢
]𝑑𝑢 = 𝑡 + 𝑐0. 

where we used partial fractions decomposition to get the second equation. Now, 

each term can be integrated, 

[−ln (|𝐾 − 𝑦|) + ln (|𝑦|)] = 𝑟𝑡 + 𝑟𝑐0 

We reorder the terms on the right-hand side, 
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ln (
|𝑦|

|𝐾 − 𝑦|
) = 𝑟𝑡 + 𝑟𝑐0 ⇒ |

𝑦

𝐾 − 𝑦
| = 𝑐𝑒𝑟𝑡,  𝑐 = 𝑒𝑟𝑐0 

𝑦0

𝐾 − 𝑦0
= 𝑐 ⇒ 𝑦(𝑡) =

𝐾𝑦0

𝑦0 + (𝐾 − 𝑦0)𝑒
−𝑟𝑡 
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CHAPTER THREE 

  

Flows on the Plane 

We now turn to study two-dimensional nonlinear autonomous systems. We start 

reviewing the critical points of two-by-two linear systems and classifying them 

as attractors, repellers, centers, and saddle points. We then introduce a few 

examples of two-by-two nonlinear systems. We define the critical points of 

nonlinear systems. We then compute the linearization of these systems and we 

study the linear stability of these two-dimensional nonlinear systems 

 

3.1. Two-Dimensional Nonlinear Systems. We start with the definition of 

autonomous systems on the plane. 

Definition 3.1.1:  [Nagy 2021,18,January] 

  A first onder two-dimensional autonomous differential equation is 

𝑥′ = 𝑓(𝑥) 

where 𝒙′ =
𝑑𝒙

𝑑𝑡
, and the vector field 𝒇 does not depend explicitly on 𝑡. 

Remark 3.1.2: [Nagy 2021,18,January] 

 If we introduce the vector components 𝒙(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
] and 𝒇(𝒙) = [

𝑓1(𝑥1, 𝑥2)

𝑓2(𝑥1, 𝑥2)
], 

then the autonomous equation above can be written in components, 

𝑥1
′ = 𝑓1(𝑥1, 𝑥2),

𝑥2
′ = 𝑓2(𝑥1, 𝑥2),

 

where 𝑥𝑖
′ =

𝑑𝑥𝑖

𝑑𝑡
, for 𝑖 = 1,2. 

Example 3.1.3 (The Nonlinear Pendulum). A pendulum of mass 𝑚, length ℓ, 

oscillating under the gravity acceleration 𝑔, moves according to Newton's second 

law of motion 
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𝑚(ℓ𝜃)′′ = −𝑚𝑔sin (𝜃), 

where the angle 𝜃 depends on time 𝑡. If we rearrange terms we get a second order 

scalar equation 

𝜃′′ +
𝑔

ℓ
sin (𝜃) = 0 

This scalar equation can be written as a nonlinear system. If we introduce 𝑥1 = 𝜃 

and 𝑥2 = 𝜃′, then 

 

𝑥1
′ = 𝑥2

𝑥2
′ = −

𝑔

ℓ
sin (𝑥1).
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3.2 Review: The Stability of Linear Systems. we used phase portraits to 

display vector functions 

𝒙(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
], 

Solutions: of 2 × 2 linear differential systems. In a phase portrait we plot the vector 

x(t) 

on the plane x1 x2 for different values of the independent variable t.We then plot a 

curve 

representing all the end points of the vectors x(t), for t on some interval. The 

arrows in the 

curve show the direction of increasing t. 

 

Figure  A curve in a phase portrait represents all the end points of the vectors x(t), 

for t on some interval. The arrows in the curve show the direction of increasing t 

solutions to 2-dimensional linear systems depend on the eigenvalues of the 

coefficient matrix. If we denote a general 2 × 2 matrix by 

𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

then the eigenvalues are the roots of the characteristic polynomial, 

det (𝐴 − 𝜆𝐼) = 𝜆2 − 𝑝𝜆 + 𝑞 = 0, 

where we denoted 𝑝 = 𝑎11 + 𝑎22 and 𝑞 = 𝑎11𝑎22 − 𝑎12𝑎21. Then the eigenvalues 

are 
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𝜆± =
𝑝 ± √𝑝2 − 4𝑞

2
=

𝑝

2
±

√Δ

2
, 

where Δ = 𝑝2 − 4𝑞. We can classify the eigenvalues according to the sign of Δ. In 

Fig 13 we plot on the 𝑝𝑞-plane the curve Δ = 0, that is, the parabola 𝑞 = 𝑝2/4. 

