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Abstract 

The Laplace transform is a powerful tool formulated to solve a wide variety of 

boundary value problems. The strategy is to transform the difficult differential 

equations into simple problems in the Laplace domain, where solutions can be 

easily obtained. One then applies the inverse Laplace transform to retrieve the 

solution of the original problems.  

This project consists of three parts; the first part defines Laplace transform and the 

inverse Laplace transform of some elementary functions. The second part is 

concerned with the complex inversion formula and explains the modification of 

Bromwich contour in case of branch point. In the third part some applications are 

solved. 

 

 

 

  



V 

 

Contents 

Acknowledgement .................................................................................................................................. III 

Abstract .................................................................................................................................................. IV 

Introduction ............................................................................................................................................. 1 

CHAPTER ONE ..................................................................................................................................... 2 

1.1. Background ............................................................................................................................ 2 

CHAPTER TWO .................................................................................................................................... 4 

CHAPTER THREE ............................................................................................................................... 14 

Bibliography .......................................................................................................................................... 18 

 



1 
 

Introduction 
 

The Laplace transform is a transformation-it changes a function into another 

function. This transformation is an integral transformation-the original function is 

multiplied by an exponential and integrated on an appropriate region. Such an 

integral transformation is the answer to very interesting questions: Is it possible to 

transform a differential equation into an algebraic equation? Is it possible to 

transform a derivative of a function into a multiplication? The answer to both 

questions is yes, for example with a Laplace transform. 

This is how it works. You start with a derivative of a function, 𝑦′(𝑡), then you 

multiply it by any function, we choose an exponential 𝑒−𝑠𝑡, and then you integrate 

on 𝑡, so we get 

𝑦′(𝑡) → ∫  𝑒−𝑠𝑡𝑦′(𝑡)𝑑𝑡, 

which is a transformation, an integral transformation. And now, because we have 

an integration above, we can integrate by parts-this is the big idea, 

𝑦′(𝑡) → ∫  𝑒−𝑠𝑡𝑦′(𝑡)𝑑𝑡 = 𝑒−𝑠𝑡𝑦(𝑡) + 𝑠 ∫  𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡. 

So we have transformed the derivative we started with into a multiplication by this 

constant 𝑠 from the exponential. The idea in this calculation actually works to 

solve differential equations and motivates us to define the integral transformation 

𝑦(𝑡) → �̃�(𝑠) as follows, 

𝑦(𝑡) → �̃�(𝑠) = ∫  𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡. 

The Laplace transform is a transformation similar to the one above, where we 

choose some appropriate integration limits-which are very convenient to solve 

initial value problems. 

We dedicate this section to introduce the precise definition of the Laplace 

transform and how is used to solve differential equations. In the following sections 

we will see that this method can be used to solve linear constant coefficients 
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differential equation with very general sources, including Dirac's delta generalized 

functions. 

 

 
 

 

 

 

 

CHAPTER ONE 

1.1. Background 

Definition 1.1:  Equation  (M, 2006) 

An equation is a mathematical statement containing an equals sign. Numbers may 

be represented by unknown variables. To solve an equation, the value of these 

variables must be found 

Definition 1.2: Differential Equation  (Kishan, 2006) 

A differential equation (DE) is an equation in solving a function and its 

derivatives. 

Example 1.1: A few differential equation  

1:  
𝑑𝑦

𝑑𝑥
 = sinx 

2:   
𝑑𝑦

𝑑𝑥
 = 

𝑥+1

𝑦−2
 

Definition 1.3: Partial Differential equation:  

 A partial differential equation (or briefly a PDE) is a mathematical equation that 

involves two or more independent variables, an unknown function (dependent on 

those variables), and partial derivatives of the unknown function with respect to the 

indepen variables. 
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Definition 1.4: Ordinary Differential equation 

In mathematics, an ordinary differential equation (ODE) is a differential equation 

containing one or more functions of one independent variable and its derivatives. 

He term ordinary is used in contrast with the term partial differentia equation 

which may be with respect to more then one independent variable. 

Definition1.5: Order of a differential equation 

The order of a differential equation is the highest order of the derivatives of the 

unknown function appearing in the equation in the simplest cases, equations may 

be solved by direct integration. 

