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2.1. ENERGY, WORK AND HEAT 

2.1.1. Energy 

 Energy is a general term embracing energy in transition and stored energy. The stored energy 

of a substance may be in the forms of mechanical energy and internal energy (other forms of 

stored energy may be chemical energy and electrical energy). Part of the stored energy may 

take the form of either potential energy (which is the gravitational energy due to height above 

a chosen datum line) or kinetic energy due to velocity. The balance part of the energy is known 

as internal energy. In a non-flow process usually there is no change of potential or kinetic 

energy and hence change of mechanical energy will not enter the calculations. In a flow 

process, however, there may be changes in both potential and kinetic energy and these must be 

taken into account while considering the changes of stored energy. Heat and work are the forms 

of energy in transition. These are the only forms in which energy can cross the boundaries of a 

system. Neither heat nor work can exist as stored energy. 

 2.1.2. Work and Heat 

 Work 

 Work is said to be done when a force moves through a distance. If a part of the boundary of a 

system undergoes a displacement under the action of a pressure, the work done W is the product 

of the force (pressure × area), and the distance it moves in the direction of the force. Fig. 2.1 

(a) illustrates this with the conventional piston and cylinder arrangement, the heavy line 

defining the boundary of the system. Fig. 2.1 (b) illustrates another way in which work might 

be applied to a system. A force is exerted by the paddle as it changes the momentum of the 

fluid, and since this force moves during rotation of the paddle work is done. 
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   Fig.(2.1) 

Work is a transient quantity which only appears at the boundary while a change of state is 

taking place within a system. Work is ‘something’ which appears at the boundary when a 

system changes its state due to the movement of a part of the boundary under the action of a 

force. 

Heat 

Heat (denoted by the symbol Q), may be, defined in an analogous way to work as follows : 

“Heat is ‘something’ which appears at the boundary when a system changes its state due to a 

difference in temperature between the system and its surroundings”. 

Heat, like work, is a transient quantity which only appears at the boundary while a change is 

taking place within the system. 

 

It is apparent that neither δW or δQ are exact differentials and therefore any integration of 

the elemental quantities of work or heat which appear during a change from state 1 to state 2 

must be written as 

 

∫ 𝛿𝑊 = 𝑊!"#							𝑜𝑟			𝑊						𝑎𝑛𝑑#
!   

∫ 𝛿𝑄 = 𝑄!"#
#
! 									𝑜𝑟	𝑄  

Sign convention : 

 If the heat flows into a system from the surroundings, the quantity is said to be positive and, 

conversely, if heat flows from the system to the surroundings it is said to be negative. 

In other words : 

Heat received by the system = + Q 
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boundary of the system. Fig. 2.31 (b) illustrates another way in which work might be applied to a
system. A force is exerted by the paddle as it changes the momentum of the fluid, and since this
force moves during rotation of the paddle work is done.

Fig. 2.31

Work is a transient quantity which only appears at the boundary while a change of state is
taking place within a system. Work is ‘something’ which appears at the boundary when a system
changes its state due to the movement of a part of the boundary under the action of a force.

Sign convention :
! If the work is done by the system on the surroundings, e.g., when a fluid expands

pushing a piston outwards, the work is said to be positive.
i.e., Work output of the system = + W

! If the work is done on the system by the surroundings, e.g., when a force is applied to a
rotating handle, or to a piston to compress a fluid, the work is said to be negative.

i.e., Work input to system = – W
Heat
Heat (denoted by the symbol Q), may be, defined in an analogous way to work as follows :
“Heat is ‘something’ which appears at the boundary when a system changes its state due to

a difference in temperature between the system and its surroundings”.
Heat, like work, is a transient quantity which only appears at the boundary while a change

is taking place within the system.
It is apparent that neither dW or dQ are exact differentials and therefore any integration of

the elemental quantities of work or heat which appear during a change from state 1 to state 2 must
be written as

dW
1

2

!  = W1–2 or 1W2 (or W), and

dQ
1

2

!  = Q1–2 or 1Q2 (or Q)

Sign convention :
If the heat flows into a system from the surroundings, the quantity is said to be positive

and, conversely, if heat flows from the system to the surroundings it is said to be negative.
In other words :
Heat received by the system = + Q
Heat rejected or given up by the system = – Q.
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Heat rejected or given up by the system = – Q. 

 

Comparison of Work and Heat Similarities : 

(i) Both are path functions and inexact differentials. 

(ii) Both are boundary phenomenon i.e., both are recognized at the boundaries of the system 

as they cross them. 

(iii) Both are associated with a process, not a state. Unlike properties, work or heat has no 

meaning at a state. 

(iv) Systems possess energy, but not work or heat. 

