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Abstract 

In the work we Stade to system of Linear Differential Equation. We describe the 

main ideas to solve certain differential equation. We’re talking about a group of 

definition (equations, differential equation, ordinary differential equation, partial 

differential equation order, degree, Linear, Non linear,quasi-Linear differential 

equation). Also we talk about content system of Linear Differential equation, 

we’re talking about the ways in which the system of linear differential equation is 

implement. First by, first order linear differential system and homogeneous and 

diagonalizable ,we’re explain it on same example and Initial value problem and 

Theorem (Existence and uniqueuss) and Theorem (first order Reduction)and 

theorem (second order Reduction)we have another road and that’s it 

(homogeneous system). In this way we use some definition and explain them for 

example, we’re talk about homogenous diagonalizable system. In one of the other 

ways. 
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Introduction 

Newton's second law of motion for point particles is one of the first defferential 

equations ever written. Even this early example of a deferential equation consists 

not of a single equation but of a system of three equation on three unknowns. The 

unknown functions are the particle three coordinates in space as function of time. 

One important difficulty to solve a defferential system is that the equations in a 

system are usually coupled. One cannot solve for one unknown function without 

knowing the other unknowns. In this chapter we study how to solve the system in 

the particular case that the equations can be uncoupled. We call such systems 

diagonalizable. Explicit formulas for the solutions can be written in this case. 

Later we generalize this idea to systems that cannot be uncoupled. 
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CHAPTER ONE 

Definition  

Equation 1.1[ (M, 2006)]: An equation is a mathematical statement containing 

an equals sign. Numbers may be represented by unknown variables. To solve an 

equation, the value of these variables must be found.  

1.1 Example: 5x2 +2x=16 

Differential Equation 1.2 [ (Kishan, 2006)] Any relation involving the 

dependent variable, independent variable and the differential coefficient of the 

dependent variable with respect to the independent variable is known as a 

differential equation. 

 Example: 

 1.
𝑑𝑦

𝑑𝑥
 = 𝑐𝑜𝑡𝑥 

 2.. yʹ=3x+yʹʹ 

Ordinary Differential Equation 1.3[ (M, 2006)] : In mathematics, an ordinary 

differential equation (ODE) is a differential equation containing one or more 

functions of one independent variable and its derivatives. He term ordinary is used 

in contrast with the term partial differentia equation which may be with respect to 

more then one independent variable 

 For Example . 

𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 𝑒𝑥       𝑦′′′ − 3𝑦(𝑦′′) − 2𝑥(𝑦ʹ)3 = 7 
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Partial Differential Equation 1.4[ (M, 2006)]: A partial differential equation (or 

briefly a PDE) is a mathematical equation that involves two or more independent 

variables, an unknown function (dependent on those variables), and partial 

derivatives of the unknown function with respect to the indepen variables.  

For Example . 

𝜕2𝑧

𝜕𝑥𝜕𝑦
+ 6𝑥𝑦 

𝜕2𝑧

𝜕𝑥2
= 2𝑥 

 Order of a differential equation1.5[ (M, 2006)]: The order of a differential 

equation is the highest order of the derivatives of the unknown function appearing 

in the equation in the simplest cases, equations may be solved by direct integration 

 For Example  

𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 𝑒𝑥    order 1 

𝑑𝑦2

𝜕𝑑
+ 𝑦 𝑐𝑜𝑠 𝑥 +

𝑑𝑦

𝑑𝑥
= tan ℎ𝑥  order 2 

 

Degree of a differential equation 1.6: [Kishan, 2006] The degree of a 

differential equation is the degree of the highest differential coefficient, which 

occurs in it, after when the differential equation has been cleared of radical and 

fractional powers. 

 For Example  

𝑑𝑦2

𝑑𝑥2
+ (

𝑑𝑦

𝑑𝑥
)3 + 𝑦 = 𝑜    Degree 1 

(
𝑑𝑦2

𝑑𝑥2
)3 +

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑜    Degree 3 
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Liner Defferential Equation1.7[ (M, 2006)]: A differential equation in any order 

is said to be linear if satisfies: 

1- The dep.v is exist and of the first degree. 

2- The derivatives 𝑦′, 𝑦′′, 𝑦′′′ exist and each of them of the first degree. 

 3- The dep.v and the derivatives not multiply each other. 

For example : 

𝑦′′ + 𝑥𝑦′′ + 2𝑦 = tan 𝑥 

𝑦′′ + 𝑦 = 𝑜 

𝑦′′ + 𝑦 + 𝑥 = 𝑜 

Non-Linear Differential Equation1.8[ (M, 2006)]:. When an equation is not 

linear in unknown function and its derivatives, then it is said to be a nonlinear 

differential equation. It gives diverse solutions which can be seen for chaos. 

