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ABSTRACT

We study linear second order ordinary differential equations. First we state some
methods for solving these equations and find particular solution of homogenous
linear second order ordinary differential equations. We give necessary conditions
for linear second order ordinary differential equations to be exact equation and the
integrating factor of linear second-order equations.
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INTRODUCTION

In this study consider linear homogeneous differential equation of second order
with variable coefficient, A differential equation is an equation involving some
function of interest along with a few of its derivatives. Typically, the function is
unknown, and the challenge is to determine what that function could possibly be.
Differential equations can be classified either as "ordinary” or as “partial”. An
ordinary differential equation is a differential equation in which the function in
question is a function of only one variable. Hence, its derivatives are the "ordinary"
derivatives encountered early in calculus. A partial differential equation is a
differential equation in which the function of interest depends on two or more
variables. Consequently, the derivatives of this function are the partial derivatives
developed in the later part of most calculus courses. The order of a differential
equation is simply the order of the highest order derivative explicitly appearing in
the equation. In practice, higher-order differential equations are usually more
difficult to solve than lower-order equations. Any function that satisfies a given
differential equation is called a solution to that differential equation. "Satisfies the
equation”, means that, if you plug the function into the differential equation and
compute the derivatives, then the result is an equation that is true no matter what
real value we replace the variable with. And if that resulting equation is not true for
some real values of the variable, then that function is not a solution to that
differential equation. Our main interest will be second-order differential equations,
both because it is natural to look at second-order equations after studying first-
order equations, 2 and because second-order equations arise in applications much

more often than do third-or fourth—order equations.
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CHAPTER ONE

1.1.Background

Definition 1.1.1. (Kishan 2006) mathmattically an equation can be defined as
astatment that supports the equality of two expressions which are connected by the

equals sign " =",

Example : 5x — 2 = 13

Definition1.1.2. (H. 2006) An equation containting the dervatives of one or more
dependent variable with respect to one or more independent variable is said to be

Differential equation (D.E).
1-ordinary differential equation

2-partial differential equation

Example: Z—z + 10y = e(x)

Definition 1.1.3. if a differential equation contains only ordinary derivatives of one
or more dependent variables with respect it is said ordinary differential equation
(0.D.E).



example : Z—i’+ 10y = e(x) one dependent variable and one independent

variable

Definition 1.1.4. A differential equation involving partial differential of one or
more dependent variable with respect to two pr more than two independent variable

is said partial differential equation (P.D.E).

Definition 1.1.5. the order of differential equation is the highest derivative present

in the equation.
Example: y'+y'" 4+ 4x = sinx third order (highest)

Definition 1.1.6. if a diffrentioal equation can be write as a polynomial in the
dependent variable or its derivative than its degree is the exponent of the highest

derivative is said degree of differential equation.
Example: y +3y=2 degree=1

Definition 1.1.7. A differential equation is said to be linear ordinary differential

equation if

1- the dependent variable y and all its derivatives y'.y".y™ are of the first degree

that is the power of each term in volving y isl.

2- the cofficients a,.a,.a,....a, of y'.y" .. y™ dependent on the independent

variables x



3- no transce dental functions of the dependent variable y in volving like

(siny.ey.log y .etc).

Definition 1.1.8. a differential is said to be non linear ordinary equation if it is not

a linear.

Type of first order differential is:

1. separable equation .
2. homogeneous method.
3. integrating factor.

4. exact differential.
1-separable equation: Z—Z =p(x)Q(x)

ydy = xdx + ¢

2- Homogeneous method: A function F(x.y) is called homogeneos function

nth degree if satisfy the relation
tR F(tx.ty) =tf,(x.y)
Example :. f(x.y) =xny tE€R
F(tx.ty) = (tx)*(ty)

= (t*x*)(ty)

=t°f(x.y)=F



3- Integrating factor :when multiply both side of non-exact D.E by suitable
factor in which changed in to exact D.E.

4- Exact diffrential eqe: A function f(x .y) is called exact function if it can be

written of the form

df (x.y) = (f/x)dx + (f/y)dy = 0

Definition 1.1.9. M(x.y)dx + N(x.y)dy = 0 is called Homogeneose .D.E

( H.D.E) if both functions M and N are H functions of the same degree .