Example 1.2:  

1: 
𝑑𝑦

𝑑𝑥
=𝑒𝑥   first order  

2: 
𝑑4𝑦

𝑑𝑥4
 +y=0  fourth order 

Definition 1.6 : Degree 

Is the highest power of the highest derivative in which occurs in the D.E 

Definition 1.7: Linear O.D.E 

A differential equation in any order is said to be linear if satisfies 

1 The dep.v is exist and of the first degree.  

2 The derivatives y′ y" y′" exist and each of them of the first degree.  

3 The dep.v and the derivatives not multiply each other. 

Definition 1.8:  Non-Linear Differential Equation 

When an equation is not linear in unknown function and its derivatives, then it is 

said to be a nonlinear differential equation. It gives diverse solutions which can be 

seen for chaos. 
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CHAPTER TWO 

2.1. Definition and Theorem  

Definition 2.1: The Laplace transform of a function 𝑓 defined on 𝐷𝑓 = (0, ∞) is 

𝐹(𝑠) = ∫  
∞

0

𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡, 

defined for all 𝑠 ∈ 𝐷𝐹 ⊂ ℝ where the integral converges. 

In these note we use an alternative notation for the Laplace transform that 

emphasizes that the Laplace transform is a transformation: ℒ[𝑓] = 𝐹, that is 

ℒ[ ] = ∫  
∞

0

𝑒−𝑠𝑡( )𝑑𝑡 

So, the Laplace transform will be denoted as either ℒ[𝑓] or 𝐹, depending whether 

we want to emphasize the transformation itself or the result of the transformation. 

We will also use the notation ℒ[𝑓(𝑡)], or ℒ[𝑓](𝑠), or ℒ[𝑓(𝑡)](𝑠), whenever the 

independent variables 𝑡 and 𝑠 are relevant in any particular context. 

The Laplace transform is an improper integral-an integral on an unbounded 

domain. Improper integrals are defined as a limit of definite integrals, 

∫  
∞

𝑡0

𝑔(𝑡)𝑑𝑡 = lim
𝑁→∞

 ∫  
𝑁

𝑡0

𝑔(𝑡)𝑑𝑡. 

An improper integral converges iff the limit exists, otherwise the integral diverges. 

Now we are ready to compute our first Laplace transform. 
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Example 2.1. Compute the Laplace transform of the function 𝑓(𝑡) = 1, that is, 

ℒ[1]. 

Solution: Following the definition, 

ℒ[1] = ∫  
∞

0

𝑒−𝑠𝑡𝑑𝑡 = lim
𝑁→∞

 ∫  
𝑁

0

𝑒−𝑠𝑡𝑑𝑡 

The definite integral above is simple to compute, but it depends on the values of 𝑠. 

For 𝑠 = 0 we get 

lim
𝑁→∞

 ∫  
𝑁

0

𝑑𝑡 = lim
𝑛→∞

 𝑁 = ∞.  

So, the improper integral diverges for 𝑠 = 0. For 𝑠 ≠ 0 we get 

lim
𝑁→∞

 ∫  
𝑁

0

𝑒−𝑠𝑡𝑑𝑡 = lim
𝑁→∞

  −
1

𝑠
𝑒−𝑠𝑡|

0

𝑁

= lim
𝑁→∞

 −
1

𝑠
(𝑒−𝑠𝑁 − 1) 

For 𝑠 < 0 we have 𝑠 = −|𝑠|, hence 

lim
𝑁→∞

  −
1

𝑠
(𝑒−𝑠𝑁 − 1) = lim

𝑁→∞
  −

1

𝑠
(𝑒|𝑠|𝑁 − 1) = −∞. 

So, the improper integral diverges for 𝑠 < 0. In the case that 𝑠 > 0 we get 

lim
𝑁→∞

 −
1

𝑠
(𝑒−𝑠𝑁 − 1) =

1

𝑠
.  

If we put all these result together we get 

ℒ[1] =
1

𝑠
,  𝑠 > 0. 

 

Example 2.2.  Compute ℒ[𝑒𝑎𝑡], where 𝑎 ∈ ℝ. 