For example: 

𝑑𝑦2

𝑑𝑥2
+ 3𝑥 (

𝑑𝑦

𝑑𝑥
)

2

+ 5𝑦 = 𝑥2 

𝑦′′ + 4𝑦𝑦′ + 2𝑦 = cos 𝑥 

𝑦′′ + 3𝑥𝑦′ + 5𝑦6 = 𝑥2 

. Quasi-linear equation1.9[ (M, 2006)]: A first order p.d.e. Is said to be a quasi-

linear equation if it is linear in p and q,  

For example :  

(𝑦′′′)3𝑒𝑥 + 𝑦′′ + 𝑦 = 𝑜 
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CHAPTER 2 

                         Systems of Linear Defferential Equations  

 

Definition 2.1[ (Sons J. a., 1967)]:  An  𝑛 × 𝑛 first order linear differential 

system is the equation 

𝑥́(𝑡) =  𝐴(𝑡)𝑥(𝑡) +  𝑏(𝑡), 

where the 𝑛 × 𝑛 coefficient matrix A, the source n-vector b, and the unknown n-

vector x are given in components by 

 

𝐴(𝑡) = [
𝑎11(𝑡) ⋯  𝑎1𝑛(𝑡)

 ⋮                 ⋮
𝑎𝑛1(𝑡)  ⋯   𝑎𝑛𝑛(𝑡)

] , 𝑏(𝑡) = [
𝑏1(𝑡)

⋮
𝑏𝑛(𝑡)

] ,     𝑥(𝑡) = [
𝑥1(𝑡)

⋮
𝑥𝑛(𝑡)

] . 

The system in  is called homogeneous 𝑖𝑓𝑓 the source vector 𝑏 =  0, of constant 

coefficients 𝑖𝑓𝑓 the matrix A is constant, and diagonalizable 𝑖𝑓𝑓 the matrix A is 

diagonalizable. 

 

Example2.1:  Use matrix notation to write down the 2 × 2 system given by 

𝑥1
′ = 𝑥1 − 𝑥2,

𝑥2
′ = −𝑥1 + 𝑥2.

 

Solution: In this case, the matrix of coefficients and the unknown vector have the 

form 

𝐴 = [
1 −1

−1 1
] ,  𝒙(𝑡) = [

𝑥1(𝑡)
𝑥2(𝑡)

] 

This is an homogeneous system, so the source vector 𝒃 = 𝟎. The differential 

equation can be written as follows, 

𝑥1
′ = 𝑥1 − 𝑥2

𝑥2
′ = −𝑥1 + 𝑥2

⇔ [
𝑥1

′

𝑥2
′ ] = [

1 −1
−1 1

] [
𝑥1

𝑥2
]  ⇔  𝑥′ = 𝐴𝑥. 
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Example2.2 : Find the explicit expression for the linear system 𝒙′ = 𝐴𝒙 + 𝒃, 

where 

𝐴 = [
1 3
3 1

] ,  𝒃(𝑡) = [ 𝑒𝑡

2𝑒3𝑡] ,  𝒙 = [
𝑥1

𝑥2
] 

Solution: The 2 × 2 linear system is given by 

[
𝑥1

′

𝑥2
′ ] = [

1 3
3 1

] [
𝑥1

𝑥2
] + [ 𝑒𝑡

2𝑒3𝑡] ,  ⇔  
𝑥1

′ = 𝑥1 + 3𝑥2 + 𝑒𝑡

𝑥2
′ = 3𝑥1 + 𝑥2 + 2𝑒3𝑡 .

 

Example2.3 : Show that the vector valued functions 𝒙(1) = [
2
1

] 𝑒2𝑡 and 𝒙(2) =

[
1
2

] 𝑒−𝑡 are solutions to the 2 × 2 linear system 𝒙′ = 𝐴𝒙, where 𝐴 = [
3 −2
2 −2

]. 

Solution: We compute the left-hand side and the right-hand side of the differential 

equation above for the function 𝒙(1) and we see that both side match, that is, 

𝐴𝒙(1) = [
3 −2
2 −2

] [
2
1

] 𝑒2𝑡 = [
4
2

] 𝑒2𝑡 = 2 [
2
1

] 𝑒2𝑡;  𝒙(1)′ = [
2
1

]  (𝑒2𝑡)′ = [
2
1

] 2𝑒2𝑡 

so we conclude that 𝑥(1)′ = 𝐴𝑥(1). Analogously, 

𝐴𝒙(2) = [
3 −2
2 −2

] [
1
2

] 𝑒−𝑡 = [
−1
−2

] 𝑒−𝑡 = − [
1
2

] 𝑒−𝑡;  𝒙(2)′ = [
1
2

]  (𝑒−𝑡)′

= − [
1
2

] 𝑒−𝑡 

so we conclude that 𝑥(2)′ = 𝐴𝑥(2). 

