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Chapter five: FLUID DYNAMICS  

 

5.1. Introduction 

5.2. Different types of heads (or energies) of a liquid in motion 

5.3. Bernoulli’s equation 

5.4. Euler’s equation for motion 

5.5. Bernoulli’s equation for real fluids 

5.6. Practical applications of Bernoulli’s equation- Venturi meter - Orifice meter—Pitot tube 

Highlights 

Objective Type Questions Theoretical Questions Unsolved Examples 

 

5.1. INTRODUCTION 

 When the fluids are at rest, the only fluid property of significance is the specific weight of the 

fluids. On the other hand, when a fluid is in motion various other fluid properties become 

significant, as such the nature of flow of a real fluid is complex. The science which deals with the 

geometry of motion of fluids without reference to the forces causing the motion is known as “hydro 

kinematics” (or simply kinematics). Thus, kinematics involves merely the description of the 

motion of fluids in terms of space-time relationship. The science which deals with the action of the 

forces in producing or changing motion of fluids is known as “hydrokinetics” (or simply kinetics). 

Thus, the study of fluids in motion involves the consideration of both the kinematics and 

kinetics. The dynamic equation of fluid motion is obtained by applying Newton’s second law of 

motion to a fluid element considered as a free body. The fluid is assumed to be incompressible 

and non-viscous. 

In fluid mechanics the basic equations are: (i) Continuity equation, (ii) Energy equation, and (iii) 

Impulse- momentum equation. In this chapter energy equation and impulse-momentum equations 

will be discussed (Continuity equation has already been discussed in Chapter 4). 

 

5.2. DIFFERENT TYPES OF HEADS (OR ENERGIES) OF A LIQUID IN MOTION 

There are three types of energies or heads of flowing liquids: 

1. Potential head or potential energy: 

This is due to configuration or position above some suitable datum line. It is denoted by z. 
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2. Velocity head or kinetic energy: 

This is due to velocity of flowing liquid and is measured as !
!

"#
  where, V is the velocity of flow 

and ‘g’ is the acceleration due to gravity (g = 9.81) 

3. Pressure head or pressure energy: 

This is due to the pressure of liquid and reckoned as $
%

where, p is the pressure, and w is the weight 

density of the liquid. 

Total head/energy: 

 Total head of a liquid particle in motion is the sum of its potential head, kinetic head and pressure 

head. Mathematically, 

 

Total head, 𝐻 = 𝑧 + !!

"#
+ $

%
	𝑚	𝑜𝑓	𝑙𝑖𝑞𝑢𝑖𝑑																																									(5.1𝑎)  

Total energy, , 𝐸 = 𝑧 + !!

"#
+

"
#&'

(#
𝑜𝑓	𝑙𝑖𝑞𝑢𝑖𝑑																																							(5.1𝑏) 

Example 5.1. In a pipe of 90 mm diameter water is flowing with a mean velocity of 2 m/s and at 

a gauge pressure of 350 kN/m2. Determine the total head, if the pipe is 8 metres above the datum 

line. Neglect friction. 

Solution. Diameter of the pipe = 90 mm 

Pressure, p = 350 kN/m2 

Velocity of water, V = 2 m/s Datum head, z = 8 m 

 Specific weight of water, w = 9.81 kN/m3  

Total head of water, H: 

 

𝐻 = 𝑧 + !!

"#
+ $

%
  

= 8 + "!

")*.,-
+ ./0

*.,-
= 43.88𝑚  

H = 43.88 m  
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5.3. BERNOULLI’S EQUATION 

Bernoulli’s equation states as follows: 

 “In an ideal incompressible fluid when the flow is steady and continuous, the sum of pressure 

energy, kinetic energy and potential (or datum) energy is constant along a stream line.” 

Mathematically, 

 
$
%
+ !!

"#
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

$
%
= 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑒𝑛𝑒𝑟𝑔𝑦,  

!!