Solution: We start with the definition of the Laplace transform, 

ℒ[𝑒𝑎𝑡] = ∫  
∞

0

𝑒−𝑠𝑡(𝑒𝑎𝑡)𝑑𝑡 = ∫  
∞

0

𝑒−(𝑠−𝛼)𝑡𝑑𝑡. 
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In the case 𝑠 = 𝑎 we get 

ℒ[𝑒𝑎𝑡] = ∫  
∞

0

1𝑑𝑡 = ∞, 

so the improper integral diverges. In the case 𝑠 ≠ 𝑎 we get 

ℒ[𝑒𝑎𝑡]  = lim
𝑁→∞

 ∫  
𝑁

0

 𝑒−(𝑠−𝑎)𝑡𝑑𝑡,  𝑠 ≠ 𝑎,

 = lim
𝑁→∞

  [
(−1)

(𝑠 − 𝑎)
𝑒−(𝑠−𝑎)𝑡|

0

𝑁

]

 = lim
𝑁→∞

  [
(−1)

(𝑠 − 𝑎)
(𝑒−(𝑠−𝑎)𝑁 − 1)] .

 

Now we have to remaining cases. The first case is: 

𝑠 − 𝑎 < 0 ⇒ −(𝑠 − 𝑎) = |𝑠 − 𝑎| > 0 ⇒ lim
𝑁→∞

 𝑒−(𝑠−𝑎)𝑁 = ∞, 

so the integral diverges for 𝑠 < 𝑎. The other case is: 

𝑠 − 𝑎 > 0 ⇒ −(𝑠 − 𝑎) = −|𝑠 − 𝑎| < 0 ⇒  lim
𝑁→∞

 𝑒−(𝑠−𝑎)𝑁 = 0,  

so the integral converges only for 𝑠 > 𝑎 and the Laplace transform is given by 

ℒ[𝑒𝑎𝑡] =
1

(𝑠 − 𝑎)
,  𝑠 > 𝑎. 
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8 
 

Definition 2.2: A function 𝑓 defined on [0, ∞) is of exponential order 𝑠0, where 𝑠0 

is any real number, iff there exist positive constants 𝑘, 𝑇 such that 

|𝑓(𝑡)| ⩽ 𝑘𝑒𝑠0𝑡  for all 𝑡 > 𝑇.  

Theorem (Convergence of LT) 2.1: If a function 𝑓 defined on [0, ∞ ) is 

piecewise continuous and of exponential order 𝑠0, then the ℒ[𝑓] exists for all 𝑠 >

𝑠0 and there exists a positive constant 𝑘 such that 

|ℒ[𝑓]| ⩽
𝑘

𝑠 − 𝑠0
,  𝑠 > 𝑠0. 

Proof of Theorem : From the definition of the Laplace transform we know that 

ℒ[𝑓] = lim
𝑁→∞

 ∫  
𝑁

0

𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 

The definite integral on the interval [0, 𝑁] exists for every 𝑁 > 0 since 𝑓 is 

piecewise continuous on that interval, no matter how large 𝑁 is. We only need to 

check whether the integral converges as 𝑁 → ∞. This is the case for functions of 

exponential order, because 

|∫  
𝑁

0

 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡| ⩽ ∫  
𝑁

0

𝑒−𝑠𝑡|𝑓(𝑡)|𝑑𝑡 ⩽ ∫  
𝑁

0

𝑒−𝑠𝑡𝑘𝑒𝑠0𝑡𝑑𝑡 = 𝑘 ∫  
𝑁

0

𝑒−(𝑠−𝑠0)𝑡𝑑𝑡. 

Therefore, for 𝑠 > 𝑠0 we can take the limit as 𝑁 → ∞, 

|ℒ[𝑓]| ⩽ lim
𝑁→∞

  |∫  
𝑁

0

 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡| ⩽ 𝑘ℒ[𝑒𝑠0𝑡] =
𝑘

(𝑠 − 𝑠0)
. 

Therefore, the comparison test for improper integrals implies that the Laplace 

transform ℒ[𝑓] exists at least for 𝑠 > 𝑠0, and it also holds that 

|ℒ[𝑓]| ⩽
𝑘

𝑠 − 𝑠0
,  𝑠 > 𝑠0. 

 

Theorem (Linearity) 2.2: If ℒ[𝑓] and ℒ[𝑔] exist, then for all 𝑎, 𝑏 ∈ ℝ holds 
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ℒ[𝑎𝑓 + 𝑏𝑔] = 𝑎ℒ[𝑓] + 𝑏ℒ[𝑔]. 

Proof of Theorem: Since integration is a linear operation, so is the Laplace 

transform, as this calculation shows, 

ℒ[𝑎𝑓 + 𝑏𝑔]  = ∫  
∞

0

 𝑒−𝑠𝑡[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)]𝑑𝑡

 = 𝑎 ∫  
∞

0

 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 + 𝑏 ∫  
∞

0

 𝑒−𝑠𝑡𝑔(𝑡)𝑑𝑡

 = 𝑎ℒ[𝑓] + 𝑏ℒ[𝑔].