Definition 2.2[ (Sons J. a., 1967)] An Initial Value Problem for an 𝑛 × 𝑛 linear 

differential system is the following: Given an 𝑛 × 𝑛 matrix valued function 𝐴, and 

an 𝑛-vector valued function 𝒃, a real constant 𝑡0, and an 𝑛-vector 𝒙0, find an 𝑛-

vector valued function 𝒙 solution of 

𝒙′ = 𝐴(𝑡)𝒙 + 𝒃(𝑡),  𝑥(𝑡0) = 𝑥0. 
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Example2.4 : Write down explicitly the initial value problem for 𝒙 = [
𝑥1

𝑥2
] given 

by 

𝒙′ = 𝐴𝒙,  𝒙(0) = [
2
3

] ,  𝐴 = [
1 3
3 1

] 

Solution: This is a 2 × 2 system in the unknowns 𝑥1, 𝑥2, with two linear equations 

𝑥1
′ = 𝑥1 + 3𝑥2

𝑥2
′ = 3𝑥1 + 𝑥2,

 

and the initial conditions 𝑥1(0) = 2 and 𝑥2(0) = 3. 

The main result about existence and uniqueness of solutions to an initial value 

problem for a linear system is also analogous to Theorem 2.1.2 

Theorem : (Existence and Uniqueness) 2.1 [ (Sons J. a., 1967)]. If the functions 

𝐴 and 𝒃 are continuous on an open interval 𝐼 ⊂ ℝ, and if 𝒙0 is any constant vector 

and 𝑡0 is any constant in 𝐼, then there exist only one function 𝒙, defined an interval 

𝐼 ⊂ 𝐼 with 𝑡0 ∈ 𝐼, solution of the initial value problem 

𝒙′ = 𝐴(𝑡)𝒙 + 𝒃(𝑡),  𝒙(𝑡0) = 𝒙0. 

Example2.5. Find the explicit expression of the most general 3 × 3 homogeneous 

linear differential system. 

Solution: This is a system of the form 𝒙′ = 𝐴(𝑡)𝒙, with 𝐴 being a 3 × 3 matrix. 

Therefore, we need to find functions 𝑥1, 𝑥2, and 𝑥3 solutions of 

𝑥1
′ = 𝑎11(𝑡)𝑥1 + 𝑎12(𝑡)𝑥2 + 𝑎13(𝑡)𝑥3

𝑥2
′ = 𝑎21(𝑡)𝑥1 + 𝑎22(𝑡)𝑥2 + 𝑎13(𝑡)𝑥3

𝑥3
′ = 𝑎31(𝑡)𝑥1 + 𝑎32(𝑡)𝑥2 + 𝑎33(𝑡)𝑥3.

 

Remark: The initial condition vector 𝒙0 represents 𝑛 conditions, one for each 

component of the unknown vector 𝑥. 
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Theorem . (First Order Reduction)2.2[ (Sons J. a., 1967)]. A function y solves 

the second order equation  

𝑦′′ + 𝑎1(𝑡)𝑦′ + 𝑎0(𝑡)𝑦 = 𝑏(𝑡), 

iff the functions 𝑥1 = 𝑦 and 𝑥2 = 𝑦′ are solutions to the 2 × 2 first order 

differential system 

𝑥1
′ = 𝑥2,

𝑥2
′ = −𝑎0(𝑡)𝑥1 − 𝑎1(𝑡)𝑥2 + 𝑏(𝑡).

 

Example2.6 . Express as a first order system the second order equation 

𝑦′′ + 2𝑦′ + 2𝑦 = sin (𝑎𝑡). 

Solution: Introduce the new unknowns 

𝑥1 = 𝑦,  𝑥2 = 𝑦′ ⇒ 𝑥1
′ = 𝑥2. 

Then, the differential equation can be written as 

𝑥2
′ + 2𝑥2 + 2𝑥1 = sin (𝑎𝑡). 

We conclude that 

𝑥1
′ = 𝑥2,  𝑥2

′ = −2𝑥1 − 2𝑥2 + sin (𝑎𝑡) 

Theorem. (Second Order Reduction). 2.3[ (Sons J. a., 1967)] Any 2 × 2 

constant coefficients linear system 𝒙′ = 𝐴𝒙, with 𝒙 = [
𝑥1

𝑥2
], can be written as 

second order equations for 𝑥1 and 𝑥2, 

𝒙′′ − tr (𝐴)𝒙′ + det (𝐴)𝒙 = 0. 

Furthermore, the solution to the initial value problem 𝒙′ = 𝐴𝒙, with 𝒙(0) = 𝒙0, 

also solves the initial value problem given by Eq. (5.1.6) with initial condition 
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𝑥(0) = 𝑥0,  𝑥′(0) = 𝐴𝑥0. 

Example2.7 . Express as a single second order equation the 2 × 2 system and 

solve it, 

𝑥1
′ = −𝑥1 + 3𝑥2,

𝑥2
′ = 𝑥1 − 𝑥2.

 

Solution: Instead of using the result from Theorem 2.3, we solve this problem 

following the second proof of that theorem. But instead of working with 𝑥1, we 

work with 𝑥2. We start computing 𝑥1 from the second equation: 𝑥1 = 𝑥2
′ + 𝑥2. 