The region above this parabola is Δ < 0, therefore the matrix eigenvalues are 

complex, which corresponds to spirals in the phase portrait. The spirals are stable 

for 𝑝 < 0 and unstable for 𝑝 > 0. The region below the parabola corresponds to 

real disctinct eigenvalues. The parabola itself corresponds to the repeated 

eigenvalue case. 

 

Figure The stability of the solution x0 = 0. 

The trivial solution 𝑥0 = 𝑂 is called a critical point of the linear system 𝑥′ = 𝐴𝒙. 

Here is a more detailed classification of this critical point. 

Definition 3.2.1. [Richard courant 2008] 

 The critical point 𝒙0 = 0 of a 2 × 2 linear system 𝒙′ = 𝐴𝒙 is: 

(a) an attractor (or sink ), iff both eigenvalues of 𝐴 have negative real part; 

(b) a repeller (or source), iff both eigenvalues of 𝐴 have positive real part; 

(c) a saddle, iff one eigenvalue of 𝐴 is positive and the other is negative; 

(d) a center, iff both eigenvalues of 𝐴 are pure imaginary: 
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(e) higher order critical point iff at least one eigenvalue of 𝐴 is zero. 

The critical point 𝑥0 = 0 is called hyperbolic iff it belongs to cases (a-c), that is, 

the real part of all eigenvalues of 𝐴 are nonzero.. 

3.3. Critical Points and Linearization. We now extended to two-dimensional 

systems the concept of linearization we introduced for one-dimensional systems. 

The hope is that solutions to nonlinear systems close to critical points behave in a 

similar way to solutions to the linearized system. We will see that this is the case if 

the linearized system has distinct eigenvalues. Se start with the definition of critical 

points. 

Definition 3.3.1: [S. Hassani 2006] 

 A critical point of a two-dimensional system 𝑥′ = 𝑓(𝑥) is a vector 𝑥0 where the 

field 𝑓 vanishes, 

𝑓(𝑥0) = 0 

Remark 3.3.2: [S. Hassani 2006] 

 A critical point defines a constant vector function 𝑥(𝑡) = 𝑥0 for all 𝑡, solution of 

the differential equation, 

𝑥0
′ = 0 = 𝑓(𝑥0) 

In components, the field is 𝑓 = [
𝑓1
𝑓2

], and the critical point 𝑥0 = [
𝑥1

0

𝑥2
0] is solution of 

𝑓1(𝑥1
∘, 𝑥2

0) = 0,

𝑓2(𝑥1
0, 𝑥2

0) = 0.
 

When there is more than one critical point we will use the notation 𝑥𝑖, with 𝑖 =

0,1,2,⋯, to denote the critical points. 

Example 3.3.3: Find all the critical points of the two-dimensional (decoupled) 

system 

𝑥1
′ = −𝑥1 + (𝑥1)

3

𝑥2
′ = −2𝑥2.
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Solution: We need to find all constant vectors 𝒙 = [
𝑥1

𝑥2
] solutions of 

−𝑥1 + (𝑥1)
3  = 0,

−2𝑥2  = 0.
 

From the second equation we get 𝑥2 = 0. From the first equation we get 

𝑥1((𝑥1)
2 − 1) = 0 ⇒  𝑥1 = 0,   or  𝑥1 = ±1 

Therefore, we got three critical points, 𝑥0 = [
0
0
] , 𝑥1 = [

1
0
] , 𝑥2 = [

−1
0

]. 