 

 

Example 2.3. Compute ℒ[3𝑡2 + 5cos (4𝑡)]. 

Solution: From the Theorem above and the Laplace  

ℒ[3𝑡2 + 5cos (4𝑡)]  = 3ℒ[𝑡2] + 5ℒ[cos (4𝑡)]

 = 3 (
2

𝑠3) + 5 (
𝑠

𝑠2 + 42) ,  𝑠 > 0

 =
6

𝑠3 +
5𝑠

𝑠2 + 42 .

 

Therefore, 

ℒ[3𝑡2 + 5cos (4𝑡)] =
5𝑠4 + 6𝑠2 + 96

𝑠3(𝑠2 + 16)
,  𝑠 > 0. 

The Laplace transform can be used to solve differential equations. The Laplace 

transform converts a differential equation into an algebraic equation. This is so 

because the Laplace transform converts derivatives into multiplications. Here is the 

precise result. 

  



10 
 

Theorem  (Derivative into Multiplication) 2.3: If a function 𝑓 is continuously 

differentiable on [0, ∞) and of exponential order 𝑠0, then ℒ[𝑓′] exists for 𝑠 > 𝑠0 

and 

ℒ[𝑓′] = 𝑠ℒ[𝑓] − 𝑓(0),  𝑠 > 𝑠0. 

Proof of Theorem: The main calculation in this proof is to compute 

ℒ[𝑓′] = lim
𝑁→∞

 ∫  
𝑁

0

𝑒−𝑠𝑡𝑓′(𝑡)𝑑𝑡. 

We start computing the definite integral above. Since 𝑓′ is continuous on [0, ∞), 

that definite integral exists for all positive 𝑁, and we can integrate by parts, 

∫  
𝑁

0

 𝑒−𝑠𝑡𝑓′(𝑡)𝑑𝑡  = [(𝑒−𝑠𝑡𝑓(𝑡))|0
𝑁 − ∫  

𝑁

0

  (−𝑠)𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡]

 = 𝑒−𝑠𝑁𝑓(𝑁) − 𝑓(0) + 𝑠 ∫  
𝑁

0

 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

 

We now compute the limit of this expression above as 𝑁 → ∞. Since 𝑓 is 

continuous on [0, ∞) of exponential order 𝑠0, we know that 

lim
𝑁→∞

 ∫  
𝑁

0

𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = ℒ[𝑓],  𝑠 > 𝑠0. 

Let us use one more time that 𝑓 is of exponential order 𝑠0. This means that there 

exist positive constants 𝑘 and 𝑇 such that |𝑓(𝑡)| ⩽ 𝑘𝑒𝑠0𝑡, for 𝑡 > 𝑇. Therefore, 

lim
𝑁→∞

 𝑒−𝑠𝑁𝑓(𝑁) ⩽ lim
𝑁→∞

 𝑘𝑒−𝑠𝑁𝑒𝑠0𝑁 = lim
𝑁→∞

 𝑘𝑒−(𝑠−𝑠0)𝑁 = 0,  𝑠 > 𝑠0. 

These two results together imply that ℒ[𝑓′] exists and holds 

ℒ[𝑓′] = 𝑠ℒ[𝑓] − 𝑓(0),  𝑠 > 𝑠0. 

 

Example 2.4. Verify the result in Theorem 4.1.5 for the function 𝑓(𝑡) = cos (𝑏𝑡). 

Solution: We need to compute the left hand side and the right hand side  and 

verify that we get the same result. We start with the left hand side, 
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ℒ[𝑓′] = ℒ[−𝑏sin (𝑏𝑡)] = −𝑏ℒ[sin (𝑏𝑡)] = −𝑏
𝑏

𝑠2 + 𝑏2  ⇒  ℒ[𝑓′] = −
𝑏2

𝑠2 + 𝑏2. 

We now compute the right hand side, 

𝑠ℒ[𝑓] − 𝑓(0) = 𝑠ℒ[cos (𝑏𝑡)] − 1 = 𝑠
𝑠

𝑠2 + 𝑏2 − 1 =
𝑠2 − 𝑠2 − 𝑏2

𝑠2 + 𝑏2 , 

so we get 

𝑠ℒ[𝑓] − 𝑓(0) = −
𝑏2

𝑠2 + 𝑏2. 