We then introduce this expression into the first equation, 

(𝑥2
′ + 𝑥2)′ = −(𝑥2

′ + 𝑥2) + 3𝑥2 ⇒  𝑥2
′′ + 𝑥2

′ = −𝑥2
′ − 𝑥2 + 3𝑥2, 

so we obtain the second order equation 

𝑥2
′′ + 2𝑥2

′ − 2𝑥2 = 0 

We solve this equation with the methods studied in Chapter 2, that is, we look for 

solutions of the form 𝑥2(𝑡) = 𝑒𝑟𝑡, with 𝑟 solution of the characteristic equation 

𝑟2 + 2𝑟 − 2 = 0 ⇒  𝑟± =
1

2
[−2 ± √4 + 8] ⇒  𝑟± = −1 ± √3 

Therefore, the general solution to the second order equation above is 

𝑥2 = 𝑐+𝑒(1+√3)𝑡 + 𝑐−𝑒(1−√3)𝑡 ,  𝑐+, 𝑐− ∈ ℝ. 

Since 𝑥1 satisfies the same equation as 𝑥2, we obtain the same general solution 

𝑥1 = 𝑐̃+𝑒(1+√3)𝑡 + 𝑐̃−𝑒(1−√3)𝑡 ,  𝑐̃+, 𝑐̃− ∈ ℝ 

Example2.8 . Write the first order initial value problem 

𝒙′ = 𝐴𝒙,  𝐴 = [
1 2
3 4

] ,  𝒙 = [
𝑥1

𝑥2
] ,  𝒙(0) = [

5
6

] 



10 
 

as a second order initial value problem for 𝑥1. Repeat the calculations for 𝑥2. 

Solution: From Theorem 2.3 we know that both 𝑥1 and 𝑥2 satisfy the same 

differential equation. Since tr (𝐴) = 1 + 4 = 5 and det (𝐴) = 4 − 6 = −2, the 

differential equations are 

𝑥1
′′ − 5𝑥1

′ − 2𝑥1 = 0,  𝑥2
′′ − 5𝑥2

′ − 2𝑥2 = 0.  

From the same Theorem we know that the initial conditions for the second order 

differential equations above are 𝒙(0) = 𝒙0 and 𝒙′(0) = 𝐴𝒙0, that is 

𝒙(0) = [
𝑥1(0)
𝑥2(0)

] = [
5
6

] ,  𝒙′(0) = [
𝑥1(0)
𝑥2(0)

] = [
1 2
3 4

] [
5
6

] = [
17
39

] 

therefore, the initial conditions for 𝑥1 and 𝑥2 are 

𝑥1(0) = 5,  𝑥1
′ (0) = 17,   and  𝑥2(0) = 6,  𝑥2

′ (0) = 39. 

Homogeneous Systems2.2:[ (Sons J. W., 1969)] 

 Solutions to a linear homogeneous differential system satisfy the superposition 

property: Given two solutions of the homogeneous system, their linear 

combination is also a solution to that system. 

Example2.9 . Verify that 𝒙(1) = [
1
1

] 𝑒−2𝑡 and 𝒙(2) = [
−1
1

] 𝑒4𝑡 and 𝒙(1) + 𝒙(2) are 

solutions to the homogeneous linear system 

𝒙′ = 𝐴𝒙,  𝐴 = [
1 −3

−3 1
] 

Solution: The function 𝒙(1) is solution to the differential equation, since 

𝒙(1)′ = −2 [
1
1

] 𝑒−2𝑡 ,  𝐴𝒙(1) = [
1 −3

−3 1
] [

1
1

] 𝑒−2𝑡 = [
−2
−2

] 𝑒−2𝑡 = −2 [
1
1

] 𝑒−2𝑡 
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We then conclude that 𝒙(1)′ = 𝐴𝒙(1). Analogously, the function 𝒙(2) is solution 

to the differential equation, since 

𝒙(2)′
= 4 [

−1
1

] 𝑒4𝑡 ,  𝐴𝒙(2) = [
1 −3

−3 1
] [

−1
1

] 𝑒4𝑡 = [
−4
4

] 𝑒4𝑡 = 4 [
−1
1

] 𝑒4𝑡 

We then conclude that 𝒙(2)′ = 𝐴𝒙(2). To show that 𝒙(1) + 𝒙(2) is also a solution 

we could use the linearity of the matrix-vector product, as we did in the proof of 

the Theorem . Here we choose the straightforward, although more obscure, 

calculation: On the one hand, 

𝒙(1) + 𝒙(2) = [𝑒−2𝑡 − 𝑒4𝑡

𝑒−2𝑡 + 𝑒4𝑡]  ⇒  (𝒙(1) + 𝒙(2))
′

= [−2𝑒−2𝑡 − 4𝑒4𝑡

−2𝑒−2𝑡 + 4𝑒4𝑡] 