 

 Dissimilarities : 

(i) In heat transfer temperature difference is required. 

(ii) In a stable system there cannot be work transfer, however, there is no restriction for the 

transfer of heat. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

 

2.2. REVERSIBLE WORK 

Let us consider an ideal frictionless fluid contained in a cylinder above a piston as 

shown in fig 2.2 . Assume that the pressure and temperature of the fluid are uniform and 

that there is no friction between the piston and the cylinder walls. 

Let  A = Cross-sectional area of the piston,  

p = Pressure of the fluid at any instant, 

(p – dp) A = Restraining force exerted by the surroundings on the piston, and 

 dl = The distance moved by the piston under the action of the force exerted. 

Then work done by the fluid on the piston is given by force times the distance moved, 

Work done by the fluid p = (pA) × dl = pdV 



 5 

(where dV = a small increase in volume) Or considering unit mass Work done = pdv 

(where v = specific volume) 

 

This is only true when (a) the process is frictionless and (b) the difference in pressure 

between the fluid and its surroundings during the process is infinitely small. Hence when 

a reversible process takes place between state 1 and state 2, we have 

 

 

 

 

 

                                                       Fig. 2.2 

Work done by the unit mass of fluid ==

∫ 𝑝𝑑𝑣																													2.1#
! 	  

When a fluid undergoes a reversible process a series of state points can be joined up to 

form a line on a diagram of properties. The work done by the fluid during any reversible 

process is therefore given by the area under the line of process plotted on a p-v diagram 

(Fig. 2.3). 

= ∫ 𝑝𝑑𝑣#
!   

i.e., Work done = Shaded area on Fig. 2.3 

When p can be expressed in terms of v then the integral, 

∫ 𝑝𝑑𝑣#
! , can be evaluated. 

 

 

 

                                                       Fig 2.3 
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(p – dp) A

p

Cylinder

Comparison of Work and Heat
Similarities :
(i) Both are path functions and inexact differentials.

(ii) Both are boundary phenomenon i.e., both are recognized at the boundaries of the system
as they cross them.

(iii) Both are associated with a process, not a state. Unlike properties, work or heat has no
meaning at a state.

(iv) Systems possess energy, but not work or heat.
Dissimilarities :
(i) In heat transfer temperature difference is required.

(ii) In a stable system there cannot be work transfer, however, there is no restriction for the
transfer of heat.

(iii) The sole effect external to the system could be reduced to rise of a weight but in the case
of a heat transfer other effects are also observed.

2.20. REVERSIBLE WORK

Let A = Cross-sectional area of the piston,
p = Pressure of the fluid at any instant,

(p – dp) A = Restraining force exerted by the surroundings on the piston, and
dl = The distance moved by the piston under the action of the force exerted.

Then work done by the fluid on the piston is given by force times
the distance moved,
i.e., Work done by the fluid

= (pA) × dl = pdV
(where dV = a small increase in volume)

Or considering unit mass
Work done = pdv (where v = specific volume)

This is only true when (a) the process is frictionless and (b) the
difference in pressure between the fluid and its surroundings during
the process is infinitely small. Hence when a reversible process takes
place between state 1 and state 2, we have

Work done by the unit mass of fluid = pdv
1

2

! ...(2.15)

When a fluid undergoes a reversible process a series of state points can be joined up to form
a line on a diagram of properties. The work done by the fluid during any reversible process is
therefore given by the area under the line of process plotted on a p-v diagram (Fig. 2.32).
i.e., Work done = Shaded area on Fig. 2.33

= pdv
1

2

! .

When p can be expressed in terms of v then the integral, pdv
1

2

! , can be evaluated.

Fig. 2.32
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dv

2

1
p

p

V

Fig. 2.33

Example 2.10. An artificial satellite revolves round the earth with a relative velocity of
800 m/s. If acceleration due to gravity is 9 m/s2 and gravitational force is 3600 N, calculate its
kinetic energy.

Solution. Relatively velocity of satellite, v = 800 m/s
Acceleration due to gravity, g = 9 m/s2

Gravitational force, m.g = 3600 N

\   Mass, m = 
3600 3600

9g =  = 400 kg.

Kinetic energy = 1
2  mv2 = 1

2  × 400 × (800)2 J = 128 × 106 J or 128 MJ. (Ans.)

Example 2.11. The specific heat capacity of the system during a certain process is given by
cn = (0.4 + 0.004 T) kJ/kg°C.