We conclude that ℒ[𝑓′] = 𝑠ℒ[𝑓] − 𝑓(0). 

 

Theorem (Higher Derivatives into Multiplication) 2.4. If a function 𝑓 is n-times 

continuously differentiable on [0, ∞) and of exponential order 𝑠0, then 

ℒ[𝑓′′], ⋯ , ℒ[𝑓(𝑛)] exist for 𝑠 > 𝑠0 and 

ℒ[𝑓′′] = 𝑠2ℒ[𝑓] − 𝑠𝑓(0) − 𝑓′(0)

 ⋮
ℒ[𝑓(𝑛)] = 𝑠𝑛ℒ[𝑓] − 𝑠(𝑛−1)𝑓(0) − ⋯ − 𝑓(𝑛−1)(0)

 

Proof of Theorem: We need to use Eq. (4.1.4) 𝑛 times. We start with the Laplace 

transform of a second derivative, 

ℒ[𝑓′′]  = ℒ[(𝑓′)′]

 = 𝑠ℒ[𝑓′] − 𝑓′(0)

 = 𝑠(𝑠ℒ[𝑓] − 𝑓(0)) − 𝑓′(0)

 = 𝑠2ℒ[𝑓] − 𝑠𝑓(0) − 𝑓′(0).

 

The formula for the Laplace transform of an 𝑛th derivative is computed by 

induction on 𝑛. We assume that the formula is true for 𝑛 − 1, 

ℒ[𝑓(𝑛−1)] = 𝑠(𝑛−1)ℒ[𝑓] − 𝑠(𝑛−2)𝑓(0) − ⋯ − 𝑓(𝑛−2)(0). 

Since ℒ[𝑓(𝑛)] = ℒ[(𝑓′)(𝑛−1)], the formula above on 𝑓′ gives 
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ℒ[(𝑓′)(𝑛−1)]  = 𝑠(𝑛−1)ℒ[𝑓′] − 𝑠(𝑛−2)𝑓′(0) − ⋯ − (𝑓′)(𝑛−2)(0)

 = 𝑠(𝑛−1)(𝑠ℒ[𝑓] − 𝑓(0)) − 𝑠(𝑛−2)𝑓′(0) − ⋯ − 𝑓(𝑛−1)(0)

 = 𝑠(𝑛)ℒ[𝑓] − 𝑠(𝑛−1)𝑓(0) − 𝑠(𝑛−2)𝑓′(0) − ⋯ − 𝑓(𝑛−1)(0).

 

 

Example 2.5. Verify Theorem  for 𝑓′′, where 𝑓(𝑡) = cos (𝑏𝑡). 

Solution: We need to compute the left hand side and the right hand side in the first 

equation in Theorem and verify that we get the same result. We start with the left 

hand side, 

ℒ[𝑓′′] = ℒ[−𝑏2cos (𝑏𝑡)] = −𝑏2ℒ[cos (𝑏𝑡)] = −𝑏2
𝑠

𝑠2 + 𝑏2
 ⇒  ℒ[𝑓′′]

= −
𝑏2𝑠

𝑠2 + 𝑏2. 

We now compute the right hand side, 

𝑠2ℒ[𝑓] − 𝑠𝑓(0) − 𝑓′(0) = 𝑠2ℒ[cos (𝑏𝑡)] − 𝑠 − 0 = 𝑠2
𝑠

𝑠2 + 𝑏2 − 𝑠

=
𝑠3 − 𝑠3 − 𝑏2𝑠

𝑠2 + 𝑏2 , 

so we get 

𝑠2ℒ[𝑓] − 𝑠𝑓(0) − 𝑓′(0) = −
𝑏2𝑠

𝑠2 + 𝑏2. 
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Theorem (Multiplication into Derivative) 2.5. If a function 𝑓 is of exponential 

order 𝑠0 with a Laplace transform 𝐹(𝑠) = ℒ[𝑓(𝑡)], then ℒ[𝑡𝑓(𝑡)] exists for 𝑠 > 𝑠0 

and 

ℒ[𝑡𝑓(𝑡)] = −𝐹′(𝑠),  𝑠 > 𝑠0. 