On the other hand, 

𝐴(𝒙(1) + 𝒙(2)) = [
1 −3

−3 1
] [𝑒−2𝑡 − 𝑒4𝑡

𝑒−2𝑡 + 𝑒4𝑡] = [ 𝑒−2𝑡 − 𝑒4𝑡 − 3𝑒−2𝑡 − 3𝑒4𝑡

−3𝑒−2𝑡 + 3𝑒4𝑡 + 𝑒−2𝑡 + 𝑒4𝑡] 

that is 

𝐴(𝒙(1) + 𝒙(2)) = [−2𝑒−2𝑡 − 4𝑒4𝑡

−2𝑒−2𝑡 + 4𝑒4𝑡] 

We conclude that (𝒙(1) + 𝒙(2))
′

= 𝐴(𝒙(1) + 𝒙(2)). 

We now introduce the notion of a linearly dependent and independent set of 

functions. 

 

 

Definition2.3 [ (Sons J. a., 1967)]. A set of 𝑛 vector valued functions 

{𝒙(1), ⋯ , 𝒙(𝑛)} is called linearly dependent on an interval 𝐼 ∈ ℝ iff for all 𝑡 ∈ 𝐼 

there exist constants 𝑐1, ⋯ , 𝑐𝑛, not all of them zero, such that it holds 
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𝑐1𝒙(1)(𝑡) + ⋯ + 𝑐𝑛𝒙(𝑛)(𝑡) = 𝟎 

A set of 𝑛 vector valued functions is called linearly independent on I iff the set 

is not linearly dependent. 

Definition2.4[ (Sons J. W., 1969)] . (a) The set of functions {𝒙(1), ⋯ , 𝒙(𝑛)} is a 

fundamental set of solutions of the equation 𝒙′ = 𝐴𝒙 iff the set {𝒙(1), ⋯ , 𝒙(𝑛)} 

is linearly independent and 𝒙(𝑖)′ = 𝐴𝒙(𝑖), for every 𝑖 = 1, ⋯ , 𝑛. 

(b) The general solution of the homogeneous equation 𝒙′ = 𝐴𝒙 denotes any 

vector valued function 𝒙gen that can be written as a linear combination 

𝒙gen(𝑡) = 𝑐1𝒙(1)(𝑡) + ⋯ + 𝑐𝑛𝒙(𝑛)(𝑡) 

where 𝒙(1), ⋯ , 𝒙(𝑛) are the functions in any fundamental set of solutions of 𝒙′ =

𝐴𝒙, while 𝑐1, ⋯ , 𝑐𝑛 are arbitrary constants. 

Example2.10 . Show that the set of functions {𝑥(1) = [
1
1

] 𝑒−2𝑡 , 𝒙(2) = [
−1
1

] 𝑒4𝑡} 

is a fundamental set of solutions to the system 𝒙′ = 𝐴𝒙, where 𝐴 = [
1 −3

−3 1
]. 

Solution: In Example 2.9 we have shown that 𝒙(1) and 𝒙(2) are solutions to the 

differential equation above. We only need to show that these two functions form 

a linearly independent set. That is, we need to show that the only constants 𝑐1, 𝑐2 

solutions of the equation below, for all 𝑡 ∈ ℝ, are 𝑐1 = 𝑐2 = 0, where 

𝑶 = 𝑐1𝒙(1) + 𝑐2𝒙(2) = 𝑐1 [
1
1

] 𝑒−2𝑡 + 𝑐2 [
−1
1

] 𝑒4𝑡 = [𝑒−2𝑡 −𝑒4𝑡

𝑒−2𝑡 𝑒4𝑡 ] [
𝑐1

𝑐2
] = 𝑋(𝑡)𝒄 

where 𝑋(𝑡) = [𝒙(1)(𝑡), 𝒙(2)(𝑡)] and 𝒄 = [
𝑐1

𝑐2
]. Using this matrix notation, the 

linear system for 𝑐1, 𝑐2 has the form 

𝑋(𝑡)𝒄 = 𝟎. 
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We now show that matrix 𝑋(𝑡) is invertible for all 𝑡 ∈ ℝ. This is the case, since 

its determinant is 

det (𝑋(𝑡)) = |𝑒
−2𝑡 −𝑒4𝑡

𝑒−2𝑡 𝑒4𝑡 | = 𝑒2𝑡 + 𝑒2𝑡 = 2𝑒2𝑡 ≠ 0  for all 𝑡 ∈ ℝ. 

Since 𝑋(𝑡) is invertible for 𝑡 ∈ ℝ, the only solution for the linear system above is 

𝒄 = 𝟎, that is, 𝑐1 = 𝑐2 = 0. We conclude that the set {𝒙(1), 𝒙(2)} is linearly 

independent, so it is a fundamental set of solution to the differential equation 

above. 