"#
= 𝑘𝑖𝑛𝑒𝑡𝑖𝑐	𝑒𝑛𝑒𝑟𝑔𝑦, 𝑎𝑛𝑑  

Z=      Datum (or elevation) energy. 

Proof: 

 Consider an ideal incompressible liquid through a non-uniform pipe as shown in Fig 6.1. Let us 

consider two sections LL and MM and assume that the pipe is running full and there is continuity 

of flow between the two sections; 

Let, p 1= Pressure at LL, 

 V 1= Velocity of liquid at LL, 

 z 1= Height of LL above the datum, 

 A 1= Area of pipe at LL, and 

 p2, V2, z2, A 2= Corresponding values at MM. 

 Let the liquid between the two sections LL and MM move to L′ L′ and M′M′ through very small 

lengths dl1and dl2 as shown in Fig. 5.1. This movement of liquid between LL and MM is equivalent 

to the movement of the liquid between LL and L′L′ and MM and M′ M′, the remaining liquid 

between L′ L′ and MM being unaffected. 

Let, W = Weight of liquid between LL and L′ L′ . 

As the flow is continuous, 

∴ 						𝑊 = 𝑤𝐴-. 𝑑𝑙- = 𝑤𝐴". 𝑑𝑙"  

Or, ,                   𝐴-. 𝑑𝑙- =
1
%

  

Similarly,             𝐴". 𝑑𝑙" =
1
%
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∴ 𝐴-. 𝑑𝑙- = 𝐴"𝑑𝑙"  

Work done by pressure at LL, in moving the liquid to L′ L′ 

= Force × distance = p 1. A 1. dl1 

 

 

 

 

 

 

 

 

 

 

 

Fig.(5.1). Bernoulli’s equation. 

 

Similarly, work done by the pressure at MM in moving the liquid to M′M′ = – p2.A 2. dl2 (– ve 

sign indicates that direction of p 2is opposite to that of p1) 

∴ Total work done by the pressure 

= p 1. A 1dl 1– p 2A 2dl2  

= p 1. A 1dl 1– p 2A 1dl1                           (A1dl 1= A2dl2) 

= A 1. dl 1(p 1– p2) 

 

= 1
%
(𝑝- − 𝑝")																															(∵ 𝐴-. 𝑑𝑙- =

1
%
)  

Loss of potential energy= 𝑊(𝑧- − 𝑧") 

Gain in kinetic energy= 𝑊 J!!
!

"#
− !$!

"#
K = 1

"#
(𝑉"" − 𝑉-")  

Also, loss of potential energy +work done by pressure=gain in kinetic energy 

∴ 𝑊(𝑧- − 𝑧") +
1
%
(𝑝- − 𝑝") =

1
"#
(𝑉"" − 𝑉-")  
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Or,            M𝑧- − 𝑧2N + J
$$
%
− $!

%
K = (!!

!

"#
− !$!

"#
)  

Or,           $$
%
+ !$!

"#
+ 𝑧- =					

$!
%
+ !!!

"#
+ 𝑧" 

Which proves Bernoulli’s equation. 

which proves Bernoulli’s equation. 

Assumptions: 

 It may be mentioned that the following assumptions are made in the derivation of Bernoulli’s 

equation: 

1. The liquid is ideal and incompressible. 

2. The flow is steady and continuous. 

3. The flow is along the stream line, i.e., it is one-dimensional. 

4. The velocity is uniform over the section and is equal to the mean velocity. 

5. The only forces acting on the fluid are the gravity forces and the pressure forces. 

 

5.4.EULER’S EQUATION FOR MOTION 

 Consider steady flow of an ideal fluid along the stream tube. Separate out a small element of fluid 

of cross-sectional area dA and length ds from stream tube as a free body from the moving fluid. 

Fig. 5.2 shows such a small element LM of fluid of cross-section area dA and length ds. 

Let, p = Pressure on the element at L, 

 p + dp = Pressure on the element at M, and 

 V = Velocity of the fluid element. 