Proof of Theorem: From the definition of the Laplace Transform we see that 

ℒ[𝑡𝑓(𝑡)]  = ∫  
∞

0

 𝑒−𝑠𝑡𝑡𝑓(𝑡)𝑑𝑡

 = ∫  
∞

0

 
𝑑

𝑑𝑠
(−𝑒−𝑠𝑡)𝑓(𝑡)𝑑𝑡

 = −
𝑑

𝑑𝑠
∫  

∞

0

 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

 = −
𝑑

𝑑𝑠
ℒ[𝑓(𝑡)]

 = −𝐹′(𝑠)

 

 

Theorem (Higher Powers into Derivative) 2.6: If a function 𝑓 is of exponential 

order 𝑠0 with a Laplace transform 𝐹(𝑠) = ℒ[𝑓(𝑡)], then ℒ[𝑡𝑛𝑓(𝑡)] exists for 𝑠 >

𝑠0 and 

ℒ[𝑡𝑛𝑓(𝑡)] = (−1)𝑛𝐹(𝑛)(𝑠),  𝑠 > 𝑠0, 

where we denoted 𝐹(𝑛) =
𝑑𝑛

𝑑𝑠𝑛
𝐹. 

Proof of Theorem: We use induction one more time. The case 𝑛 = 1 is done in 

Theorem 4.1.7. We now assume that 

ℒ[𝑡𝑛𝑓(𝑡)] = (−1)𝑛
𝑑𝑛

𝑑𝑠𝑛
ℒ[𝑓(𝑡)], 

and we try to show that a similar formula holds for 𝑛 + 1. But this is the case, 

since 
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ℒ[𝑡(𝑛+1)𝑓(𝑡)]  = ℒ[𝑡𝑛(𝑡𝑓(𝑡))]

 = (−1)𝑛
𝑑𝑛

𝑑𝑠𝑛 ℒ[𝑡𝑓(𝑡)]
 

 

 

Definition 2.4. The inverse Laplace transform, denoted ℒ−1, of a function 𝐹 is 

ℒ−1[𝐹(𝑠)] = 𝑓(𝑡) ⇔ 𝐹(𝑠) = ℒ[𝑓(𝑡)] 

 

 

CHAPTER THREE 
 

 3.1. Solving Differential Equations: The Laplace transform can be used to 

solve differential equations. We Laplace transform the whole equation, which 

converts the differential equation for 𝑦 into an algebraic equation for ℒ[𝑦]. We 

solve the Algebraic equation and we transform back. 

ℒ [
 differential 

 eq. for 𝑦.
]  ⟶

(1)  Algebraic 

 eq. for ℒ[𝑦].
 ⟶

(2)
 Solve the 

 algebraic 

 eq. for ℒ[𝑦].
 ⟶

(3)
 Transform back 

 to obtain 𝑦.
 (Use the table.) 

 

Example 3.1.  Use the Laplace transform to find 𝑦 solution of 

𝑦′′ + 9𝑦 = 0,  𝑦(0) = 𝑦0 ,  𝑦′(0) = 𝑦1. 

𝑝(𝑟) = 𝑟2 + 9 ⇒  𝑟± = ±3𝑖, 

and then we get the general solution 

𝑦(𝑡) = 𝑐+cos (3𝑡) + 𝑐−sin (3𝑡). 

Then the initial condition will say that 
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𝑦(𝑡) = 𝑦0cos (3𝑡) +
𝑦1

3
sin (3𝑡). 

We now solve this problem using the Laplace transform method. 

Solution: We now use the Laplace transform method: 

ℒ[𝑦′′ + 9𝑦] = ℒ[0] = 0. 

The Laplace transform is a linear transformation, 

ℒ[𝑦′′] + 9ℒ[𝑦] = ℒ[0] = 0. 

 

But the Laplace transform converts derivatives into multiplications, 

𝑠2ℒ[𝑦] − 𝑠𝑦(0) − 𝑦′(0) + 9ℒ[𝑦] = 0. 

This is an algebraic equation for ℒ[𝑦]. It can be solved by rearranging terms and 

using the initial condition, 

(𝑠2 + 9)ℒ[𝑦] = 𝑠𝑦0 + 𝑦1 ⇒  ℒ[𝑦] = 𝑦0

𝑠

(𝑠2 + 9)
+ 𝑦1

1

(𝑠2 + 9)
. 

But from the Laplace transform table we see that 

ℒ[cos (3𝑡)] =
𝑠

𝑠2 + 32 ,  ℒ[sin (3𝑡)] =
3

𝑠2 + 32, 

therefore, 

ℒ[𝑦] = 𝑦0ℒ[cos (3𝑡)] + 𝑦1

1

3
ℒ[sin (3𝑡)]. 