 

Example2.11 . Find the general solution to differential equation in Example 2.3 

and then use this general solution to find the solution of the initial value problem 

𝒙′ = 𝐴𝒙,  𝒙(0) = [
1
5

] ,  𝐴 = [
3 −2
2 −2

] 

Solution: From Example 2.3 we know that the general solution of the differential 

equation above can be written as 

𝒙(𝑡) = 𝑐1 [
2
1

] 𝑒2𝑡 + 𝑐2 [
1
2

] 𝑒−𝑡 

Before imposing the initial condition on this general solution, it is convenient to 

write this general solution using a matrix valued function, 𝑋, as follows 

𝒙(𝑡) = [2𝑒2𝑡 𝑒−𝑡

𝑒2𝑡 2𝑒−𝑡] [
𝑐1

𝑐2
]  ⇔  𝒙(𝑡) = 𝑋(𝑡)𝒄 

where we introduced the solution matrix and the constant vector, respectively, 

𝑋(𝑡) = [2𝑒2𝑡 𝑒−𝑡

𝑒2𝑡 2𝑒−𝑡] ,  𝒄 = [
𝑐1

𝑐2
] 

The initial condition fixes the vector 𝑐, that is, its components 𝑐1, 𝑐2, as follows, 
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𝒙(0) = 𝑋(0)𝑐 𝑐 = [𝑋(0)]−1𝒙(0) 

Since the solution matrix 𝑋 at 𝑡 = 0 has the form, 

𝑋(0) = [
2 1
1 2

] ⇒ [𝑋(0)]−1 =
1

3
[

2 −1
−1 2

] 

introducing [𝑋(0)]−1 in the equation for 𝑐 above we get 

𝒄 =
1

3
[

2 −1
−1 2

] [
1
5

] = [
−1
3

] ⇒ {
𝑐1 = −1
𝑐2 = 3

 

We conclude that the solution to the initial value problem above is given by 

𝑥(𝑡) = − [
2
1

] 𝑒2𝑡 + 3 [
1
2

] 𝑒−𝑡 

Definition2.5 [ (Kishan, 2006)]. (a) A solution matrix of any set of vector 

functions {𝒙(1), ⋯ , 𝒙(𝑛)}, solutions to a differential equation 𝒙′ = 𝐴𝒙, is the 𝑛 × 𝑛 

matrix valued function 

𝑋(𝑡) = [𝒙(1)(𝑡), ⋯ , 𝒙(𝑛)(𝑡)] 

𝑋 is called a fundamental matrix iff the set {𝒙(1), ⋯ , 𝒙(𝑛)} is a fundamental set. 

(b) The Wronskian of the set {𝒙(1), ⋯ , 𝒙(𝑛)} is the function 𝑊(𝑡) = det (𝑋(𝑡)) 

 

 

Example2.12 . Find two fundamental matrices for the linear homogeneous system 

in Example .2.9 

Solution: One fundamental matrix is simple to find, we use the solutions in 

Example , 
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𝑋 = [𝒙(1), 𝒙(2)] ⇒  𝑋(𝑡) = [𝑒−2𝑡 −𝑒4𝑡

𝑒−2𝑡 𝑒4𝑡 ] 

A second fundamental matrix can be obtained multiplying by any nonzero 

constant each solution above. For example, another fundamental matrix is 

𝑋̃ = [2𝒙(1), 3𝒙(2)] ⇒  𝑋̃(𝑡) = [2𝑒−2𝑡 −3𝑒4𝑡

2𝑒−2𝑡 3𝑒4𝑡 ] 

Remarks: 

(a) In the case of a constant matrix 𝐴, the equation above for the Wronskian 

reduces to 

𝑊(𝑡) = 𝑊(𝑡0)𝑒tr (𝐴)(𝑡−𝑡0), 

(b) The Wronskian function vanishes at a single point iff it vanishes identically 

for all 𝑡 ∈ 𝐼. 

(c) A consequence of (b): 𝑛 solutions to the system 𝒙′ = 𝐴(𝑡)𝒙 are linearly 

independent at the initial time 𝑡0 iff they are linearly independent for every time 

𝑡 ∈ 𝐼. 

 

 

 

Example2.13 . Compute the exponential function 𝑒𝐴𝑡 and use it to express the 

vectorvalued function 𝒙 solution to the initial value problem 

𝒙′ = 𝐴𝒙,  𝐴 = [
1 2
2 1

] ,  𝒙(0) = 𝒙0 = [
𝑥01

𝑥02
] 
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Solution: The exponential of a matrix is simple to compute in the case that the 

matrix is diagonalizable. So we start checking whether matrix 𝐴 above is 

diagonalizable. Theorem 8.3.8 says that a 2 × 2 matrix is diagonalizable if it has 

two eigenvectors not proportional to each other. In oder to find the eigenvectors 

of 𝐴 we need to compute its eigenvalues, which are the roots of the characteristic 

polynomial 

𝑝(𝜆) = det (𝐴 − 𝜆𝐼2) = |
(1 − 𝜆) 2

2 (1 − 𝜆)
| = (1 − 𝜆)2 − 4 

 