 

 

 

 

 

 

 

 

Fig. 5.2. Forces on a fluid element (Euler’s equation). 
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The external forces tending to accelerate the fluid element in the direction of stream line are as 

follows: 

1. Net pressure force in the direction of flow is,  

p.dA – (p + dp) dA = – dp . dA                                               (i) 

2. Component of the weight of the fluid element in the direction of flow is 

 

 

= −𝜌. 𝑔. 𝑑𝐴. 𝑑𝑠. 𝑐𝑜𝑠𝜃  

= −𝜌. 𝑔. 𝑑𝐴. 𝑑𝑠 J34
35
K																												(𝑐𝑜𝑠𝜃 = 34

35
)  

= −𝜌. 𝑔. 𝑑𝐴𝑑𝑧																																																																																	(𝑖𝑖)  

−𝜌. 𝑔. 𝑑𝐴. 𝑑𝑠. 𝑐𝑜𝑠𝜃  

Mass of the fluid element = ρ.dA.ds                                       (𝑖𝑖𝑖)    

The acceleration of the fluid element 

 

𝑎 = 3!
36
= 3!

35
𝑋 35
36
= 𝑉. 3!

35
																																																														(𝑖𝑣)                         

 

Now, according to Newton’s second law of motion, Force = Mass × acceleration 

−𝑑𝑝. 𝑑𝐴 − 𝜌. 𝑔. 𝑑𝐴. 𝑑𝑧 = 𝑝. 𝑑𝐴. 𝑑𝑠𝑋𝑉. 3!
35

  

Dividing both sides by ρ.dA, we get: 
73$
8
− 𝑔. 𝑑𝑧 = 𝑉. 𝑑𝑉  

Or,        3$
8
+ 𝑉. 𝑑𝑉 + 𝑔. 𝑑𝑧 = 0                                                   (5.3) 

This is the required Euler’s equation for motion, and is in the form of differential equation. 

Integrating the above eqn., we get: 

 
-
8 ∫𝑑𝑝 + ∫𝑉𝑑𝑉 + ∫𝑔𝑑𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

$
8
+ !!

"
+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Dividing by g, we get: 
$
8#
+ !!

"#
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
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Or,    $
%
+ !!

"#
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Or, in other words, 
$$
%
+ !$!

"#
+ 𝑧- =

$!
%
+ !!!

"#
+ 𝑧"  

which proves Bernoulli’s equation. 

 

 Example 5.2. Brine of specific gravity 1.15 is draining from the bottom of a large open tank 

through an 80 mm pipe. The drain pipe ends at a point 10 m below the surface of the brine in the 

tank. Considering a stream line starting at the surface of the brine in the tank and passing through 

the centre of the drain line to the point of discharge and assuming the friction is negligible, 

calculate the velocity of flow along the stream line at the point of discharge from the pipe. 

 

 

 

 

 

 

Fig.(5.3) 

 

Solution. Refer to Fig. 5.3. 

Section 1– The surface of brine in the tank 

 Section 2 – The point of discharge. 

Applying Bernoulli’s equation between point 1 and 2, we get: 

 
$$
%
+ !$!

"#
+ 𝑧- =

$!
%
+ !!!

"#
+ 𝑧"   

Here,             𝑝- = 𝑝" = 𝑝96'(𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)  

𝑉- = 0																𝑎𝑛𝑑								(𝑧- − 𝑧") = 10𝑚  

∴ 							 𝑉"" = 2𝑔(𝑧- − 𝑧") = 2𝑔𝑋10 = 2𝑋9.81𝑋10 = 196  

Or,       𝑉" = 14𝑚/𝑠  
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Example 5.3. An open circuit wind tunnel draws in air from the atmosphere through a well 

contoured nozzle. In the test section, where the flow is straight and nearly uniform, a static pressure 

tap is drilled into the tunnel wall. A manometer connected to the tap shows that the static pressure 

within the tunnel is 45 mm of water below atmosphere. 