Once again, the Laplace transform is a linear transformation, 

ℒ[𝑦] = ℒ [𝑦0cos (3𝑡) +
𝑦1

3
sin (3𝑡)] 

We obtain that 



16 
 

𝑦(𝑡) = 𝑦0cos (3𝑡) +
𝑦1

3
sin (3𝑡). 

 

 

Definition 3.1. The step function at 𝑡 = 0 is denoted by 𝑢 and given by 

𝑢(𝑡) = {
0 𝑡 < 0,
1 𝑡 ⩾ 0.

 

Example 3.2. Graph the step 𝑢, 𝑢𝑐(𝑡) = 𝑢(𝑡 − 𝑐), and 𝑢−𝑐(𝑡) = 𝑢(𝑡 + 𝑐), for 𝑐 >

0. 

Solution: The step function 𝑢 and its right and left translations1. 

 

Recall that given a function with values 𝑓(𝑡) and a positive constant 𝑐, then 𝑓(𝑡 −

𝑐) and 𝑓(𝑡 + 𝑐) are the function values of the right translation and the left 

translation, respectively, of the original function 𝑓. In Fig. 2 we plot the graph of 

functions 𝑓(𝑡) = 𝑒𝑎𝑡, 𝑔(𝑡) = 𝑢(𝑡)𝑒𝑎𝑡  and their respective right translations by 𝑐 >

0. 
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Example 3.3. Graph the bump function 𝑏(𝑡) = 𝑢(𝑡 − 𝑎) − 𝑢(𝑡 − 𝑏), where 𝑎 <

𝑏. 

Solution: The bump function we need to graph is 

𝑏(𝑡) = 𝑢(𝑡 − 𝑎) − 𝑢(𝑡 − 𝑏) 𝑏 𝑏(𝑡) = {
0 𝑡 < 𝑎,
1 𝑎 ⩽ 𝑡 < 𝑏
0 𝑡 ⩾ 𝑏.

 

The graph of a bump function is given in Fig. 3, constructed from two step 

functions. Step and bump functions are useful to construct more general piecewise 

continuous functions. 
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A 

 

گۆڕینی لاپلاس ئامرازێکی بەهێزە کە بۆ چارەسەرکردنی کێشەی جۆراوجۆری : پوختە

 رس بۆستراتیژەکە بریتییە لە گۆڕینی هاوکێشە جیاوازەکانی قو. بەهای سنوور داڕێژراوە

اتر دو. دەهێنرێنکێشەی سادە لە ناوچەی لاپلاس، کە تێیدا چارەسەرەکان بە ئاسانی بەدەست 

 . گۆڕانکاری پێچەوانەی لاپلاس جێبەجێ دەکات بۆ چارەسەرکردنی کێشە سەرەتاییەکان

لاسی لاپ ئەم پرۆژەیە لە سێ بەش پێکهاتووە؛ بەشی یەکەم پێناسەی گۆڕینی لاپلاس و گۆڕینی

ێشە بەشی دووەم پەیوەندی بە هاوک. پێچەوانەی هەندێک لە کردارە سەرەتاییەکان دەکات

ڵەتی ە حاۆزەکەی ئینڤێرسیۆنەوە هەیە و ڕوونکردنەوەی گۆڕانکارییەکانی برۆمیچ دەدات لئاڵ

 لە بە شی سێیە م چە ند داواکارییە ک چاره سە ر کراون. خاڵی لق

قیمة یعد تحویل لابلاس أداة قویة تمت صیاغتها لحل مجموعة متنوعة من مشاكل ال :ملخص

 لمعادلاتالحدیة. تتمثل الاستراتیجیة في تحویل ا

ول التفاضلیة الصعبة إلى مشاكل بسیطة في مجال لابلاس ، حیث یمكن الحصول على الحل

 بسهولة. ثم یطبق المرء تحویل لابلاس

 .العكسي لاسترداد حل المشكلات الأصلیة

لاس یتكون هذا المشروع من ثلاثة أجزاء. یحدد الجزء الأول تحویل لابلاس وتحویل لاب

 الأولیة. الجزءالعكسي لبعض الوظائف 

. في لفرعالثاني معني بصیغة الانعكاس المعقدة ویشرح تعدیل كفاف برومیتش في حالة نقطة ا

 الجزء الثالث یتم حل بعض التطبیقات
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