The roots of the characteristic polynomial are 

(𝜆 − 1)2 = 4 ⇔  𝜆± = 1 ± 2 ⇔  𝜆+ = 3,  𝜆− = −1 

The eigenvectors corresponding to the eigenvalue 𝜆+ = 3 are the solutions 𝒗+of 

the linear system (𝐴 − 3𝐼2)𝒗+ = 𝟎. To find them, we perform Gauss operations 

on the matrix 

𝐴 − 3𝐼2 = [
−2 2
2 −2

] → [
1 −1
0 0

]  ⇒  𝑣1
+ = 𝑣2

+ ⇒  𝒗+ = [
1
1

] 

The eigenvectors corresponding to the eigenvalue 𝜆− = −1 are the solutions 𝒗−of 

the linear system (𝐴 + 𝐼2)𝒗− = 𝟎. To find them, we perform Gauss operations on 

the matrix 

𝐴 + 𝐼2 = [
2 2
2 2

] → [
1 1
0 0

]  ⇒  𝑣1
− = −𝑣2

− ⇒  𝒗− = [
−1
1

] 

Summarizing, the eigenvalues and eigenvectors of matrix 𝐴 are following, 

𝜆+ = 3,  𝒗+ = [
1
1

] ,   and  𝜆− = −1,  𝒗− = [
−1
1

]. 
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Then, Theorem 8.3.8 says that the matrix 𝐴 is diagonalizable, that is 𝐴 = 𝑃𝐷𝑃−1, 

where 

𝑃 = [
1 −1
1 1

] ,  𝐷 = [
3 0
0 −1

] ,  𝑃−1 =
1

2
[

1 1
−1 1

] 

Now Theorem ?? says that the exponential of 𝐴𝑡 is given by 

𝑒𝐴𝑡 = 𝑃𝑒𝐷𝑡𝑃−1 = [
1 −1
1 1

] [𝑒3𝑡 0
0 𝑒−𝑡]

1

2
[

1 1
−1 1

] 

so we conclude that 

𝑒𝐴𝑡 =
1

2
[
(𝑒3𝑡 + 𝑒−𝑡) (𝑒3𝑡 − 𝑒−𝑡)

(𝑒3𝑡 − 𝑒−𝑡) (𝑒3𝑡 + 𝑒−𝑡)
] 

Finally, we get the solution to the initial value problem above, 

𝒙(𝑡) = 𝑒𝐴𝑡𝒙0 =
1

2
[
(𝑒3𝑡 + 𝑒−𝑡) (𝑒3𝑡 − 𝑒−𝑡)

(𝑒3𝑡 − 𝑒−𝑡) (𝑒3𝑡 + 𝑒−𝑡)
] [

𝑥01

𝑥02
] 

In components, this means 

𝒙(𝑡) =
1

2
[
(𝑥01 + 𝑥02)𝑒3𝑡 + (𝑥01 − 𝑥02)𝑒−𝑡

(𝑥01 + 𝑥02)𝑒3𝑡 − (𝑥01 − 𝑥02)𝑒−𝑡] 

 

 

 

 

Homogeneous Diagonalizable Systems2.3:[ (Sons J. a., 1967)] 

 A linear system 𝒙′ = 𝐴𝒙 is diagonalizable iff the coefficient matrix 𝐴 is 

diagonalizable, which means that there is an invertible matrix 𝑃 and a diagonal 
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matrix 𝐷 such that 𝐴 = 𝑃𝐷𝑃−1. (See §8.3 for a review on diagonalizable 

matrices.) The solution formula in Eq. (2.13) includes diagonalizable systems. But 

when a system is diagonalizable there is a simpler way to solve it. One transforms 

the system, where all the equations are coupled together, into a decoupled system. 

One can solve the decoupled system, one equation at a time. The last step is to 

transform the solution back to the original variables. We show how this idea 

works in a very simple example. 

Example2.14 . Find functions 𝑥1, 𝑥2 solutions of the first order, 2 × 2, constant 

coefficients, homogeneous differential system 

𝑥1
′ = 𝑥1 − 𝑥2,

𝑥2
′ = −𝑥1 + 𝑥2.

 

Solution: As it is usually the case, the equations in the system above are coupled. 

One must know the function 𝑥2 in order to integrate the first equation to obtain 

the function 𝑥1. Similarly, one has to know function 𝑥1 to integrate the second 

equation to get function 𝑥2. The system is coupled; one cannot integrate one 

equation at a time. One must integrate the whole system together. 

However, the coefficient matrix of the system above is diagonalizable. In this case 

the equations can be decoupled. If we add the two equations equations, and if we 

subtract the second equation from the first, we obtain, respectively, 

(𝑥1 + 𝑥2)′ = 0,  (𝑥1 − 𝑥2)′ = 2(𝑥1 − 𝑥2). 