Example: (x? +y?)dx+xydy =0 (1)
Suppos y/x =v
y = xv (2)
dy = xdv + vdx
sub.equ (2) inequ (1) we gets D.E
(x? + x*v?)dx + x*v(xdv + vdx) = 0
[x2(1 + v?) + x?v?]dx + x3vdv = 0 * (1/x(1 + 2v)
dy , v

2+

X 1+2v2

dv=0

In x +% In(1+2v?) =c
4lnx + In(1+ 2v?) = 4c
Inx* + In(1 + 2v?) = 4c

In[x*(1 + 2v?)] = 4c



x*(1+ 2v?%) = c1 wheree* =1
2
subst v = % x*(1+ 2(2;—2)) =cl

x*+2y?x? =c1 G.soluof D.E

Definition 1.1.10. (R.Diprima 2012)

second order linear equation Is an equation of the form y'+p)y' +

Q(x)y = R(x)

Example: solve y”" +3y' 4+ 2y =e* -3
Solution: we have A2 +31+2=0
Factoring gives A+2)A+1)=0 so 1e{-1,-2}
andwehave y, =e™ and y, =e ¥
Let y =Ae*+ B then
y' = Ae* and y" = Ae* qgivingas
y"+3y"'+ 2y = Ae* + 34e* + 24e* + 2B

= 64e”* + 2B

1

There fore y, =e*/6 —% we have

y = Cle_x + Cze_zx +i_§
6 2



1.2.Solutions to the Initial Value Problem (I'VP) (chuchill n.d.)

Here is the first of the two main results in this section. Second order linear
differential equations have solutions in the case that the equation coefficients are
continuous functions. Since the solution is unique when we specify two initial

conditions, the general solution must have two arbitrary integration constants.

Theorem1.2.1. (IVP). (chuchill n.d.) If the functions a,, a,,b are continuous on
a closed interval I € R, the constant t, € I, and y,.y, € R are arbitrary
constants, then there is a unique solution (y), defined on I, of the initial value

problem.
y'+a(0)y" +ag(t)y = b(t)

y(to) = ¥o y'(t) = ¥o

Definition 1.2.1. Two functions y;.y, are called linearly dependent iff they are

proportional. Otherwise, the functions are linearly independen.

Definition 1.2.2. An operator L is a linear operator iff for every pair of functions

Y1, Y, and constants c; . c, holds

L(cyy, + ¢cy2) = ¢L(y1) + cL(y3).

Example:
(@) Show that y, (t) =sin(t), y, (t) = 2 sin(t) are linearly dependent.

6



(b) Show that y; (t) = sin(t), y, (t) = tsin(t) are linearly independen
Solution:

Part (a): This is trivial, since 2y, (t) —y, (t) = 0.

Part (b): Find constants c,, ¢, such that for all t € R holds

c; sin(t) + ¢, tsin(t) = 0.

Evaluating at t = %and t = 37” we obtain

yi4 A _ T
¢+ CZ—OIft—Z

3m
Cl +?C2 :0$C1 :O,Cz :O.

y1, Y, linearly independent

Definition 1.2.3. (R.Diprima 2012) any linearly independent set y,, y,.... 5, of n
solution of the homogeneous nth-order differential equation on an interval is said

to be fundomental set of solution on the interval .

1
Example : Show that y; = tz and y, = t~lare fundamental solutions to the

equation

Solution: We first show that y, and y, are solutions to the differential equation,

since

1 3
yll yzr =11 1 = —t2 —=—t 2 =—t 2 =
yl y2 _t_i _t_l 2 2
2

w=|

Sincew # 0fort > 0, y,.y, from a fandametsl equation.

2t?y" +3ty' —y=0 t>0



It is not difficult to see that y,and y,are linearly independent. It is clear that they
are not proportional to each other. A proof of that statement is the following: Find

the constants ¢, and c,such that
0= ciy1tcyy,=cret +ce?t

tER=>0=c,et —2c,e %

The second equation is the derivative of the first one. Take t = 0 in both equations,

O:C1+C2,O:C1_2C2$C1:C2:O.

We conclude that y1 and y2 are fundamental solutions to the differential equation

above.

1.3.Wronskian (R.Diprima 2012)

The Wronskian Function. We now introduce a function that provides important

information about the linear dependency of two functions y1, y2. This function, W,

is called the Wronskian to honor the polish scientist Josef Wronski, who first

introduced this function in 1821 while studying a different problem.