 

𝑥1
′ = 𝑓1(𝑥1, 𝑥2),

𝑥2
′ = 𝑓2(𝑥1, 𝑥2),

 

Assume that 𝑓1, 𝑓2 have Taylor expansions at 𝑥0 = [
𝑥2

0

𝑥2
0]. We denote 𝑢1 = (𝑥1 − 𝑥1

0 

𝑢2 = (𝑥2 − 𝑥2
0), and 𝑓1

∘ = 𝑓1(𝑥1
0, 𝑥2

0), 𝑓2
∘ = 𝑓2(𝑥1

0, 𝑥2
0). Then, by the Taylor 

expansion the 

𝑓1(𝑥1, 𝑥2) = 𝑓1
∘ +

∂𝑓1
∂𝑥1

|
𝑥0

𝑢1 +
∂𝑓1
∂𝑥2

|
𝑥0

𝑢2 + 𝑜(𝑢1
2, 𝑢2

2),

𝑓2(𝑥1, 𝑥2) = 𝑓2
∘ +

∂𝑓2
∂𝑥1

|
𝑥0

𝑢1 +
∂𝑓2
∂𝑥2

|
𝑥0

𝑢2 + 𝑜(𝑢1
2 , 𝑢2

2).

 

Let us simplify the notation a bit further. Let us denote 

∂1𝑓1 =
∂𝑓1
∂𝑥1

|
𝑥0

, ∂2𝑓1 =
∂𝑓1
∂𝑥2

|
𝑥0

,

∂1𝑓2 =
∂𝑓2
∂𝑥1

|
𝑥0

, ∂2𝑓2 =
∂𝑓2
∂𝑥2

|
𝑥0

.

 

then the Taylor expansion of 𝑓 has the form 

𝑓1(𝑥1, 𝑥2) = 𝑓1
0 + (∂1𝑓1)𝑢1 + (∂2𝑓1)𝑢2 + 𝑜(𝑢1

2 , 𝑢2
2),

𝑓2(𝑥1, 𝑥2) = 𝑓2
0 + (∂1𝑓2)𝑢1 + (∂2𝑓2)𝑢2 + 𝑜(𝑢1

2 , 𝑢2
2).
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We now use this Taylor expansion of the field 𝑓 into the differential equation 𝑥′ =

𝑓. Recall that 𝑥1 = 𝑥1
0 + 𝑢1, and 𝑥2 = 𝑥2

0 + 𝑢2, and that 𝑥1
0 and 𝑥2

0 are constants, 

then 

𝑢1
′ = 𝑓1

0 + (∂1𝑓1)𝑢1 + (∂2𝑓1)𝑢2 + 𝑜(𝑢1
2 , 𝑢2

2),

𝑢2
′ = 𝑓2

0 + (∂1𝑓2)𝑢1 + (∂2𝑓2)𝑢2 + 𝑜(𝑢1
2 , 𝑢2

2).
 

Let us write this differential equation using vector notation. If we introduce the 

vectors and the matrix 

𝒖 = [
𝑢1

𝑢2
] ,  𝒇0 = [

𝑓1
0

𝑓2
0] ,  𝐷𝑓0 = [

∂1𝑓1 ∂2𝑓1
∂1𝑓2 ∂2𝑓2

], 

then, we have that 

𝑥′ = 𝑓(𝑥) ⇔  𝑢′ = 𝑓0 + (𝐷𝑓0)𝑢 + 𝑜(|𝑢|2). 

In the case that 𝑥0 is a critical point, then 𝑓0 = 0. In this case we have that 

𝑥′ = 𝑓(𝑥) ⇔  𝑢′ = (𝐷𝑓0)𝑢 + 𝑜(|𝑢|2). 

The relation above says that the equation coefficients of 𝑥′ = 𝑓(𝑥) are close, order 

𝑜(|𝑢|2), to the coefficients of the linear differential equation 𝑢′ = (𝐷𝑓0)𝑢. For this 

reason, we give this linear differential equation a name. 