If the mass of the gas is 6 kg and its temperature changes from 25°C to 125°C find :
(i) Heat transferred ; (ii) Mean specific heat of the gas.
Solution. Mass of the gas, m = 6 kg
Change in temperature of the gas = 25°C to 125°C
(i) Heat transferred, Q :

We know that heat transferred is given by,

Q = m!  cn dT = 6 ( . . )04 0004
25

125
+! T  dT

= +
"
#$
%
&'

(

)
*

+

,
-6 04 004 2

2

25

125

. .T T

= 6[0.4 (125 – 25) + 0.002 (1252 – 252)]
= 6(40 + 30) = 420 kJ.(Ans.)
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2.3. INTERNAL ENERGY 

 It is the heat energy stored in a gas. If a certain amount of heat is supplied to a gas the 

result is that temperature of gas may increase or volume of gas may increase thereby 

doing some external work. 

 Joule’s law of internal energy states that internal energy of a perfect gas is a function of 

temperature only. In other words, internal energy of a gas is dependent on the 

temperature change only and is not affected by the change in pressure and volume. 

 We do not know how to find the absolute quantity of internal energy in any substance ; 

however, what is needed in engineering is the change of internal energy (∆U). 

 

2.4. LAW OF CONSERVATION OF ENERGY 

 In the early part of nineteenth century the scientists developed the concept of energy 

and hypothesis that it can be neither created nor destroyed ; this came to be known as the 

law of the conservation of energy. The first law of thermodynamics is merely one 

statement of this general law. 

 

2.5. FIRST LAW OF THERMODYNAMICS 

 The First Law of Thermodynamics can, therefore, be stated as follows : 

“When a system undergoes a thermodynamic cycle then the net heat supplied to the 

system from the surroundings is equal to net work done by the system on its 

surroundings. 
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• 𝜕w = − pextdV 

• If p ext is not constant, then we have to look at infinitesimal changes 

•   𝜕 means this is not an exact differential 

•  Integral depends on the path!!! 

         𝑊 = −∫ 𝑃$%&𝑑𝑉
#
! 	  

• • Path dependence of w 

• Example: assume a reversible process so that pext= p = Compression 

• Ar (g, p1, V1) =Ar(g, P2, V2) 

• Compression       V1 >V2 ,    P1 < P2 

Work, Heat, and the First Law

convention:
Having a “-“ sign here implies w > 0 if ∆V < 0 , that is, positive work means that
the surroundings do work to the system. If the system does work on the
surroundings (∆V > 0) then w < 0 .

5.60 Spring 2008   Lecture #2 page 1 

Work, Heat, and the First Law 

•  Work: w = F ⋅ A 

applied force distance 
A 

Expansion work 

F = pextA 

pext 

extp 

w = −(pextA )A = −pext ∆V 

convention:  Having a “-“ sign here implies w > 0 if ∆V < 0 , that 
is, positive work means that the surroundings do 
work to the system. If the system does work on the 
surroundings (∆V > 0) then  w < 0 . 

If pext  is not constant, then we have to look at infinitesimal changes 

d-w = −pextdV d- means this is not an exact differential 

Integral w = −∫1
2 pextdV  depends on the path!!! 

•  Path dependence of w 

Example: assume a reversible process so that pext = p 

Ar (g, p1, V1) = Ar (g, p2, V2) 

Compression V1 > V2  and   p1 < p2 
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Two paths: (1) First   V1 → V2  at     p= p1 

 then p1  →  p2   at  V =  V2  

 (2)  First     p1 →  p2  at  V = V1 

then V1  → V2    at    p  = p2 

Ar(g, p1, V1) = Ar(g, p1, V2) = Ar(g, p2, V2) 

Ar(g, p1, V1) = Ar(g, p2, V1) = Ar(g, p2, V2) 

 
• (Note w > 0, work done to system to compress it) 

5.60 Spring 2008   Lecture #2 page 2 

pext = p1 

pext = p2 
compression ,Vp1 1

initial 

Two paths: 
(1)  First V1 → V2  at p = p1 

then p1 → p2  at V = V2 

Ar(g, p1, V1) = Ar(g, p1, V2) = Ar(g, p2, V2) 

p 
final p2 (2) 

p1 init. (1) 

,Vp2 2  

final 

(2)  First p1 → p2  at V = V1 

then V1 → V2  at p = p2

 Ar(g, p1, V1) = Ar(g, p2, V1) = Ar(g, p2, V2) 

V2 V1 

w(1) = −∫V
V2 pextdV − 

2V ext dV∫
V2 p w(2) = −

1V extdV∫
V1 p − ∫V

V2 pextdV 
1 1 

= −  
V

V2 p1dV = −p1 (V V− ) = −  
V

V2 p2dV = −p2 (V V− )∫ 2 1 ∫ 2 1 
1 1 

w = p (V V  ) w = p ( − )− V V(1) 1 1 2 (2) 2 1 2 

(Note w > 0, work done to system to compress it) 

w ≠w !!!(1) (2) 

Note for the closed cycle [path (1)] - [path (2)], ∫ d-w ≠ 0 
closed cycle 

w is not a state function cannot write w = f(p,V) 
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• w (1)≠ w (2)!!! 