Definition:- The Wronskian of the differentiable functions y,, y, is the function

Example :-Find the Wronskian of the functions:
(@) y; (t) =sin(t) and y, (t) = 2 sin(t). (Id)

(b) y, () = sin(t) and y, (t) = tsin(®). (Ii)



Solution:
Part (a): By the definition of the Wronskian:

sin(t) 2 sin(t)
cos(t) 2cos(t)

w0 = [ 2

= sin(t)2 cos(t) — cos(t)2 sin(t)

We conclude that wy, (t) = 0. Notice that y1 and y2 are linearly dependent.

Part (b): Again, by the definition of the Wronskian:

_|sin(t) tsin(t)
Wiz (0 = cos(t) tcos(t)

= sin(t)[ sin(t) + t cos(t) — cos(t)tsin(t)].
We conclude that wy, (t) = sin? (t).
Notice that y1 and y2 are linearly independent.

It is simple to prove the following relation between the Wronskian of two

functions and the linear dependency of these two function

Theorem (IVP) 1.3.1. If the functions a,. a,. b are continuous on a closed interval
| R,

the constantt, € I, and y,.y ; € R are arbitrary constants, then there is a unique

solution y, defined on I, of the initial value problem
y'+ a;(0)y' + ag(O)y = b(0).y(to) = yo

y'(to) = y;.

Theorem 1.3.2. (Linear Operator). (Agarwal 2008) The operator



L(y) =y" + a; Y+ a, Y, where a,, a, are continuous functions and y is a twice

differentiable function, is a linear operator.
Proof :This is a straightforward calculation:

L(ciyr + cy2) = (c1y1 + y2)"+a; (cyn + y2)' +ag (c1y1 + cys).

Recall that derivations is a linear operation and then reoorder terms in the following

way,

L(c;,y, + cy,) =cy' + a; ¢y +aycy; +¢c, ¥, + agc, Introduce the
definition of L back on the right-hand side. We then conclude that

L(ciy:s + cy2) =c; L(y1) + o L(32).

10



CHAPTER TWO

2.1. Reduction of Order Methods Sometimes a solution to a second
order (S. &. Rao 1996)

differential equation can be obtained solving two first order equations, one after the
other. When that happens we say we have reduced theorder of the equation. We use

the ideas in Chapter 1 to solve each first order equation.

In this section we focus on three types of differential equations where such
reduction oforder happens. The first two cases are usually called special second

order equations and thethird case is called the conservation of the energy.
We end this section with a method that provides a second solution to a second order

equation if you already know one solution. The second solution can be chosen not
proportional to the first one. This idea is called the reduction order method—
although all four ideas we study in this section do reduce the order of the original

equation.

2.1.1Theorem (Function y Missing) (G.simmons, Diffrentioal equations with

applicationsand historical 1991)

If a second order differential equation has the form .y" = f(t.y') thenv =
y' satisfies the first order equation v’ = f(t . v) the proof is trivial sO we go directly

to an example .

11



Example . Find the general solution of the second order nonlinear equation
y" = —=2t(y")*with initial conditions y(0) = 2 .y'(0) = —1.

Solution: Introduce v = y' Then v'=y" and

2 1 2
V'= =2tv > —=-2t = —;=—t + c.

1

So,— = t2 — c, that s, y'= . The initial condition implies

yr t2—c
1 "(0 ! 1 ! -
—_ = = —— = st = i
y (0) gl Y= @y
Then.y = | tf_tl + ¢ . We integrate using the method of partial fractions,
1 = L =<2 . 5% Hence,1 = a(t + 1)+ b(t — 1). Evaluating

(t2-1) t—Dt+1) ~ (-1 ' (t+D)
1
at t=1andt=-1wegeta =3 o b=—-

So — =§[1(t—1)—

t2—-1

1
(t+1)i

] . Therefore, the integral is simple to do.
y=-(Inlt — 1[-In]t + 1D+ ¢ .2 = y(0) =5 (0 - 0) + c.

We conclude y = %(lnlt —1l-In|t + 1|) + 2.

The case (b) is way more complicated to solve.

Example :. Find a second solution y, linearly independent to the solution
y1(t) = t of the differential equation

t2y" + 2ty’ — 2y = 0.

12



Solution: We look for a solution of the form y,(t) = t v(t). This implies that

!

y,=tv'+ v .

124

y'', = tv' + 2v.

