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2.1. PRESSURE OF A LIQUID 

 When a fluid is contained in a vessel, it exerts force at all points on the sides and bottom and top 

of the container. The force per unit area is called pressure. 

 If, P = The force, and 

 A = Area on which the force acts; then intensity of pressure, 𝑝 =
𝑃

𝐴
                      (2.1) 

 The pressure of a fluid on a surface will always act normal to the surface.  

 

2.2. PRESSURE HEAD OF A LIQUID 

 A liquid is subjected to pressure due to its own weight, this pressure increases as the depth of the 

liquid increases. 

 Consider a vessel containing liquid, as shown in Fig. 2.1. The liquid will exert pressure on all 

sides and bottom of the vessel. Now, let cylinder be made to stand in the liquid, as shown in the 

figure. 

Let, h = Height of liquid in the cylinder, 

 A = Area of the cylinder base, 

 w = Specific weight of the liquid, 

and, p = Intensity of pressure. 

Now, Total pressure on the base of the cylinder = Weight of liquid in the cylinder i.e., 

𝑝𝐴 = 𝑤𝐴ℎ  

𝑝 =
𝑤𝐴ℎ

𝐴
= 𝑤ℎ                    𝑖. 𝑒. , 𝑝 = 𝑤ℎ                                   (2.2) 



As p = wh, the intensity of pressure in a liquid due to its depth will vary directly with depth. 

 As the pressure at any point in a liquid depends on height of the free surface above that point, it 

is sometimes convenient to express a liquid pressure by the height of the free surface which would 

cause the pressure, i.e., 

 

 

 

 

 

 

 

                                      Fig. 2.1. Pressure head. 

           

From equation (2.2)            ℎ =
𝑝

𝑤
  

The height of the free surface above any point is known as the static head at that point. In this case, 

static head is h. 

Hence, the intensity of pressure of a liquid may be expressed in the following two ways: 

1. As a force per unit area (i.e., N/mm2, N/m2), and 

2. As an equivalent static head (i.e., meters, mm or cm of liquid). 

Alternatively: 

Pressure variation in fluid at rest: 

 In order to determine the pressure at any point in a fluid at rest “hydrostatic law” is used; the law 

states as follows:                                                                                                                                                     

“The rate of increase of pressure in a vertically downward direction 

must be equal to the specific weight of the fluid at that point.” 

The proof of the law is as follows. 

Refer to Fig. 2.2  

Let, p = Intensity of pressure on face LM, Fluid element 

 ∆ A = Cross-sectional area of the element,  

 Z = Distance of the fluid element from free surface, and S T 

 ∆Z = Height of the fluid element.  
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  h = 
p

w
 [from eqn. (2.2)]

 The height of the free surface above any point is known as the static head at that point. In this 

case, static head is h.

Hence, the intensity of pressure of a liquid may be expressed in the following two ways:

 1. As a force per unit area (i.e., N/mm2, N/m2), and

 2. As an equivalent static head ( i.e., metres, mm or cm of liquid).

 Alternatively:

 Pressure variation in fluid at rest: 

 In order to determine the pressure at any point in a fluid at rest “ hydrostatic law” is used; the 

law states as follows:

 “The rate of increase of pressure in a 

vertically downward direction must be equal to 

the specific weight of the fluid at that point .”

 The proof of the law is as follows.

 Refer to Fig. 2.2

 Let, p = Intensity of pressure on face LM,

	 				∆	A = Cross-sectional area of the element,

       Z = Distance of the fluid element from 

free surface, and

	 					∆Z = Height of the fluid element.

 The forces acting on the element are:

 (i) Pressure force on the face

             LM = p ×	∆A ...(acting downward)

 (ii) Pressure force on the face ST ( )∆
= + × ∆ × ∆

∆

p
p Z A

Z
     ... (acting upward)

 (iii) Weight of the fluid element   = Weight density × volume

     =  w × (∆A × ∆Z)

 (iv) Pressure forces on surfaces MT and LS ..... are equal and opposite. 

  For equilibrium of the fluid element, we have: 

           p × ∆A – 
p

p Z
Z

∆
+ × ∆
∆

 ×  ∆A + w × (∆A × ∆Z) = 0

 or,     p × ∆A – p × ∆A – 
p

Z

∆

∆
× ∆Z × ∆A + w × ∆A × ∆Z = 0

 or, 
∆

∆

p

Z
 ∆Z × ∆A + w × ∆A × ∆Z = 0

 or, 
p

Z

∆

∆
 = w (cancelling ∆Z × ∆A from both the sides)

 or, 	
p

Z

∆

∆
	=	∆	× g  ( Q w = ∆ × g)	 ...(2.3)

 Eqn. (2.3.) states that rate of increase of pressure in a vertical direction is equal to weight 

density of the fluid at that point . This is “hydrostatic law”. 

 On integrating the eqn. (2.3), we get:
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Fig. 2.2. Forces acting on a fluid element.



The forces acting on the element are: _Z 

 (i) Pressure force on the face. 

     LM = p × ∆A                (acting downward) 

(ii) Pressure force on the face 𝑆𝑇 = (𝑝 +
𝑑𝑝

𝑑𝑍
𝑋∆𝑍) 𝑋∆𝐴           (acting upward) 

(iii) Weight of the fluid element = Weight density × volume 

       = w × (∆A × ∆Z) 

(iv) Pressure forces on surfaces MT and LS ..... are equal and opposite. 