• Note for the closed cycle [path (1)] - [path (2)], ∫ d-w ≠ 0 

• closed cycle 

• w is not a state function 

• cannot write w = f(p,V) 

Work 

• Work (w) is not a function of state. For a cyclic process, it is possible for 

5𝜕𝑊 ≠ 0 

 
Heat 

• That quantity flowing between the system and the surroundings that can be 

used to change the temperature of the system and/or the surroundings. 

• Sign convention: 

• sf heat enters the system, then it is positive. 

• Heat (q), like w, is a function of path. Not 

• a state function 

• It is possible to have a change of state 

• (p 1, V 1, T 1) = (p 2, V 2, T 2) 

• adiabatically (without heat transferred) nonadiabatically. 

• or 

• Historically measured in calories 

• [1 cal = heat needed to raise 1 g H2O 1°C, 

  

5.60 Spring 2008

WORK 

HEAT 

  Lecture #2 page 3 

Work (w) is not a function of state. 
For a cyclic process, it is possible for ∫d-w ≠ 0 

    state  1   state  2  

That quantity flowing between the system and the 
surroundings that can be used to change the temperature 
of the system and/or the surroundings.  

Sign convention:  If heat enters the system, then it is 
positive. 

Heat (q), like w, is a function of path. Not a state function 

It is possible to have a change of state 

(p1, V1, T1) = (p2, V2, T2) 

adiabatically (without heat transferred)
 or nonadiabatically. 

  Historically measured in calories 
[1 cal = heat needed to raise 1 g H2O 1°C, 

    from  14.5°C to 15.5°C] 

The modern unit of heat (and work) is the Joule.  

   1 cal = 4.184 J 
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•  from 14.5°C to 15.5°C] 

• The modern unit of heat (and work) is the Joule. 

• 1 cal = 4.184 J 

Heat Capacity 

 
• Equivalence of work and heat          [Joule (1840’s)] 

• Joule showed that it’s possible to raise the temperature of H2O 

5.60 Spring 2008   Lecture #2 page 4 

Heat Capacity C - connects heat with temperature 

đq = CpathdT or Cpath = ⎜
⎛ đq 

⎟
⎞ 

⎝dT ⎠path 

heat capacity is path dependent

   Constant  volume:  CV

   Constant  volume:  Cp 

∴ q = ∫ Cpath dT  
path 

Equivalence of work and heat [Joule (1840’s)] 

Joule showed that it’s possible to raise the temperature of H2O 

(a) with only heat T1 → T2 

(b)  with only work T1 → T2 
(weight falls & 
churns propeller) 
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• Experimentally it was found that 

• ∫ ( 𝜕w +𝜕q ) = 0 

• ⇒ The sum (w + q) is independent of path 

• ⇒ This implies that there is a state function whose differential is 

•   𝜕	w + 𝜕q 

• We define it as U, the “internal energy” or just “energy” 

•  ∴ dU = 𝜕	w + 𝜕	q 

• For a cyclic process   ∫dU = 0 

• For a change from state 1 to state 2, 

•  does not depend on path 

•  ∆𝑈 = ∫ 𝑑𝑈 = 𝑈# − 𝑈! = 𝑞 +𝑊#
!   

• each depends on path individually, but not the sum 

• For fixed n, we just need to know 2 properties, e.g. (T, V), to fully describe 

the system 

• So U=U (T,V)   is an extensive function (scales with system size). 

5.60 Spring 2008   Lecture #2 page 4 
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•  𝑈" = '
(

 is molar energy (intensive function) 

First Law of Thermodynamics 

• Mathematical statement 

• 𝑑𝑈 = 𝜕𝑞 + 𝜕𝑊 

• Or ∆𝑈 = 𝑞 +𝑊							𝑜𝑟	 − ∮ 𝜕𝑞 = ∮ 𝜕𝑊 

• Consequence: Conservation of energy 

 
• Clausius statement of 1stLaw: 

The energy of the universe is conserved 

 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Example 2.1. The specific heat capacity of the system during a certain process is given 

by: 

Cn= (0.4 + 0.004 T) kJ/kg°C. 

If the mass of the gas is 6 kg and its temperature changes from 25°C to 125°C find : 

(i) Heat transferred; 

(ii) Mean specific heat of the gas. 