So, the equation for v is given by

0= y"t? (tv'+ 2v)+2t (tv + v)— 2tv

= t3v" + (2¢t%+ 2t>)v' + (2t — 2t)v

r ! r 4 !
= 3" + (4tHv > v +ov = 0.

Notice that this last equation is precisely Eq, since in our case we have

2 2
y1 =t p(t)=;=> tv”+[2+?t]v’ = 0.

The equation for v is a first order equation for w = V'

, given by

= ——>= w() = ¢, t™*
= s w®) = o

.c; € R.

Therefore, integrating once again we obtain that v =c, t™3 + c3, Cy,
c3 € R.

and recalling that y2 =t v we then conclude that

y2 == Czt_3 + C3t.

Choosing ¢, =1 and c; =0 we obtain that y, (t) = t*. Therefore, a fundamental
solutionset to the original differential equation is given by

13



1
() =t y, (t) = 2

2.2. Charactaric polynomail (w.wright 2013) :

The characteristic polynomial and characteristic equation of the
second order linear homogeneous equation with constant coefficients
y' + a;y' + apy =0
are given by
p(r) = > + a4r + a, .p(r) = 0.
Example:-. Find solutions to the equation
y'+ 5y + 6y = 0.

Solution: We try to find solutions to this equation using simple test functions. For

example,
it is clear that power functions y = t™ won’t work, since the equation
nn — DtP2 4 50 tD 4 6" =0

cannot be satisfied for all t € R. We obtained, instead, a condition on t. This rules
outmmpower functions. A key insight is to try with a test function having a

derivative proportional to the original function,

y'(t) = ry(b).

Such function would be simplified from the equation. For example, we try now
with the test function y(t) = e™®.

14



If we introduce this function in the differential equation we get
(r’2+5r+6)e =0 r2+5r+6 = 0.

We have eliminated the exponential and any t dependence from the differential

equation,

and now the equation is a condition on the constant r. So we look for the

appropriate values
of r, which are the roots of a polynomial degree two,

r+=1.2

1
—5+V25 - 24—o(-5+1) =

We have obtained two different roots, which implies we have two different

solutions,
yi(t) = e 2t

Y, () =e” 3t

These solutions are not proportional to each other, so the are fundamental solutions
to the differential equation in . Therefore, Theorem in § 2.1 implies that we have

found all possible solutions to the differential equation, and they are given by

y(t) = ¢; e '+ ¢, e73t, c;.c; €ER

15



Example :- Find the solution y of the initial value problem
Y'"+5y+6y=0 y0=1 y'(0) = -1

Solution: We know that the general solution of the differential equation above

is Ygen(t) = ¢y 72t + c_ e3¢
We now find the constants c+ and c- that satisfy the initial conditions above,
1 =y0)=c, + c_
—-1=vy'(0)=—-2c; —3c_
> ct+=2.c—= —1.
Therefore, the unique solution to the initial value problem is
y(t) = 2e7%t — e3¢,
Example:- Find the general solution ygen of the differential equation
2y" =3y +y = 0.

Solution: We look for every solutions of the form y(t) = e", where r is solution of

the characteristic equation

1
2r:2 = 3r+1=0>=r :Z(3+V9_8)

= r =%(3—m)

t
Therefore, the general solution of the equation above yg.,(t) = c; e’ + c_ ez,

16



CHAPTER THREE

3.1.Euler equidmential equation (E.coddington, An introduction to ordinary
diffrentioal equations 1961)

The Euler equidimensional equation for the unknown y with singular
point at t, € R is given by the equation below, where al and a0 are constants,

(t —ty)2y" +al(t —ty)y + ayy = 0.

example:- Find the general solution of the Euler equation below for t > 0,
t2y" + 4ty'+ 2y = 0.
Solution: We look for solutions of the form y(t) = t"
, which impliesthe ty'(t) = rt"™ t2y"(t) = r(r — Dt"
therefore, introducing this function y into the differential equation we obtain
[rfr— D +4r+2]t" =0 rr—1)+4r+2 =0

The solutions are computed in the usual way,
1 1
r2+3r+2=0> r+=§[—3+\/9—8].r—=5[—3—\/9—8]

r—=1 .r+=2
So the general solution of the differential equation above is given by

Vgen(t) = cot™H+ c_ t7?

17



Example . Find the general solution of the Euler equation below for t > 0,
t2y" — 3ty' + 4y = 0.