Assume that air is incompressible and at 25°C, pressure is 100 kPa (absolute). Calculate the 

velocity t 0= 25°C 

in the wind tunnel section (Refer to Fig. 5.4). Density of p 0= 100 kPa V1 water is 999 kg/m3and 

characteristic gas constant for V 0= 0air is 287 J/kg K.  

 

 

 

 

 

Fig.(5.4) 

 

Solution. Given: T 0= 25 + 273 = 298 K; 

 p 0= 100 kPa (abs.); V 0= 0; Velocity in the wind tunnel section V1: 

 As per the problem, air is assumed as incompressible (i.e., ρ 0= ρ 1= ρ). Velocity at test section 

can be found by using the equation: 

 
$%
%
+ !%!

"#
+ 𝑧: =

$$
%
+ !$!

"#
+ 𝑧-   

Where,       𝑧: = 𝑧-; 	𝑉: , 𝑝: = 100𝑘𝑝𝑎(𝑎𝑏𝑠) 

𝑝- = 45𝑚𝑚	𝑜𝑓	𝑤𝑎𝑡𝑒𝑟	𝑏𝑒𝑙𝑜𝑤	𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟  

= 999𝑋9.81 ;/
-000

𝑝𝑎  

= 999𝑋9.81𝑋 ;/
-000

𝑋107.𝑘𝑝𝑎 = 0.44𝑘𝑝𝑎			𝑏𝑒𝑙𝑜𝑤	𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟	  

𝑝-(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) = 𝑝96'(𝑖𝑛	𝑘𝑝𝑎) − 0.44𝑘𝑝𝑎	  

= 100 − 0.44 = 99.56𝑘𝑝𝑎  

Also, 𝑝𝑉 = 𝑚𝑅𝑇 = 𝜌𝑅𝑇												(𝑤ℎ𝑒𝑟𝑒	𝜌 = '
!
)  
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Or,                          𝜌 = $
<=
= -00)-0&

",>)"*,
= 1.169𝑘𝑔/𝑚.  

∴ 													𝑤 = 𝜌𝑔 = 1.169𝑋9.81 = 11.468𝑁/𝑚.	  

Substituting these values in (𝑖) we get: 
-00)-0&

--.;?,
= **./?)-0&

--.;?,
+ !$!

")*.,-
	  

8719.9 = 8681.5 + !$!

")*.,-
  

𝑉- = _(8719.9 − 8681.5)𝑋2𝑋9.81 = 27.45	𝑚/𝑠  

 

Example 5.4. Water flows in a circular pipe. At one section the diameter is 0.3 m, the static 

pressure is 260 kPa gauge, the velocity is 3 m/s and the elevation is 10 m above ground level. The 

elevation at a section downstream is 0 m, and the pipe diameter is 0.15 m. Find out the gauge 

pressure at the downstream section. 

Frictional effects may be neglected. Assume density of water to be 999 kg/m3. 

 

Solution. Refer to Fig. 5.5.. D 1= 0.3 m; D 2= 0.15 m; z 1= 0; z 2= 10 m; p 1= 260 kPa, V 1= 3 

m/s; ρ = 999 kg/m3. 

From continuity equation, A 1V 1= A2V2, 

 

 

 

 

 

 

 

 

 

  Fig.(5.5) 
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𝑉" =
@$
@!
𝑋𝑉- = `

'
()A$

!

'
()A!

!a 𝑋𝑉-  

(A$
A!
)"𝑋𝑉- = ( 0..

0.-/
)"𝑋3 = 12𝑚/𝑠  

 

Weight density of water, w = ρg = 999 × 9.81 = 9800.19 N/m3 

 From Bernoulli’s equation between sections 1 and 2 (neglecting friction effects as given), we have: 

 
$$
%
+ !$!

"#
+ 𝑧- =

$!
%
+ !!!

"#
+ 𝑧"  

"?0)-000
*,00.-*

+ !!!