 For equilibrium of the fluid element, we have: 

 

𝑝𝑋∆𝐴 − [𝑝 +
𝑑𝑝

𝑑𝑍
𝑋∆𝑍] 𝑋∆𝐴 + 𝑤𝑋(∆𝐴𝑋∆𝑍) = 0  

Or,       𝑝𝑋∆𝐴 − 𝑝𝑋∆𝐴 −
𝑑𝑝

𝑑𝑍
𝑋∆𝑍𝑋∆𝐴 + 𝑤𝑋∆𝐴𝑋∆𝑍 = 0  

Or,          
𝑑𝑝

𝑑𝑍
∆𝑍𝑋∆𝐴 + 𝑤𝑋∆𝐴𝑋∆𝑍 = 0  

Or,       
𝑑𝑝

𝑑𝑍
= 𝑤(𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑖𝑛𝑛𝑔 ∆𝑍𝑋∆𝐴 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠) 

Or,        
𝑑𝑝

𝑑𝑍
= 𝜌𝑋𝑔           (∵ 𝑤 = 𝜌𝑋𝑔)                              (2.3) 

 Eqn. (2.3.) states that rate of increase of pressure in a vertical direction is equal to weight density 

of the fluid at that point. This is “hydrostatic law”. 

On integrating the eqn. (2.3), we get: 

∫ 𝑑𝑝 = ∫ 𝜌𝑔. 𝑑𝑍  

Or,           𝑝 = 𝜌𝑔. 𝑍 (= 𝑤𝑍)                                           (2.4) 

Where,𝑝 is the pressure above atmospheric pressure. 

From equ.(2.4), we have:𝑍 =
𝑝

𝜌.𝑔
(=

𝑝

𝑤
) 

Here Z is known as pressure head. 

 

Example 2.1. Find the pressure at a depth of 15 m below the free surface of water in a reservoir. 

Solution. Depth of water, h = 15 m 

 Specific weight of water, w = 9.81 kN/m3 Pressure p: 

p=wh=9.81×15=147.15kN/m2 

We know that, i.e., 



p=147.15kN/m2=147.15kPa 

Example 2.2. Find the height of water column corresponding to a pressure of 54 kN/m2. 

Solution. Intensity of pressure, p = 54 kN/m2 

 Specific weight of water, w = 9.81 kN/m3 Height of water column, h: 

Using the relation  𝒑 = 𝒘𝒉;   𝒉 =
𝒑

𝒘
=

𝟓𝟒

𝟗.𝟖𝟏
= 𝟓. 𝟓𝒎   

 

2.3. PASCAL’S LAW 

The Pascal’s law states as follows : 

 “The intensity of pressure at any point in a liquid at rest, is the same in all directions”. 

 Proof. Let us consider a very small wedge shaped element LMN of a liquid, as shown in Fig. 2.3. 

Let, p x= Intensity of horizontal pressure on the element of liquid, 

 p y= Intensity of vertical pressure on the element of liquid, 

 p z= Intensity of pressure on the diagonal of the right angled triangular element, 

 α = Angle of the element of the liquid, 

 P x= Total pressure on the vertical side LN of the liquid, 

 P y= Total pressure on the horizontal side MN of the liquid, and 

 P z= Total pressure on the diagonal LM of the liquid. 

Fig. 2.3. Pressure on a fluid element at rest. 

 Now, P x= p x× LN         ...(i) 

 and, P y= p y× MN          ...(ii) 

 and, P z= p z× LM           ...(iii) 

 As the element of the liquid is at rest, therefore the sum of horizontal and vertical components of 

the liquid pressures must be equal to zero. 

 



 

 

 

 

 

 

 

Fig. 2.3. Pressure on a fluid element at rest. 

 

Resolving the forces horizontally: 

P zsin α = Px 

𝑝𝑧 . 𝐿𝑀. 𝑠𝑖𝑛𝛼 = 𝑝𝑥. 𝐿𝑁                        (∵ 𝑝𝑧 = 𝑝𝑧𝐿𝑀)  

But   𝐿𝑀. 𝑠𝑖𝑛𝛼 = 𝐿𝑁                                          𝑓𝑟𝑜𝑚 𝑒𝑞𝑢. 2.3  

∴ 𝑝𝑧 = 𝑝𝑥   𝑠                                              … … … … … … ( 𝑖𝑣)  

Resolving the forces vertically: 

𝑝𝑧𝑐𝑜𝑠𝛼 = 𝑝𝑦 − 𝑊  

(where W=weight of the liquid element) 

Since the element is very small, neglecting its weight, we have: 

𝑝𝑧𝑐𝑜𝑠𝛼 = 𝑝𝑦     𝑜𝑟 𝑝𝑧 . 𝐿𝑀𝑐𝑜𝑠𝛼 = 𝑝𝑦 . 𝑀𝑁       

But,              𝐿𝑀𝑐𝑜𝑠𝛼 = 𝑀𝑁                                               𝑓𝑟𝑜𝑚 𝑓𝑖𝑔(2.3)  

∴                𝑝𝑧 = 𝑝𝑦                                    … … … … … (𝑣)  

From (𝑖𝑣)       𝑎𝑛𝑑  (𝑣), 𝑤𝑒 𝑔𝑒𝑡:     𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧  

Which is independent of 𝛼.  