Solution. Mass of the gas, m = 6 kg 

Change in temperature of the gas = 25°C to 125°C 

(i) Heat transferred, Q: 

We know that heat transferred is given by, 

𝑄 = ∫𝑚𝐶)𝑑𝑇 = 6∫ (0.4 + 0.004𝑇)𝑑𝑇!#*
#*   

5.60 Spring 2008   Lecture #2 page 6 

THE FIRST LAW 

dU =d-q +d-w 
or 

Mathematical statement: ∆U = q + w 
or 

Corollary: Conservation of energy 

∆Usystem = q +w ∆Usurroundings = −  q −w 

⇒ ∆Uuniverse = ∆  Usystem + ∆  Usurroundings = 0 

∫ ∫=− wq d-d-

     The energy of the universe is conserved.  

Clausius statement of 1 stLaw:
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= 6[0.4𝑇 + 0.004(+
!

#
)]#*!#*  

 

= 6[0.4 (125 – 25) + 0.002 (1252 – 252)] 

= 6(40 + 30) = 420 kJ.  

(ii) Mean specific heat of the gas, Cn: 

𝑄 = 𝑚𝐶)𝑑𝑇  

420 = 6 × 𝐶) × (125 − 25)  

𝐶) =
,#-
.×!--

= 0.7	𝐾𝐽. 𝑘𝑔. 𝐶  

= 0.7 kJ/kg°.C. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

EXAMPLE 2.2 

A 0.5 mole of gas at temperature 300 K expands isothermally from an initial volume 

of 2 L to 6 L 

(a) What is the work done by the gas? 

(b) Estimate the heat added to the gas? 

(c) What is the final pressure of the gas? (The value of gas constant,  

R = 8.31 J mol-1 K-1) 

Solution 

(a) We know that work done by the gas in an isothermal expansion 

Since n = 0.5 
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𝑊 = −∫ 𝑝𝑑𝑉0!
0"

  

𝑝 = )1+
0

  

𝑊 = −∫ )1+
0
𝑑𝑉0!

0"
	  

𝑊 = −0.5𝑚𝑜𝑙	𝑥	 2.45
678.9

	𝑥300𝐾	ln	(.:
#:
)     

W = -1.369 kJ 

Note that W is negative since the work is done by the gas. 

This is because work is defined as the energy transferred from one system to 

another due to a change in volume. In this case, the gas is doing work on the 

surroundings by pushing back the external pressure as it expands, which results in 

a transfer of energy from the gas to the surroundings. Since the surroundings gain 

energy, the work done by the system (the gas) is negative. 

(b) From the First law of thermodynamics, in an isothermal process the heat supplied 

is spent to do work. 

Therefore, Q = W = 1.369 kJ. Thus Q is positive which implies that heat flows in to 

the system. 

(c) For an isothermal process 

PiVi = PfVf = nRT 

𝑃; =
)1+
0#

= 0.5𝑚𝑜𝑙	𝑋	 2.4!5
678.9

	𝑋 4--9
.<!-$%6%         =207.75 k Pa 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
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EXAMPLE 2.3 

500 g of water is heated from 30°C to 60°C. Ignoring the slight expansion of water, 

calculate the change in internal energy of the water? (specific heat of water 4184 

J/kg.K) 

Solution: 

When the water is heated from 30°C to 60°C,there is only a slight change in its 

volume. So we can treat this process as isochoric. In an isochoric process the work 

done by the system is zero. The given heat supplied is used to increase only the 

internal energy. 

∆U = Q = m  Cv ∆T 

The mass of water = 500 g =0.5 kg 

The change in temperature = 30K 

The heat Q = 0.5×4184×30 = 62.76 kJ 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

 

EXAMPLE 2.4 

The PV diagrams for a thermodynamical system is given in the figure below. 

Calculate the total work done in each of the cyclic processes shown. 
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Solution  

In the case (a) the closed curve is anticlockwise. So the net work done is negative, 

implying that the work done on the system is greater than the work done by the 

system. The area under the curve BC will give work done on the gas (isobaric 

compression) and area under the curve DA (work done by the system) will give the 

total work done by the system. 

Area under the curve BC = Area of rectangle BC12 = 1 × 4= − 4J 

Area under the curve DA = 1 × 2= + 2J 

Net work done in cyclic process = −4 + 2= −2 J 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

 EXMPALE 2.5 

One mole of an ideal gas initially kept in a cylinder at pressure 1 MPa and temperature 27°C 

is made to expand until its volume is doubled. 

(a)  How much work is done if the expansion is (i) adiabatic (ii) isobaric (iii) isothermal? 

(b) Identify the processes in which change in internal energy is least and is maximum. 
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(c) Show each process on a PV diagram. 