")*.,-
+ 𝑧"  

 

= $!
*,00.-*

+ -"!

")*.,-
+ 0  

26.53 + 0.459 + 10 = $!
*,00.-*

+ 7.34  

𝑝" =
"*0/??&

'! = 290.56𝑘𝑃𝑎  

5.5. BERNOULLI’S EQUATION FOR REAL FLUID 

 Bernoulli’s equation earlier derived was based on the assumption that fluid is non-viscous and 

therefore frictionless. Practically, all fluids are real (and not ideal) and therefore are viscous as 

such there are always some losses in fluid flows. These losses have, therefore, to be taken into 

consideration in the application of Bernoulli’s equation which gets modified (between sections 1 

and 2) for real fluids as follows: 

 
$$
%
+ !$!

"#
+ 𝑧- =

$!
%
+ !!!

"#
+ 𝑧" + ℎB																																(5.4)  

Where,             ℎB = 𝑙𝑜𝑠𝑠	𝑜𝑓	𝑒𝑛𝑒𝑟𝑔𝑦	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑠𝑒𝑐𝑡𝑖𝑜𝑛	1𝑎𝑛𝑑2.  
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Fig.(5.6) 

 

Example 5.6. The following data relate to a conical tube of length 3.0 m fixed vertically with its 

smaller end upwards and carrying fluid in the downward direction. 

The velocity of flow at the smaller end = 10 m/s. 

The velocity of flow at the larger end = 4 m/s. 

𝑡ℎ𝑒	𝑙𝑜𝑠𝑠	𝑜𝑓	ℎ𝑒𝑎𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑢𝑏𝑒 = 0.;(!$7!!)!

"#
  

 

where, V 1and V 2are velocities at the smaller and larger ends respectively. 

Pressure head at the smaller end = 4 m of liquid. Determine the pressure head at the larger end. 

Solution. 

 Length of tube, l = 3.0 m 

 Velocity, V 1= 10 m/s. 

 Pressure head,$$
%
= 4𝑚 of liquid 

 Velocity, V 2= 4 m/s. 

 

𝑙𝑜𝑠𝑠	𝑜𝑓	ℎ𝑒𝑎𝑑, ℎB =
0.;(!$7!!)!

"#
= 0.;(-07;)!

")*.,-
= 0.73𝑚  

  

Pressure head at the larger end,𝑷𝟐
𝑾

 



Lecture Notes in Fluid mechanics Dr. Muhamad Abdulla 

 11 

Applying Bernoulli’s equation at sections (1) and (2), we get: 
$$
%
+ !$!

"#
+ 𝑧- =

$!
%
+ !!!

"#
+ 𝑧" + ℎB  

Let the datum line passes through section (2). Then, 

 

z2=0,         z1= 3.0m 

4 + -0!

"G
+ 3.0 = H!

"
+ ;!

"#
+ 0 + 0.73  

Or,             (4 + 5.09 + 3.0) = $!
%
+ 0.815 + 0.73   

Or,        12.09 = $!
%
+ 1.54 

∴ 𝑝" = 10.55𝑚	𝑜𝑓	𝑙𝑖𝑞𝑢𝑖𝑑  

 

5.6. PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION 

 Although Bernoulli’s equation is applicable in all problems of incompressible flow where there is 

involvement of energy considerations but here we shall discuss its applications in the following 

measuring devices: 

1. Venturi meter 

2. Orifice meter 

3. Rotameter and elbow meter 

4. Pitot tube. 

5.6.1. Venturi  meter 

 A venturi meter is one of the most important practical applications of Bernoulli’s theorem. It is an 

instrument used to measure the rate of discharge in a pipeline and is often fixed permanently at 

different sections of the pipeline to know the discharges there. 

A venturi meter has been named after the 18th century Italian engineer Venturi.  