Hence, at any point in a fluid at rest the intensity of pressure is exerted equally in all directions, 

which is called Pascal’s law. 

 Example 2.3. The diameters of ram and plunger(needle) of an hydraulic press are 200 mm and 

30 mm respectively. Find the weight lifted by the hydraulic press when the force applied at the 

plunger is 400 N. 

Solution. Diameter of the ram, D = 200 mm = 0.2 m 

 Diameter of the plunger, d = 30 mm = 0.03 m 

Force on the plunger, F = 400 N 



 

 

 

 

 

 

 

 

 

Fig.(2.4) 

 

Load lifted, W: 

Area of ram,𝐴 =
𝜋

4
𝐷2 =

𝜋

4
𝑋0.22 = 0.0314𝑚2  

Area of plunger,𝑎 =
𝜋𝑑2

4
=

𝜋

4
𝑋0.032 = 7.068𝑋10−4𝑚2  

Intensity of pressure due to plunger, 

𝑝 =
𝐹

𝑎
=

400

7.068𝑋10−4 = 5.66𝑋105𝑁/𝑚2   

Since the intensity of pressure will be equally transmitted (due to Pascal’s law), therefore the 

intensity of pressure at the ram is also 

= 𝑝 = 5. .66𝑋105𝑁/𝑚2  

But intensity of pressure at the ram =
𝑤𝑒𝑖𝑔ℎ𝑡

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑎𝑚
=

𝑊

𝐴
=

𝑊

0.0314
𝑁/𝑚2  

∴
𝑊

0.0314
= 5.66𝑋105  𝑜𝑟 𝑊 = 0.0314𝑋5.66𝑋105𝑁 = 17.77𝑋103𝑁  𝑜𝑟 17.77𝑘𝑁  

 

Example 2.4. For the hydraulic jack shown in Fig. 2.5 find the load lifted by the large piston when 

a force of 400 N is applied on the small piston. Assume the specific weight of the liquid in the jack 

is 9810 N/m3. 

Solution. Diameter of small piston, d = 30 mm = 0.03 m  and F = 400 N. 

 

 



 

 

 

 

 

 

 

 

 

 

    Fig.(2.5) 

 

Area of small piston, 𝑎 =
𝜋

4
𝑑2 =

𝜋

4
𝑋0.032 = 7.068𝑋10−4𝑚2  

Dimeter of the large piston, 𝐷 = 100𝑚𝑚 = 0.1𝑚  

Area of large piston,  𝐴 =
𝜋

4
 𝐷2 =

𝜋

4
𝑋0.012 = 7.854𝑋10−3𝑚2  

Force on small piston,F=400N 

Load lifted, W: 

Pressure intensity on the small piston, 𝑝 =
𝐹

𝑎
=

400

7.068𝑋10−4 = 5.66𝑋105𝑁/𝑚2  

Pressure intensity on the section LL, 

𝑝𝐿𝐿 =
𝐹

𝑎
+ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑢𝑒 𝑡𝑜 ℎ𝑖𝑒𝑔ℎ𝑡 𝑜𝑓 300𝑚𝑚 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑   

=
𝐹

𝑎
+ 𝑤ℎ = 5.66𝑋105 + 9810𝑋

300

1000
  

= 5.66𝑋105 + 2943 = 5.689𝑋105𝑁/𝑚2   

Pressure intensity transmitted to the large piston = 5.689 × 10 5N/m2 

 Force on the large piston = Pressure intensity × area of large piston 

= 5.689 × 10 5× 7. 854 × 10 –3= 4468 N 

Hence, load lifted by the large piston = 4468 N  

 

 

 



2.4.ABSOLUTE AND GAUGE PRESSURES 

Atmospheric pressure: 

 The atmospheric air exerts a normal pressure upon all surfaces with which it is in contact, and it 

is known as atmospheric pressure. The atmospheric pressure is also known as ‘Barometric 

pressure’. 

 The atmospheric pressure at sea level (above absolute zero) is called ‘Standard atmospheric 

pressure’.Note. 

The local atmospheric pressure may be a little lower than these values if the place under question 

is higher than sea level, and higher values if the place is lower than sea level, due to the 

corresponding decrease or increase of the column of air standing, respectively. 

Gauge pressure: 

 It is the pressure, measured with the help of pressure measuring instrument, in which the 

atmospheric pressure is taken as datum. The atmospheric pressure on the scale is marked as zero. 

 Gauges record pressure above or below the local atmospheric pressure, since they measure the 

difference in pressure of the liquid to which they are connected and that of surrounding air. If the 

pressure of the liquid is below the local atmospheric pressure, then the gauge is designated as 

‘vacuum gauge’ and the recorded value indicates the amount by which the pressure of the liquid is 

below local atmospheric pressure, i.e. negative pressure. 

(Vacuum pressure is defined as the pressure below the atmospheric pressure). 

Absolute pressure: 

 It is necessary to establish an absolute pressure scale which is independent of the changes in 

atmospheric pressure. A pressure of absolute zero can exist only in complete vacuum. 