(d) Name the processes in which the heat 

(Take γ = 5/3 and R=8.3 J mol-1 K-1) 

Solution 

(a)  (i)  In an adiabatic process the work done by the system is 

𝑊=>?= =
)1
@"!

[𝑇? − 𝑇;]  

To find the final temperature Tf , we can use adiabatic equation of state. 

𝑇;𝑉;
@"! = 𝑇?𝑉?

@"!   ,          𝑇; = 𝑇?(
0&
0#
)@"! = 300𝑋(!

#
)
!
%  

= 0.63 x 300K = 189.8K 

W = 1 X 8.3 X 3 / 2 (300-189.8) = 1.37kJ 

(ii)  In an isobaric process the work done by the system 

W = P ∆V = P(Vf – Vi)       and Vf = 2Vi         so W = 2PVi 

To find Vi, we can use the ideal gas law for initial state. PiVi = RTi 

𝑉? =
1+&
A&
= 8.3	𝑋 4--

!
𝑋10". = 24.9𝑋10"!,𝑚4   

The work done during isobaric process, 

W = 2 × 106 × 24.9 × 10−4 = 4.9 kJ 

(iii) In an isothermal process the work done by the system, 
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𝑊 = 𝜇	𝑅	𝑇	𝑙𝑛(0#
0&
)  

In an isothermal process the initial room temperature is constant. 

W = 1 × 8.3 × 300 × ln(2) = 1.7kJ 

(b)  Comparing all three processes, we see that the work done in the isobaric process is the 

greatest, and work done in the adiabatic process is the least. 

(c)  The PV diagram is shown in the Figure. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

 

The area under the curve AB = Work done during the isobaric process 
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The area under the curve AC = Work done during the isothermal process 

The area under the curve AD= Work done during the adiabatic process 

From the PV diagram the area under the curve AB is more, implying that the work done in 

isobaric process is highest and work done in adiabatic process is least. 

(d)  In an adiabatic process no heat enters into the system or leaves from the system. In an 

isobaric process the work done is more so heat supplied should be more compared to an 

isothermal process. 

 

Example 2.6 

A liquid is compressed isothermally inside a chamber. 

   Obtain an expression for the total amount of work required if the compression 

process is quasistatic and is given by the equation 

                       In (V / V0) = – A(p – p0)   where A, V0 and p0 are constants. 

• Since the process is quasi-static, the work done is 

•                                                 W = 2∫1 p dV 

•                         Since In (V / V0) = – A(p – p0), 

•                                                dV = – AV dp, 

•                         Therefore, 

                        𝑊 = −𝐴𝑉 ∫ 𝑉𝑃𝑑𝑃#
! 	   

• To perform the integration, the expression for V has to be a function of p. 

•   In general, the volume of a liquid is not sensitive to a change in pressure. 

   Hence, assuming constant V in the integration, 

     𝑊 = −𝐴𝑉 ∫ 𝑃𝑑𝑃 = −(B0
#
)(𝑃## − 𝑃!#)

#
!      
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  Since A and V are positive quantities, W will be negative if p2 is greater than p1. 

This is consistent with the convention that work is done to a  system in a 

compression process. The values for A and V will be different for different 

substances. 

 

Example 2.7 

How many joules are equivalent to one lit-atm of work? 

• Solution: 

•   For 76.00–cm column of mercury (density =13.596gm/cm3) supported by the 

atmosphere, 

    M/A = (76 cm) (13.6 gm/cm3) = 1033 gm/cm2 = 1.033 kgm/cm2. 

•                         Hence 

                               PX  = Mg/A = (1.033 kgm/cm2) (9.81 meter/sec2) 

              = 10.13 kgm–meter/sec2–cm2 = 10.13 newton/cm2; 

  and one lit-atm will represent 

               PXΔV = (10.13 newton/cm2) (1000 cm3) =  

10130 newton–cm  = 101.3 newton–meter = 101.3 joule. 

 

Example 2.8! 
A refrigerator is a common device used in every home. 

      Examine the following systems regarding the direction of  heat transfer. 

                         (a) The refrigerator alone 

                        (b) The room the refrigerator is located in. 

• (a) In order to keep the products stored inside the refrigerator at 

a lower temperature, heat must be absorbed from the products 

stored (through the evaporator) and rejected to the atmosphere. In fact this is 
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the principle for a refrigeration cycle. Therefore, as far as heat transfer 

is concerned, heat is transferred from the refrigerator (the system)and thus 

   Q = – Q. 

•   (b) From the statement made in part (a), heat is rejected from 

the refrigerator to the room. The heat transfer is done through the condenser 

which is so arranged that the air in the room flows past the condenser by 

natural convection. As a result of that, heat is added to the room and the 

heat transfer is positive (Q = + Q) for the system under consideration. 