Types of venturi meters: 

Venturi meters may be classified as follows: 

1. Horizontal venturi meters. 

2. Vertical venturi meters. 

3. Inclined venturi meters. 
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Chapter Six: LAMINAR FLOW AND TURBULENT FLOW IN PIPES  

 

 

 

 

 

 

 

6.1. : LAMINAR FLOW  

 So far, in the preceding chapters, primarily the flow of an ideal fluid has been discussed. In the 

case of Newtonian fluid, the flows can be classified as (i) laminar (or viscous), and (ii) turbulent, 

depending on characteristic 

Reynolds number, 8!I
J

 where l is the characteristic length. 

Examples of laminar/viscous flow: 

(i) Flow past tiny bodies. 

(ii) Underground flow. 

(iii) Movement of blood in the arteries of a human body. 

 (iv) Flow of oil in measuring instruments. 

(v) Rise of water in plants through their roots etc. 

Characteristics of laminar flow: 

(i) ‘No slip’ at the boundary. 

(ii) Due to viscosity, there is a shear between fluid layers, which is given by 𝜏 = 𝜇. 3K
3L

 for flow in 

X-direction. 

(iii) The flow is rotational. 

(iv) Due to viscous shear, there is continuous dissipation of energy and for maintaining the flow of 

energy must be supplied externally 

(v) Loss of energy is proportional to first power of 

velocity and first power of viscosity. 

(vi) No mixing between different fluid layers (except 

by molecular motion, which is very small). 
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(vii) The flow remains laminar as long as  8I!
J

 is less than critical value of Reynolds number. 

6.2.REYNOLDS EXPERIMENT 

 Osborne Reynolds in 1883, with the help of a simple experiment (see Fig. 6.1), demonstrated the 

existence of the following two types of flows: 

 

 

 

 

 

 

Fig.(6.1) 

 

1. Laminar flow (Reynolds number, Re < 2000) 

2. Turbulent flow (Reynolds number, Re > 4000) 

 (Re between 2000 and 4000 indicates transition from laminar to turbulent flow)  

 

Reynolds experiment: 

Apparatus: 

Refer to Fig. 6.1. Reynolds experiment apparatus consisted essentially of the following: 

1. A constant head tank filled with water, 

2. A small tank containing dye (sp. weight of dye same as that of water), 

3. A horizontal glass tube provided with a bell mouthed entrance, and 

4. A regulating valve. 

Procedure followed: 

 The water was made to flow from the tank through the glass tube into the atmosphere and the 

velocity of flow was varied by adjusting valve. The liquid dye was introduced into the flow at the 

bell mouth through a small tube as shown in Fig. 6.1. 

Observations made: 

1. When the velocity of flow was low, the dye remained in the form of a straight and stable  

filament passing through the glass tube so steadily that it scarcely seemed to be in motion. 

 This was a case of laminar flow as shown in Fig. 6.2 (a). 
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 Dye filament 2. With the increase of velocity a critical state was  reached at which the dye filament 

showed irregularities and began to waver (see Fig. 6.2 b). This shows that the flow is no longer a 

laminar one. This was  (a) Wavy filament 

 transitional state. 

3. With further increase in velocity of flow the fluctuations in the filament of dye became 

more intense and ultimately the dye diffused over the entire cross-section of the tube, due to 

the intermingling of the particles of the flowing fluid. This was the case of a turbulent flow as 

shown in Fig.6.2 (c). 

 

 

 

 

 

 

 

 

Fig. 6.2. Appearance of dye filament in 
On the basis of his experiment Reynolds discovered that: 

(i) In case of laminar flow: The loss of pressure head ∝ velocity. 

 (ii) In case of turbulent flow: The loss of head is approximately ∝ V2 

 [More exactly the loss of head ∝ V nwhere n varies from 1.75 to 2.0] 

 Fig. 6.3 shows the apparatus used by Reynolds for estimating the loss of head in a pipe by 

measuring the pressure difference over a known length of the pipe. 

(i) The velocity of water in the pipe was determined by measuring the volume of water (Q) 

collected in the tank over a known period of time ( 𝑉 = M
@
 , where A is the area of cross-section of 

the pipe.) 
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    Fig. 6.3. Loss of head in a pipe. 