 Any pressure measured above the absolute zero of pressure is termed as an ‘absolute pressure’. 

 A schematic diagram showing the gauge pressure, vacuum pressure and the absolute pressure is 

given in Fig. 2.6. 



 

 

 

 

 

 

 

 

 

 

Fig.(2.6): relationship Between  pressures. 

 

Mathematically: 

1. Absolute pressure = Atmospheric pressure + gauge pressure 

 i.e., p abs= p atm+ pgauge 

 2. Vacuum pressure = Atmospheric pressure – absolute pressure Units for pressure: 

 The fundamental S.I. unit of pressure is newton per square metre (N/m2). This is also known as 

Pascal. 

 Low pressures are often expressed in terms of mm of water or mm of mercury. This is an 

abbreviated way of saying that the pressure is such that will support a liquid column of stated 

height. 

When the local atmospheric pressure is not given in a problem, it is taken as 100 kN/m2or 10 m of 

water for simplicity of calculations. 

Standard atmospheric pressure has the following equivalent values: 

 101.3 kN/m2or 101.3 kPa; 10.3 m of water; 760 mm of mercury; 1013 mb (millibar) ;  

1 bar ;100 kPa = 105 N/m2. 

 

Example 2.5. Given that: 

Barometer reading = 740 mm of mercury;  Specific gravity of mercury = 13.6; Intensity of pressure 

= 40 kPa. Express the intensity of pressure in S.I. units, both gauge and absolute. 



Solution. Intensity of pressure, p = 40 kPa Gauge pressure: 

(i) p = 40 kPa = 40 kN/m2= 0.4 × 105N/m2= 0.4 bar.                   (1 bar = 105N/m2)         

(ii) ℎ =
𝑝

𝑤
=

0.4𝑋105

9.81𝑥103 = 4.077𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 

(iii) ℎ =
𝑝

𝑤
=

0.4𝑋105

9.81𝑋103𝑋13.6
= 0.299𝑚 𝑜𝑓 𝑚𝑒𝑟𝑐𝑢𝑟𝑦  

Where, w = specific  weight; 

For water : w = 9.81 kN/m3 

For mercury : w = 9.81 × 13.6kN/m3 

Absolute pressure:  

Barometer reading (atmospheric pressure) 

= 740 mm of mercury = 740 × 13.6 mm of water 

=
740𝑋13.6

1000
= 10.6𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟  

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑝𝑎𝑏𝑠) = 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑝𝑎𝑡𝑚) + 𝑔𝑎𝑢𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑝𝑔𝑎𝑢𝑔𝑒).  

𝑝𝑎𝑏𝑠 = 10.06 + 4.077 = 14.137𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟  

= 14.137𝑋(9.81𝑋103) = 1.38𝑋105𝑁/𝑚2              (𝑝 = 𝑤)  

= 1.38 𝑏𝑎𝑟                                 (1𝑏𝑎𝑟 = 105𝑁/𝑚)  

=
14.137

13.6
= 1.039𝑚 𝑜𝑓 𝑚𝑒𝑟𝑐𝑢𝑟𝑦.  

Example 2.6. Calculate the pressure at a point 5 m below the free water surface in a liquid that 

has a variable density given by relation: 

𝜌 = (350 + 𝐴𝑦)𝑘𝑔/𝑚3  

Where 𝐴 = 8𝑘𝑔/𝐴4 and y is the distance in meters measured from the free surface. 

Solution. As per hydrostatic equation  

𝑑𝑝 = 𝜌. 𝑔. 𝑑𝑦 = 𝑔(350 + 𝐴𝑦)𝑑𝑦  

Integrating both sides, we get: 

∫ 𝑑𝑝 = ∫ 𝑔(350 + 𝐴𝑦)𝑑𝑦 = 𝑔 ∫ (350 + 𝑔𝑦)𝑑𝑦
5

0

5

0
  

𝑝 = 𝑔 |350𝑦 + 8𝑋
𝑦2

2
| 0

5  

 

= 9.81 (350𝑋5 + 8𝑋
52

2
) =

18148𝑁

𝑚2 = 18.15𝑘𝑁/𝑚2  

 



Example 2.7. On the suction side of a pump a gauge shows a negative pressure of 0.35 bar. Express 

this pressure in terms of: 

 (i) Intensity of pressure, kPa, 

 (ii) N/m 2absolute, 

(iii) Metres of water gauge, 

 (iv) Meters of oil (specific gravity 0.82) absolute, and 

 (v) Centimeters of mercury gauge, 

 Take atmospheric pressure as 76 cm of Hg and relative density of mercury as 13.6. 

Solution. Given: Reading of the vacuum gauge = 0.35 bar 

 (i) Intensity of pressure, kPa: 

Gauge reading = 0.35 bar = 0.35 × 105N/m2 

= 0.35 × 105Pa = 35 kPa  

(ii) N/m2 absolute: 

Atmospheric pressure, p atm.= 76 cm of Hg 

76 = (13.6 × 9810) × 101396 N/m2 =100 

Absolute pressure = Atmospheric pressure – Vacuum pressure 

p abs.= patm–pvac. 