This explains why the room where the refrigerator is usually located, is 

always warmer than the other rooms. 

 

Example 2.9 

Calculate the heat transferred when 100J of work is done on a system consisting of 

1 mole of an ideal gas. At constant temperature, ΔE = 0 for the expansion of an 

ideal gas. 

A statement of the first law of thermodynamics is expressed as 

                                                ΔE = q – w 

                        where ΔE = change in internal energy of the system 

                                                q = quantity of heat 

                                              w = work done 

 In this problem, work is done on the system and so w is negative. 

(Note that we are adopting the convention that work done on the system 

is negative.) Since ΔE = 0 for an isothermal expansion of an ideal gas, 

                                              ΔE = 0 = q – w 

                                                ∴ q = w 

•                         or                        q = – 100J 
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  As a result, 100J of heat must be transferred from the system to 

maintain isothermal conditions 

 

Example 2.10 

 What can you say about the following statements if one has  an adiabatic 

process in which there is no heat transfer between the system and the 

surroundings, either because  the system is well insulated or because the process 

occurs very rapidly? 

         1.  q = + w          2.  q = 0            3.  ΔE = q 

 4.  ΔE = w                   5.  PΔV = 0 

In an adiabatic system there is no heat flow into or out of the system, thus q = 0 

    1. This statement gives q to be +w but this can only happen when ΔE = 0 

      since for instance ΔE = q – w for isothermal expansion of an ideal gas. 

     2. Statement (2) is correct since q = 0 for the process.     

3. This statement indicates ΔE = q, but this can only happen, as in 

the   case when one expands a gas into a vacuum, when w = 0. 

     4. Since ΔE = q – w, ΔE will be equal to w only when q = 2w so that 

               ΔE = 2w – w = w 

    5. ΔE = q – w 

               = q – PΔV 

  Thus for PΔV to be zero, ΔE must be equal to q such that ΔE = ΔE – PΔV 

                                         ∴ PΔV = 0 

Example 2.11 

When 100 kJ of work is done on a closed system during a process, the total 

energy of the system increases by 55.0 kJ. 

   Calculate how much heat is either added or removed from the system? 
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• In accordance with the principle of energy conservation, a net energy transfer 

to a system results in an equal increase of internal energy stored in the 

system. This may be written as 

•                  Q = ΔE + W                                                                           (1) 

•    where Q is the heat transferred to the system during the process. 

    W is the work transferred from the system during the process. ΔE is 

the  change in the internal energy of the system during the process, and 

all  these terms are expressed in the same units. 

     Eq. (1) is the usual statement of the First Law. It says that in any 

change of state the heat supplied to a system is equal to the increase of 

internal energy in the system plus the work done by the system. 

 Considering work done on a system as positive, from Eq. (1) 

    Q + (+ 100.0) = + 55.0 

       Q = + 55.0 – 100.0 

       = – 45.0 Kj 

From the result, due to the negative sign, 45.0 kJ of energy in the form of heat is 

removed from the system during the process. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

 

Example 2.12. Comment whether the following quantities can be called as 

properties or not : 

(𝑖)		∫ 𝑝𝑑𝑉	,																		(𝑖𝑖)		∫ 𝑉𝑑𝑝	,																(𝑖𝑖𝑖)				∫ 𝑝𝑑𝑉	 + ∫𝑉𝑑𝑝  

Solution :          (𝑖)		∫ 𝑝𝑑𝑉			  

 p is a function of V and integral can only be evaluated if relation between p and V 

is known. It is thus an inexact differential and hence not a property. 

(𝑖𝑖)		∫ 𝑉𝑑𝑝  

It is not a property for the same reason as mentioned in (i). 
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(𝑖𝑖𝑖)		∫ 𝑃𝐷𝑉 + ∫𝑉𝐷𝑃  

(𝑖𝑖𝑖)		∫ 𝑃𝐷𝑉 + ∫𝑉𝐷𝑃 = ∫𝑃𝑑𝑉 + 𝑉𝑑𝑝 = ∫𝑑(𝑝𝑉) = 𝑝𝑉  

Thus the integral can be evaluated without knowing the relation between p and 

V. It is an exact differential and hence it is a property. 

Example 2.13. Gas from a cylinder of compressed helium is used to inflate an 

inelastic flexible balloon, originally folded completely flat, to a volume 0.6 m3 . 

If the barometer reads 760 mm Hg, what is the amount of work done upon the 

atmosphere by the balloon ? Sketch the system before and after the process. 

 

Solution. Refer Figure below. The firm line B 1 shows the boundary of the 

system before the process, and dotted line B 2 shows the boundary after the 

process. 