Solution: We look for solutions of the form y(t) = t”

, then the constant r must be solution of the Euler characteristic polynomial

r(r-1)-3r+4=0r%-4r+4=0=>r+=r-=2.

Therefore, the general solution of the Euler equation for t > 0 in this case is given

by

ygen(t) = c+t? + ¢ —t? In(t).

Example . Find the general solution of the Euler equation below for
t>0,
t2y" — 3ty'+ 13y = 0.
Solution: We look for solutions of the form y(t) = t", which implies that
ty'(t) = rt”
t2y"(t) = r(r — D"

therefore, introducing this function y into the differential equation we obtain

[r(r — 1) — 3r + 13] =0 rr—-1) —3r+ 13 = 0.

The solutions are computed in the usual way,

18



1
r?2 —4r + 13 = 0 = r+ == [4+V-36]

2
1
r—=§[4—\/—_36]

r+=2 4+ 3i . r—= 2 — 3i.
So the general solution of the differential equation above is given by

ygen(t) = c+ t?*3 4+ ¢ — (=30

3.2. Real Solutions for Complex Roots (E.coddington, An introduction to
ordinary diffrentioal equations 1999)

We study in more detail the solutions to the Euler equation in the case that the

indicial polynomial has complex roots. Since these roots have the form

a1 - 1 1

al—-1

r-= -3 -~ [((a, — D2 — 4ay)

2

the roots are complex-valued in the case (p, — 1)°— 4 p, < 0. We use the notation

al—-1 (a1 -1)2

re-=o+if, witha = —% ﬂ=J(a0— 2.

The fundamental solutions in Theorem 2.4.2 are the complex-valued functions
Y+ (t) - t(oc+i8) Y — (t) — t(oc—iB)

The gebneral solution constructed from these solutions is

19



ygen(t) = ¢ +t@+By + ¢ —tl@tiBy 4 c—€eC.

This formula for the general solution includes real valued and complex valued

solutions.

But it is not so simple to single out the real valued solutions. Knowing the real
valued solutions could be important in physical applications. If a physical system is
described by a differential equation with real coefficients, more often than not one
is interested in finding real valued solutions. For that reason we now provide a new

set of fundamental solutions

that are real valued. Using real valued fundamental solution is simple to separate all

real valued solutions from the complex valued ones.

3.2.1. Theorem (Real valued fundamental solution ) (E.coddington, An

introduction to ordinary diffrentioal equations 1999)
If the differential equation
(t = to)?y" + a;(t — te)y'+ agy =0 t >t
where al, a0, t0 are real constants, has indicial polynomial with complex roots
r+ —= a % i and complex valued fundamental solutions for t > ¢,

Y () = (t — t) P O =@ = (t =t then

the equation also has real valued fundamental solutions for t > tO given by
y+ ()= (t — ty)acos(BIn(t — t,))

y= ()= (t = ty) sin (BIn(t- to)

20



Proof : For simplicity consider the case to to = 0. Take the solutions
Y+ () = t@+ib)
Y= = 1@
Rewrite the power function as follows,
Y+ () = t@HB. = pagiB = pa i) —pa o fin@® o
Y+ (t) = t? ehiln®
A similar calculation yields
Y —(t) = t% ehiln®
Recall now Euler formula for complex exponentials,
e% = cos(8) + isin(0) then we get

y + (@) = t¥cos (BIn(t)) y — () = e%[cos— (B In(t))

Since “y+ and “y- are solutions to Eq, so are the function

1 1
y1(®) =5 1® + y201 . y2) = -[1(1) - y2(t)]

It is not difficult to see that these functions are
y+(t) =t¥cosBin(t) . y—(t) =t% sinpf In(t)

To prove the case having t0 6= 0, just replace t by (t — t0) on all steps above. This

establishes the Theorem.

21



Example Find a real-valued general solution of the Euler equation below for t > 0,
t?y" — 3ty'+ 13y = 0.
Solution: The indicial equation is 7"~ — 3r + 13 = 0, with solutions
2 —4r + 13 =0=>7r+=2 + 3i r—= 2 — 3i.
A complex-valued general solution for t > 0 is,
ygen(t) = “c+ t 2+3D4 ~¢. ¢ (273D
¢+, c-eC
A real-valued general solution for t > 0 is
ygen(t) = c+ t?cos(3 In(t))+ c- tsin (3 In(t))

c+,c- €C.

22
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