 = 101396 – 35000 = 66396 N/m2 absolute  

 (iii) Meters of water gauge: 

 p = ρgh = wh 

ℎ𝑊𝐴𝑇𝐸𝑅(𝑔𝑎𝑢𝑔𝑒) =
𝑝

𝑤
=

0.35𝑋105

9810
= 3.567𝑚(𝑔𝑎𝑢𝑔𝑒)   

  

(iv) Meters of oil (sp. gr. = 0.82) absolute: 

ℎ𝑜𝑖𝑙(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) =
66396

0.82𝑋9810
= 8.254𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒)  

(v) Centimeters of mercury gauge: 

ℎ𝑚𝑒𝑟𝑐𝑢𝑟𝑦(𝑔𝑎𝑢𝑔𝑒) =
0.35𝑋105

13.6𝑋9810
= 0.2623𝑚 𝑜𝑓 𝑚𝑒𝑟𝑐𝑢𝑟𝑦  

=26.23cm of mercury. 



Example 2.8. The inlet to pump is 10.5 m above the bottom of sump from which it draws water 

through a suction pipe. If the pressure at the pump inlet is not to fall below 28 kN/m 2absolute, 

work out the minimum depth of water in the tank. 

Assume atmospheric pressure as 100 kPa. 

Solution. Given: p atm.= 100 kPa = 100 kN/m2; pabs.= 28 kN/m2. 

 Minimum depth of water in the tank: 

Pressure at the pump inlet. 

Let,           𝑝𝑣𝑎𝑐 = 𝑡ℎ𝑒 𝑣𝑎𝑐𝑢𝑢𝑚(𝑠𝑢𝑐𝑡𝑖𝑜𝑛)𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝  

 

 Then,         𝑝𝑣𝑎𝑐 = 𝑝𝑎𝑡𝑚 − 𝑝𝑎𝑏𝑠 = (100 − 28) = 72𝑘𝑁/𝑚2       𝑜𝑟   72000𝑁/𝑚2    

Further, let h be the distance between the pump inlet and free water surface in the sump. Invoking 

hydrostatic equation, we have: 

p = wh 

72000 = 9810 × h                 or, 

ℎ =
72000

9810
= 7.339𝑚  

∴ Minimum depth of water in the tank 

= 10.5 – 7.339 = 3.161 m  

 

Example 2.9. (a) What is hydrostatic paradox? 

(b) A cylinder of 0.25 m diameter and 1.2 m height is fixed centrally on the top of a large 

 cylinder of 0.9 m diameter and 0.8 m height. Both the cylinders are filled with water. Calculate: 

 (i) Total pressure at the bottom of the bigger cylinder, and 

 (ii) Weight of total volume of water. 

 What is hydrostatic paradox between the two results and how this difference can be reconciled? 

Solution. (a) Hydrostatic paradox: 

 Fig. 2.7 shows three vessels 1, 2 and 3 having the same area A at the bottom and each filled with 

a liquid upto the same height h. 



 

 

 

 

 

 

 

 

Fig. 2.7. Hydrostatic paradox. 

 

 According to the hydrostatic equation, p = wh; the intensity of pressure (p) depends only on the 

height of the column and not at all upon the size of the column. Thus, in all these vessels of different 

shapes and sizes, the same intensity of pressure would be exerted on the bottom of each of these 

vessels. Since each of the vessels has the same area A at the bottom, the pressure force P = p × A 

on the base of each vessel would be same. This is independent of the fact that the weight of liquid 

in each vessel is different. This situation is referred to as hydrostatic paradox. 

(b) Area at the bottom: 

𝑨 =
𝝅

𝟒
𝑿(𝟎. 𝟗)𝟐 = 𝟎. 𝟔𝟑𝟔𝟐𝒎𝟐  

Intensity of pressure at the bottom 

𝒑 = 𝒘𝒉 = 𝟗𝟖𝟏𝟎𝑿(𝟏. 𝟐 + 𝟎. 𝟖) = 𝟏𝟗𝟔𝟐𝟎𝑵/𝒎𝟐  

Total pressure force at the bottom 

𝒑 = 𝒑𝑿𝑨 = 𝟏𝟗𝟔𝟐𝟎𝑿𝟎. 𝟔𝟑𝟔𝟐 = 𝟏𝟐𝟒𝟖𝟐𝑵  

Weight of total volume of water contained in the cylinder, 

𝑾 = 𝒘𝑿𝒗𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒘𝒂𝒕𝒆𝒓  

= 𝟗𝟖𝟏𝟎 [
𝝅

𝟒
𝑿𝟎. 𝟗𝟐𝑿𝟎. 𝟖 +

𝝅

𝟒
𝑿𝟎. 𝟐𝟓𝟐𝑿𝟏. 𝟐]  

=5571N 

 



 

 

 

 

 

 

 

 

 

 

 

                       Fig.(2.8) 

 From the above calculations it may be observed that the total pressure force at the bottom of the 

cylinder is greater 0.9 m dia. than the weight of total volume of water (W) contained in the Fig. 

2.9 cylinders. This is hydrostatic paradox. 

The following is the explanation of the hydrostatic paradox: Refer to Fig. 2.9. 