 
The displacement work,  

𝑊> = ∫ 𝑝𝑑𝑉CD8?)>$E + ∫ 𝑝𝑑𝑉F=887) = 0 + ∫ 𝑝𝑑𝑉F=887)   

=101.325 x0.6 

=60.795 kJ 
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!Example 2.14. Comment whether the following quantities can be called as properties or
not :

(i) pdV! , (ii) Vdp! ,and (iii) pdV Vdp! !+ .

Solution. (i) pdV! :

p is a function of V and integral can only be evaluated if relation between p and V is known.
It is thus an inexact differential and hence not a property.

(ii) Vdp!  :

It is not a property for the same reason as mentioned in (i).

(iii) pdV!  + Vdp!  :

pdV Vdp pdV Vdp d pV pV! ! ! !+ = + = =( ) .

Thus the integral can be evaluated without knowing the relation between p and V. It is an
exact differential and hence it is a property.

Example 2.15. Gas from a cylinder of compressed helium is used to inflate an inelastic
flexible  balloon,  originally  folded  completely  flat, to a volume 0.6 m3. If the barometer reads
760 mm Hg, what is the amount of work done upon the atmosphere by the balloon ? Sketch the
system before and after the process.

Solution. Refer Fig. 2.34. The firm line B1 shows the boundary of the system before the
process, and dotted line B2 shows the boundary after the process.

B1

B2

Helium cylinder

Balloon initially flat

Final volume of balloon = 0.6 m3

Valve

p = 760 mm Hg = 101.325 k Pa

Fig. 2.34
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This is a positive work, because the work is done by the system. Work done by 

the atmosphere is – 60.795 kJ. Since the wall of the cylinder is rigid there is no 

pdV-work involved in it. 

It is assumed that the pressure in the balloon is atmospheric at all times, since 

the balloon fabric is light, inelastic and unstressed. If the balloon were elastic 

and stressed during the filling process, the work done by the gas would be 

greater than 60.795 kJ by an amount equal to the work done in stretching the 

balloon, although the displacement work done by atmosphere is still 60.795 kJ. 

However, if the system includes both the gas and the balloon, the displacement 

work should be 60.795 kJ, as estimated above. 

Example 2.14. Determine the work done by the air which enters into an 

evacuated vessel from atmosphere when the valve is opened. The atmospheric 

pressure is 1.013 bar and 1.5 m 3 of air at atmospheric condition enters into the 

vessel. 

Solution. Figure below shows the initial and final condition of the system. 

 

52 ENGINEERING THERMODYNAMICS
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The displacement work,

Wd = 
pdV pdV pdV

cylinder balloon balloon
! ! !+ = +0

= 101.325 × 0.6 [! dV = 0.6 m3]

= 60.795 kJ. (Ans.)
This is a positive work, because the work is done by the system. Work done by the atmos-

phere is – 60.795 kJ. Since the wall of the cylinder is rigid there is no pdV-work involved in it.
It is assumed that the pressure in the balloon is atmospheric at all times, since the balloon

fabric is light, inelastic and unstressed. If the balloon were elastic and stressed during the filling
process, the work done by the gas would be greater than 60.795 kJ by an amount equal to the work
done in stretching the balloon, although the displacement work done by atmosphere is still –
60.795 kJ. However, if the system includes both the gas and the balloon, the displacement work
should be 60.795 kJ, as estimated above.

Example 2.16. Determine the work done by the air which enters into an evacuated vessel
from atmosphere when the valve is opened. The atmospheric pressure is 1.013 bar and 1.5 m3 of
air at atmospheric condition enters into the vessel.

Solution. Fig. 2.35 shows the initial and final condition of the system.

Fig. 2.35

No work is done by the boundary in contact with the vessel as the boundary does not move.
Work is done by the external boundary at constant pressure.

\ W p dV p dV
V

V
= =! !

1

2

15

0

.
[! V1 = 1.5 m3 and V2 = 0]

= p(0 – 1.5) = 1.013 × 105 × (– 1.5)

= – 1.5195 × 105 J = – 151.95 kJ. (Ans.)
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No work is done by the boundary in contact with the vessel as the boundary 

does not move. Work is done by the external boundary at constant pressure. 

𝑊 = ∫ 𝑝𝑑𝑉0!
0"

= ∫ 𝑝𝑑𝑉-
!.* 																				𝑉1 = 1.5𝑚4	𝑎𝑛𝑑		𝑉2 = 0   

= p(0-1.5)=1.013x105x(-1.5) 

=-1.5195x105 J=151.95kJ 

Since the free air boundary is contracting, the work done by the system is 

negative, and the surroundings do positive work upon the system. 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 