 

(ii) The velocity of flow (V) was changed and corresponding values of hf (loss of head) were 

obtained. 

(iii) A graph was plotted between V (velocity of flow) and hf (loss of head). Such a graph is shown 

in Fig. 6.4.  

It may be seen from the graph that: 

(a) At low velocities the curve is a straight line, indicating that the hf (loss of head) is directly 

proportional to velocity—the flow is laminar  

(b) At higher velocities the curve is parabolic; in (Low velocities) this range hf α Vn, where the 

value of n lies between 1.75 to 2.0 — the flow is turbulent. 

(c) In the intermediate region, there is a transition Vzone. This is shown by dotted line. Fig. 6.4 

Reynolds number : 

 Reynolds from his experiments found that the nature of flow in a closed conduit depends upon 

the following factors: 

 (i) Diameter of the pipe (D), 

 (ii) Density of the liquid (ρ), 

(iii) Viscosity of the liquid (µ), and 

 (iv) Velocity of flow (V). 

 By combining the above variables Reynolds determined a non-dimensional quantity equal to 8!A
J

 

which is known as Reynolds number (Re). 
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i.e. Reynolds number 𝑅N =
8!A
J

 

 

 

 

 

 

 

 

 

Fig.(6.4) 

 

6.3. TURBULENT FLOW IN PIPES 

In a pipe, a laminar flow occurs when Reynolds number (Re) is less than 2000 and a turbulent flow 

occurs when Re > 4000. In a turbulent flow, the fluid motion is irregular and chaotic and there is 

complete mixing of fluid due to collision of fluid masses with one another. The fluid masses are 

interchanged between adjacent layers. As the fluid masses in adjacent layers have different 

velocities, interchange of fluid masses between the adjacent layers is accompanied by a transfer of 

momentum which causes additional shear stresses of high magnitude between adjacent layers. The 

shear in turbulent flow is mainly due to momentum transfer. The contribution of fluid viscosity to 

total shear is small and is usually neglected. In case of laminar flow, because of definite functional 

relationship ‘between shear stress due to viscosity and velocity’ it has been possible to derive a 

mathematical relationship for evaluation of energy dissipation or frictional head but such a simple 

relationship does not exist for turbulent flow. However to solve some of the practical problems, 

efforts have been made to evolve semi-empirical theories of turbulence. 

 

 

 

 

Fig.(6.5): Shows the velocity distribution curves for laminar and turbulent flows in a pipe. 
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Following points are worth noting about turbulent flow: 

(i) The velocity distribution in turbulent flow is more uniform than in laminar flow. 

(ii) In turbulent flow the velocity gradients near the 

 boundary shall be quite large resulting in more shear. 

(iii) In turbulent flow the flatness of velocity distribution curve in the core region away from the 

Fig.6.5. Shows the velocity distribution wall is because of the mixing of fluid layers and curves for 

laminar and turbulent flows in a pipe. 
(iv) The velocity distribution which is paraboloid in laminar flow, tends to follow power law and 

logarithmic law in turbulent flow. 

(v) Random orientation of fluid particles in a turbulent flow gives rise to additional stresses, called 

the Reynolds stresses. 

(vi) Formation of eddies, mixing and curving of path lines in a turbulent flow results in much 

greater frictional losses for the same rate of discharge, viscosity and pipe size. The turbulent motion 

can be classified as follows: 

1. Wall turbulence. It occurs in immediate vicinity of solid surfaces and in the boundary layer 

 flows where the fluid has a negligible mean acceleration. 

2. Free turbulence. It occurs in jets, wakes, mixing layers etc. 

3. Convective turbulence. It takes place where there is conversion of P.E into K.E. by the process 

of mixing (e.g. the turbulent flow in the annular space between the concentric rotating cylinder, 

conventional flow between parallel horizontal plates etc.). 
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