 Total pressure force on the bottom of bigger tank = 12482 N (downward). A reaction at the roof 

of the lower tank is caused by the upward force which equals, 

𝑤𝐴ℎ = 9810𝑋
𝜋

4
(0.92 − 0.252)𝑋1.2 = 6911𝑁(𝑢𝑝𝑤𝑎𝑟𝑑)  

The distance h corresponding to depth of water in the cylinder fixed centrally on the top of larger 

cylinder. 

 Net downward force exerted by water = 12482 – 6911 = 5571 N and it equals the weight of water 

in the two cylinder. 

 

2.5. MEASUREMENT OF PRESSURE 

The pressure of a fluid may be measured by the following devices: 

1. Manometers: 

 Manometers are defined as the devices used for measuring the pressure at a point in a fluid by 

balancing the column of fluid by the same or another column of liquid. These are classified as 

follows: 

(a) Simple manometers: 



(i) Piezometer, (ii) U-tube manometer, and (iii) Single column manometer. 

(b) Differential manometers. 

2. Mechanical gauges: 

 These are the devices in which the pressure is measured by balancing the fluid column by spring 

(elastic element) or dead weight. Generally, these gauges are used for measuring high pressure and 

where high precision is not required. Some commonly used mechanical gauges are: 

(i) Bourdon tube pressure gauge, (ii) Diaphragm pressure gauge, 

(iii) Bellow pressure gauge, and (iv) Dead-weight pressure gauge. 

2.5.1 Manometers 

2.5.1.1. Simple manometers 

 A “simple manometer” is one which consists of a glass tube whose one end is connected to a point 

where pressure is to be measured and the other end remains open to atmosphere. 

Common types of simple manometers are discussed below: 

1. Piezometer: 

 A piezometer is the simplest form of manometer which can be used for measuring moderate 

pressures of liquids. It consists of a glass tube (Fig 2.9) inserted in the wall of a vessel or of a pipe, 

containing liquid whose pressure is to be measured. The tube extends vertically upward to such a 

height that liquid can freely rise in it without overflowing. The pressure at any point in the liquid 

is indicated by the height of the liquid in the tube above that point, which can be read on the scale 

attached to it. Thus if w is the specific weight of the liquid, then the pressure at point A(p) is given 

by: p = wh 

 

 

 

 

 

 

 

 

Fig. 2.9. (a) Piezometer tube fitted to open vessel. 



Piezometers measure gauge pressure only (at the surface of the liquid), since the surface of the 

liquid in the tube is subjected to atmospheric pressure. A piezometer tube is not suitable for 

measuring negative pressure; as in such a case the air will enter in pipe through the tube. 

2. U-tube manometer: 

Piezometers cannot be employed when large pressures in the lighter liquids are to be measured, 

since this would require very long tubes, which cannot be handled conveniently. Furthermore gas 

pressures cannot be measured by the piezometers because a gas forms no free atmospheric surface. 

These limitations can be overcome by the use of U-tube manometers. 

 A U-tube manometer consists of a glass tube bent in U-shape, one end of which is connected to a 

point at which pressure is to be measured and other end remains open to the atmosphere as shown 

in Fig. 2.10. 

  

 

 

 

 

 

 

 

 

Fig. 2.10. (b) Piezometer tube fitted to a closed pipe. 

 

(i) For positive pressure: Refer to Fig. 2.11 (a). 

 

 



 

Fig. 2.11. U-tube manometer. 

 

Let, A be the point at which pressure is to be measured. X–X is the datum line as shown in Fig. 

2.11 (a). 

Let, h 1= Height of the light liquid in the left limb above the datum line, 

 h 2= Height of the heavy liquid in the right limb above the datum line, 

 h = Pressure in pipe, expressed in terms of head, 

 S 1= Specific gravity of the light liquid, and 

 S 2= Specific gravity of the heavy liquid. 

 The pressures in the left limb and right limb above the datum line X–X are equal (as the pressures 

at two points at the same level in a continuous homogeneous liquid are equal). 

Pressure head above X–X in the left limb = h + h 1S1 Pressure head above X–X in the right limb = 

h 2S2 Equating these two pressures, we get:                              

 h + h 1S 1= h 2S 2or h = h 2S 2– h1S1                                                         (2.5) 

(ii) For negative pressure: 

Refer to Fig. 2.11 (b). 

Pressure head above X–X in the left limb = h + h 1S 1+ h2S2 Pressure head above X–X in the right 

limb = 0. 

Equating these two pressures, we get: 

h + h1S1+h2S2= 0 



or h = – (h 1S 1+ h2S2)                                                                                  .(2.6) 

Example 2.10. In a pipeline water is flowing. A manometer is used to measure the pressure drop 

for flow through the pipe. The difference in level was found to be 20 cm. If the manometric fluid is 

CCl4, find the pressure drop in S.I units (density of CCl4 = 1.596 g/cm3). If the manometric fluid 

is changed to mercury (ρ = 13.6gm/cm3) what will be the difference in level? 