Definition 3.3.4: [Nagy 2021,18,January] 

The linearization of a two-dimensional system 𝑥′ = 𝑓(𝑥) at a critical point 𝑥0 is 

the 2 × 2 linear system 

𝒖′ = (𝐷𝑓0)𝒖 

where 𝑢 = 𝑥 − 𝑥0, and we have introduced the Jacobian matrix at 𝑥0, 

𝐷𝑓0 =

[
 
 
 
 
∂𝑓1
∂𝑥1

|
𝑧0

∂𝑓1
∂𝑥2

|
𝑧0

∂𝑓2
∂𝑥1

|
𝑧0

∂𝑓2
∂𝑥2

|
𝑧0]

 
 
 
 

= [
∂1𝑓1 ∂2𝑓1
∂1𝑓2 ∂2𝑓2

]. 
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Remark 3.3.5: [Nagy 2021,18,January] 

 In components, the nonlinear system is 

𝑥1
′ = 𝑓1(𝑥1, 𝑥2),

𝑥2
′ = 𝑓2(𝑥1, 𝑥2),

 

and the linearization at 𝑥0 is 

[
𝑢1

𝑢2
]
′

= [
∂1𝑓1 ∂2𝑓1
∂1𝑓2 ∂2𝑓2

] [
𝑢1

𝑢2
] 

Example 3.3.6: Find the linearization at every critical point of the nonlinear 

system 

𝑥1
′ = −𝑥1 + (𝑥1)

3

𝑥2
′ = −2𝑥2.

 

Solution: We found earlier that this system has three critial points, 

𝑥0 = [
0
0
] ,  𝑥1 = [

1
0
] ,  𝑥2 = [

−1
0

]. 

This means we need to compute three linearizations, one for each critical point. We 

start computing the derivative matrix at an arbitrary point 𝒙, 

𝐷𝑓(𝑥) =

[
 
 
 
∂𝑓1
∂𝑥1

∂𝑓1
∂𝑥2

∂𝑓2
∂𝑥1

∂𝑓2
∂𝑥2]

 
 
 

=

[
 
 
 

∂

∂𝑥1

(−𝑥1 + 𝑥1
3)

∂

∂𝑥2

(−𝑥1 + 𝑥1
3)

∂

∂𝑥1

(−2𝑥2)
∂

∂𝑥2

(−2𝑥2) ]
 
 
 

, 

so we get that 

𝐷𝑓(𝑥) = [−1 + 3𝑥1
2 0

0 −2
] 

We only need to evaluate this matrix 𝐷𝑓 at the critical points. We start with 𝑥0, 

𝑥0 = [
0
0
] ⇒ 𝐷𝑓0 = [

−1 0
0 −2

] ⇒ [
𝑢1

𝑢2
]
′

= [
−1 0
0 −2

] [
𝑢1

𝑢2
] 
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The Jacobian at 𝑥1 and 𝑥2 is the same, so we get the same linearization at these 

points, 

𝑥1 = [
1
0
]  ⇒ 𝐷𝑓1 = [

2 0
0 −2

]  ⇒  [
𝑢1

𝑢2
]
′

= [
2 0
0 −2

] [
𝑢1

𝑢2
]

𝑥2 = [
−1
0

]  ⇒  𝐷𝑓2 = [
2 0
0 −2

]  ⇒  [
𝑢1

𝑢2
]
′

= [
2 0
0 −2

] [
𝑢1

𝑢2
]
 

Critical points of nonlinear systems are classified according to the eigenvalues of 

their corresponding linearization. 

Definition 3.3.7: [G. Simmons 1991] 

 A critical point 𝑥0 of a two-dimensional system 𝒙′ = 𝑓(𝑥) is: 

(a) an attractor (or sin 𝑘 ), iff both eigenvalues of 𝐷𝑓0 have negative real part, 

(b) a repeller (or source), iff both eigenvalues of 𝐷𝑓0 have positive real part; 

(c) a saddle, iff one eigenvalue of 𝐷𝑓0 is positive and the other is negative; 

(d) a center, iff both eigenvalues of 𝐷𝑓0 are pure imaginary; 

(e) higher order critical point iff at least one eigenvalue of 𝐷𝑓0 is zero. 

A critical point 𝑥0 is called hyperbolic iff it belongs to cases (a-c), that is, the real 

part of all eigenvalues of 𝐷𝑓0 are nonzero. 