To see more clearly what we have done, let us introduce the new unknowns 𝑦1 =

𝑥1 + 𝑥2, and 𝑦2 = 𝑥1 − 𝑥2, and rewrite the equations above with these new 

unknowns, 

𝑦1
′ = 0,  𝑦2

′ = 2𝑦2. 
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We have decoupled the original system. The equations for 𝑥1 and 𝑥2 are coupled, 

but we have found a linear combination of the equations such that the equations 

for 𝑦1 and 𝑦2 are not coupled. We now solve each equation independently of the 

other. 

𝑦1
′ = 0 ⇒  𝑦1 = 𝑐1,

𝑦2
′ = 2𝑦2 ⇒  𝑦2 = 𝑐2𝑒2𝑡 ,

 

with 𝑐1, 𝑐2 ∈ ℝ. Having obtained the solutions for the decoupled system, we now 

transform back the solutions to the original unknown functions. From the 

definitions of 𝑦1 and 𝑦2 we see that 

𝑥1 =
1

2
(𝑦1 + 𝑦2),  𝑥2 =

1

2
(𝑦1 − 𝑦2). 

We conclude that for all 𝑐1, 𝑐2 ∈ ℝ the functions 𝑥1, 𝑥2 below are solutions of the 

2 × 2 differential system in the example, namely, 

𝑥1(𝑡) =
1

2
(𝑐1 + 𝑐2𝑒2𝑡),  𝑥2(𝑡) =

1

2
(𝑐1 − 𝑐2𝑒2𝑡). 

The equations for 𝑥1 and 𝑥2 in the example above are coupled, so we found an 

appropriate linear combination of the equations and the unknowns such that the 

equations for the new unknown functions, 𝑦1 and 𝑦2, are decoupled. We 

integrated each equation independently of the other, and we finally transformed 

the solutions back to the original unknowns 𝑥1 and 𝑥2. The key step is to find the 

transformation from 𝑥1, 𝑥2 to 𝑦1, 𝑦2. For general systems this transformation may 

not exist. It exists, however, for diagonalizable systems. 

 

Theorem . (Fundamental Matrix Expression)2.4[ (Sons J. W., 1969)]. If the 

𝑛 × 𝑛 constant matrix A is diagonalizable, with a set of linearly independent 
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eigenvectors {𝒗(1), ⋯ , 𝒗(𝑛)} and corresponding eigenvalues {𝜆1, ⋯ , 𝜆𝑛}, then, the 

initial value problem 𝒙′ = 𝐴𝒙 with 𝒙(𝑡0) = 𝒙0 has a unique solution given by 

𝒙(𝑡) = 𝑋(𝑡)𝑋(𝑡0)−1𝒙0 

where 𝑋(𝑡) = [𝑒𝜆1𝑡𝒗(1), ⋯ , 𝑒𝜆𝑛𝑡𝒗(𝑛)] is a fundamental matrix of the system. 

Example2.15 . Find a fundamental matrix for the system below and use it to write 

down the general solution to the system 

𝒙′ = 𝐴𝒙,  𝐴 = [
1 2
2 1

] 

Solution: One way to find a fundamental matrix of a system is to start computing 

the eigenvalues and eigenvectors of the coefficient matrix. The differential 

equation in this Example is the same as the one given in Example  where we found 

that the eigenvalues and eigenvectors of the coefficient matrix are 

𝜆+ = 3,  𝒗+ = [
1
1

] ,   and  𝜆− = −1,  𝒗− = [
−1
1

]. 

We see that the coefficient matrix is diagonalizable, so with the eigenpairs above 

we can construct a fundamental set of solutions, 

{𝒙(+)(𝑡) = 𝑒3𝑡 [
1
1

] , 𝒙(−)(𝑡) = 𝑒−𝑡 [
−1
1

]} 

From here we construct a fundamental matrix 

𝑋(𝑡) = [𝑒3𝑡 −𝑒−𝑡

𝑒3𝑡 𝑒−𝑡 ] 

 

Then we have the general solution 𝒙gen(𝑡) = 𝑋(𝑡)𝒄, where 𝒄 = [
𝑐+

𝑐−
], that is, 
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𝒙gen(𝑡) = [𝑒3𝑡 −𝑒−𝑡

𝑒3𝑡 𝑒−𝑡 ] [
𝑐+

𝑐−
]  ⇔  𝒙gen(𝑡) = 𝑐+𝑒3𝑡 [

1
1

] + 𝑐+𝑒−𝑡 [
−1
1

] 

  



22 
 

References: 

1. Kishan, H., 2006. Differentia Equations. New Delhi: Atlantic Publisher and 

Dist. 

2. T. Apostol. Calculus. John Wiley & Sons, New York, 1967. Volume I, 

Second edition. 

3. T. Apostol. Calculus. John Wiley & Sons, New York, 1969. Volume II, 

Second edition. 

4. W. Boyce and R. DiPrima. Elementary differential equations and boundary 

value problems. Wiley, New 

5. (M, 2006),M.Eather,Jenny.A Maths Dictionary for kids.Aussie School 

House.  