Solution. Given: 

ℎ𝑐𝑐𝑙4
= 20𝑐𝑚 = 0.2𝑚;  𝜌𝑐𝑐𝑙4

= 1.596𝑔/𝑐𝑚3  

= 1.596𝑋103𝑘𝑔/𝑚3  

𝜌𝐻𝑔 = 13.6𝑋103𝑘𝑔/𝑚3  

Pressure drop, ∆𝑝 = 𝜌𝑐𝑐𝑙4
𝑔ℎ𝑐𝑐𝑙4

= 1.596𝑋103𝑋9.81𝑋0.2𝑁/𝑚2  

=
3131.3𝑁

𝑚2   𝑜𝑟  𝑝𝑎 = 3.131𝑘𝑃𝑎  

Difference in level with mercury, 

ℎ𝐻𝑔 = ℎ𝑐𝑐𝑙4
𝑋

𝜌𝑐𝑐𝑙4

𝜌𝐻𝑔
= 0.20𝑋

1.596𝑋103

13.6𝑋103 = 0.02347𝑚  𝑜𝑟  2.347𝑐𝑚  

 

 

 

 

 

 

 

                       Fig.(2.12) 

 

2.5.1.2. Differential Manometers 

 A differential manometer is used to measure the difference in pressures between two points in a 

pipe, or in two different pipes. In its simplest form a differential manometer consists of a U-tube, 

containing a heavy liquid, whose two ends are connected to the points, whose difference of 

pressures is required to be found out. Following are the most commonly used types of differential 

manometers: 

1. U-tube differential manometer. 



2. Inverted U-tube differential manometer. 

1. U-tube differential manometer: 

A U-tube differential manometer is shown in Fig. 2.13. 

 Case I. Fig. 2.13 (a) shows a differential manometer whose two ends are connected with two 

different points A and B at the same level and containing same liquid. 

Let, h = Difference of mercury levels (heavy liquid) in the U-tube, 

 h 1= Distance of the center of A from the mercury level in the right limb, 

 S 1(= S 2) = Specific gravity of liquid at the two points A and B 

 S = Specific gravity of heavy liquid or mercury in the U-tube, 

 h A= Pressure head at A, and 

 h B= Pressure head at B. 

 We know that the pressures in the left limb and right limb, above the datum line, are equal. 

Pressure head in the left limb 

 = hA+ (h 1+ h ) S1 

Pressure head in the right limb 

 = hB+ h1×S1+h×S 

 h A+ (h 1+ h)S 1= h B+ h1S 1+ hS 

or, h A– h B= h1S 1+ hS – (h 1+ h) S1 

 = h 1S 1+ hS – h1S 1+ hS 1= h (S – S1) i.e., Difference of pressure head, 

h A– h B= h (S – S1)                                                                                           .(2.7) 

 Case II. Fig. 2.13 (b) shows a differential manometer whose two ends are connected to two 

different points A and B at different levels and containing different liquids. 



 

 

 

 

 

 

 

 

 

 

Fig.(2.13. b) U-tube differential manometers 

 

Let, 

 h = Difference of mercury levels (heavy liquid) in the U-tube, 

h 1= Distance of the center of A, from the mercury level in the left limb, h 2= Distance of the center 

of B, from the mercury level in the right limb, S 1= Specific gravity of liquid in pipe A, 

S 2= Specific gravity of liquid in pipe B, 

 S = Specific gravity of heavy liquid or mercury, 

h A= Pressure head at A, and 

h B= Pressure head at B. 

Considering the pressure heads above the datum line X–X, we get: 

 Pressure head in the left limb = h A+ (h 1+ h) S1 

 Pressure head in the right limb = h B+ h 2× S 2+ h × S Equating the above pressure heads, we get: 

 h A+ (h 1+ h) S 1= h B+ h 2× S 2+ h × S 

 (h A– h B) = h 2× S 2+ h × S – ( h 1+ h) S1 

 = h 2× S 2+ h × S – h1S 1– hS 1= h (S – S1) + h2S 2– h1S1 i.e., Difference of pressure heads at A 

and B, 

h A– h B= h (S – S1) + h2S 2– h1S1                                                              (2.8) 

 



Example 2.11. A differential manometer connected at the two points A and B in a pipe containing 

an oil of specific gravity of 0.9 shows a difference in mercury levels as 150 mm. Find the difference 

in pressures at the two points. 

Solution. 

 Specific gravity of oil, S 1= 0.9 

 Specific gravity of mercury, S = 13.6 

 Difference of mercury levels, h = 150 mm 

Let, h A– h B= Difference of pressures between A and B, in terms of head of water, and 

p A– p B= Difference of pressures between A and B. 

Using the relation: h A– h B= h (S – S1)  

 = 150 (13.6 – 0.9 ) = 1905 mm = 1.905 m of water (Ans.) 

Now, using the relation, 

p A– p B= wh, we have, p A– p B= 9.81 × 1.905 = 18.68 kN/m 2= 18.68 kPa (Ans.) 

 

2.5.1.3. Advantages and Limitations of Manometers 

 Advantages: 

1. Easy to fabricate and relatively inexpensive. 

2. Good accuracy. 

3. High sensitivity. 

4. Require little maintenance. 

5. Not affected by vibration. 

6. Specially suitable for low pressure and low differential pressures. 

 7. It is easy to change the sensitivity by affecting a change in the quantity of manometric liquid in 

the manometer. 