Example 3.3.8: Classify all the critical points of the nonlinear system 

𝑥1
′ = −𝑥1 + (𝑥1)

3

𝑥2
′ = −2𝑥2

 

Solution: We already know that this system has three critical points, 

𝑥0 = [
0
0
] ,  𝑥1 = [

1
0
] ,  𝑥2 = [

−1
0

]. 

We have already computed the linearizations at these critical points too. 

𝐷𝑓0 = [
−1 0
0 −2

] ,  𝐷𝑓1 = 𝐷𝑓2 = [
2 0
0 −2

]. 

We now need to compute the eigenvalues of the Jacobian matrices above. For the 

critical point 𝑥0 we have 𝜆+ = −1, 𝜆− = −2, so 𝑥0 is an attractor. For the critical 

points 𝑥1 and 𝑥2 we have 𝜆+ = 2, 𝜆− = −2, so 𝑥1 and 𝑥2 are saddle points. 
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3.4. The Stability of Nonlinear Systems. Sometimes the stability of two-

dimensional nonlinear systems at a critical point is determined by the stability of 

the linearization at that critical point. This happens when the critical point of the 

linearization is hyperbolic, that is, the Jacobian matrix has eigenvalues with 

nonzero real part. We summarize this result in the following statement. 

Theorem 3.4.1: [Nagy 2021,18,January] 

Consider a two-dimensional nonlinear autonomous system with a continuously 

differentiable field 𝒇, 

𝑥′ = 𝑓(𝑥) 

and consider its linearization at a hyperbolic critical point 𝑥0, 

𝑢′ = (𝐷𝑓0)𝑢. 

Then, there is a neighborhood of the hyperbolic critical point 𝑥0 where all the 

solutions of the linear system can be transformed into solutions of the nonlinear 

system by a continuous, invertible, transformation. 

Remark 3.4.2: [Nagy 2021,18,January] 

 The Hartman-Grobman theorem implies that the phase portrait of the linear 

system in a neighborhood of a hyperbolic critical point can be transformed into the 

phase portrait of the nonlinear system by a continuous, invertible, transformation. 

When that happens we say that the two phase portraits are topologically equivalent. 

Remark 3.4.3: [Nagy 2021,18,January] 

 This theorem says that, for hyperbolic critical points, the phase portrait of the 

linearization at the critical point is enough to determine the phase portrait of the 

nonlinear system near that critical point. 

Example 3.4.4: Use the Hartman-Grobman theorem to sketch the phase portrait of 

𝑥1
′ = −𝑥1 + (𝑥1)

3

𝑥2
′ = −2𝑥2.
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Solution: We have found before that the critical points are 

𝑥0 = [
0
0
] ,  𝑥1 = [

1
0
] ,  𝑥2 = [

−1
0

], 

Where  𝑥0 is an attractor and 𝑥1, 𝑥2 are saddle points. 

The phase portrait of the linearized systems at the critical points is given in These 

critical points have all linearizations with eigenvalues having nonzero real parts. 

This means that the critical points are hyperbolic, so we can use the Hartman-

Grobman theorem. This theorem says that the phase portrait in is precisely the 

phase portrait of the nonlinear system in this ex- 

 

 

 

Since we now know also the phase portrait of the nonlinear, we only need to fill in 

the gaps in that phase portrait. In this example, a decoupled system, we can 

complete the phase portrait from the symmetries of the solution. Indeed, in the 𝑥2 

direction all trajectories must decay to exponentially to the 𝑥2 = 0 line. In the 𝑥1 

direction, all trajectories are attracted to 𝑥1 = 0 and repelled from 𝑥1 = ±1. The 

vertical lines 𝑥1 = 0 and 𝑥1 = ±1 are invariant, since 𝑥1
′ = 0 on these lines; hence 

any trajectory that start on these lines stays on these lines. Similarly, 𝑥2 = 0 is an 

invariant horizontal line. We also note that the phase portrait must be symmetric in 

both 𝑥1 and 𝑥2 axes, since the equations 

are invariant under the transformations x1 → −x1 and x2 → −x2. Putting all this 

extra information together we arrive to the phase portrait. 
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Figure Phase portraits of the nonlinear systems in the Example 3.4.4 
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