Limitations: 

1. Usually bulky and large in size. 

2. Being fragile, get broken easily. 

3. Readings of the manometers are affected by changes in temperature, altitude and gravity. 

4. A capillary effect is created due to surface tension of manometric fluid. 

5. For better accuracy meniscus has to be measured by accurate means. 



2.5.2. Mechanical Gauges 

 The manometers (discussed earlier) are suitable for comparatively low pressures. For high 

pressures they become unnecessarily larger even when they are filled with heavy liquids. 

Therefore, for measuring medium and high pressures we make use of elastic pressure gauges. 

They employ different forms of elastic systems such as tubes, diaphragms or bellows etc. to 

measure the pressure. The elastic deformation of these elements is used to show the effect of 

pressure. Since these elements are deformed within the elastic limit only, therefore these gauges 

are sometimes called elastic gauges. Sometimes they are also called secondary instruments, which 

implies that they must be calibrated by comparison with primary instruments such as manometers 

etc. 

Some of the important types of these gauges are enumerated and discussed below: 

1. Bourdon tube pressure gauge, 

2. Diaphragm gauge, and 

3. Vacuum gauge. 

1. Bourdon tube pressure gauge: 

 Bourdon tube pressure gauge is used for measuring high as well as low pressures. A simple form 

of this gauge is shown in Fig. 2.14. In this case, the pressure element consists of a metal tube of 

approximately elliptical cross-section. This tube is bent in the form of a segment of a circle and 

responds to pressure changes. When one end of the tube which is attached to the gauge case, is 

connected to the source of pressure, the internal pressure causes the tube to expand, whereby 

circumferential stress i.e., hoop tension is set up. The free end of the tube moves and is in turn 

connected by suitable levers to a rack, which engages with a small pinion mounted on the same 

spindle as the pointer. Thus the pressure applied to the tube causes the rack and pinion to move. 

The pressure is indicated by the pointer over a dial which can be graduated in a suitable scale. 

 The Bourdon tubes are generally made of bronze or nickel steel. The former is generally used for 

low pressures and the latter for high pressures. 

 Depending upon the purpose for which they are required Bourdon tube gauges are made in 

different forms, some of them are: 

(i) Compound Bourdon tube–used for measuring pressures both above and below atmospheric 

pressure. 

 



 

 

 

 

 

 

 

 

 

Fig. 2.14. Bourdon tube pressure gauge. 

 

(ii) Double Bourdon tube–used where vibrations are encountered. 

2. Diaphragm gauge: 

 This type of gauge employs a metallic disc or diaphragm instead of a bent tube. This disc or 

diaphragm is used for actuating the indicating device. 

 Refer to Fig. 2.15. When pressure is applied on the lower side of the diaphragm it is deflected 

upward. This movement of the diaphragm is transmitted to a rack and pinion. The latter is attached 

to the spindle of needle moving on a graduated dial. The dial can again be graduated in a suitable 

scale. 

 

 

 

 

 

 

 

 

Fig. 2.15. Diaphragm gauge. 

 

 

 



3. Vacuum gauge: 

 Bourdon gauges discussed earlier can be used to measure vacuum instead of pressure. Slight 

changes in the design are required in this purpose. Thus, in this case, the tube be bent inward 

instead of outward as in pressure gauges. Vacuum gauges are graduated in millimeters of mercury 

below atmospheric pressure. In such cases, therefore, absolute pressure in millimeters of mercury 

is the difference between barometer reading and vacuum gauge reading. 

 Vacuum gauges are used to measure the vacuum in the condensers, etc. If there is leakage, the 

vacuum will drop. 

The pressure gauge installation requires the following considerations: 

1. Flexible copper tubing and compression fittings are recommended for most installations. 

 2. The installation of a gauge cock and tee in the line close to the gauge is recommended because 

it permits the gauge to be removed for testing or replacement without having to shut down the 

system. 

3. Pulsating pressures in the gauge line are not required. 

 4. The gauge and its connecting line is filled with an inert liquid and as such liquid seals are 

provided. Trapped air at any point of gauge lines may cause serious errors in pressure reading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HIGHLIGHTS 

1. The force (P) per unit area (A) is called pressure (p); mathematically, 𝑝 =
𝑃

𝐴
  

2. Pressure head of a liquid, ℎ =
𝑝

𝑤
                      (𝑝 = 𝑤ℎ)    

 where, w is the specific weight of the liquid. 

3. Pascal’s law states as follows: 

“The intensity of pressure at any point in a liquid at rest, is the same in all directions”. 

4. The atmospheric pressure at sea level (above absolute zero) is called standard atmospheric 

pressure. 

 (i) Absolute pressure = atmospheric pressure + gauge pressure 

 p abs.= patm.+ pgauge 

(ii) Vacuum pressure = Atmospheric pressure – absolute pressure (Vacuum pressure is defined as 

the pressure below the atmospheric pressure) 

5. Manometers are defined as the devices used for measuring the pressure at a point in fluid by 

balancing the column of fluid by the same or another column of liquid. 

6. Mechanical gauges are the devices in which the pressure is measured by balancing the 

 fluid column by spring (elastic element) or dead weight. Some commonly used mechanical 

 gauges are: 

(i) Bourdon tube pressure gauge, (ii) Diaphragm pressure gauge, 

(iii) Bellow pressure gauge, and (iv) Dead-weight pressure gauge. 

 

 

 

 

 

 

 

 


