Chapter Six: Fundamental Equations, Absolute
Entropy, and The Third Law

Fundamental Equations relate functions of state to each other using
15" and 2" Laws

1" law with expansion work: dU = dq - pextdV

\

need fo express dq in
terms of state variables
because dq is path dependent

Use 2" law: dg™' = TdS

For a reversible process pext = p and dq = dq™' =TdS

So..... duU = T85"- pdV

This fundamental equation only contains state variables

Even though this equation was demonstrated for a reversible
process, the equation is always correct and valid for a closed (no
mass transfer) system, even in the presence of an irreversible
process. This is because U, T, S, p, and V are all functions of state
and independent of path.

AND The “"best” or “natural” variables for U are S and V,
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We can write similar equations for enthalpy H = U

+pV = dH=dU+d(pV)=dU +pdV + Vdp

\

inserting dU = TdS - pdV

FRIX | dH = TdS + Vdp

The natural variables for H are then S and p
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We can use these equations to find how S depends on T.
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We can write similar equations for enthalpy

H=U+pV = dH=duU+d(pV)=dU+pdV+Vdp
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inserting dU = TdS - pdV
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The natural variables for H are then S and p
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We can use these equations to find how S depends on T.
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. Absolute Entropies

Absolute entropy of an ideal gas

From dU = TdS - pdV = dS :M
At constant T,dU=0 = dS; :pdTV
nRdV

For an ideal gas, pV =nRT = dS;= v

At constant T d(pV)=d(nRT)=0 = pdV=-Vdp

_hRdp
P

SO dST =

For an arbitrary pressure p,

S(p, T)=5(p°,T) - j: @ =5(p°, T)-nR In(p%}

where p° is some reference pressure which we set at 1 bar

= S(p,T)=5S(T)-nRInp (pinbar)

S(p.T)=S°(T)-RInp (pin bar)

But to finish, we still need S°(T) !



Suppose we had S°(0K) (standard molar entropy at O Kelvin)

C _
Then using (%) :?p we should be able to get S°(T)

Consider the following sequence of processes for the substance A:

A(s,0K,1bar) = A(s,Tn.1bar) = A, T, 1bar) = AR, Ty, 1bar)
= A(9,Ts,1bar) = A(g,T,1bar)
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\ Liquid boils, AS = AH
fus
Solid melts, AS = AH
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Since AS %is positive for each of these processes, the entropy must
have its smallest possible value at O K. If we take S °(0K) =

zero for every pure substance in its crystalline solid state, then we
could calculate the entropy at any other temperature.

This leads us to the

Third Law
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THIRD LAW:
First expressed as Nernst's Heat Theorem:

for all isothermal
Nernst (1905): As T— 0K, AS — O processes in condensed
phases

More general and useful formulation by M. Planck:

* Planck (1911): As T — 0K, S — O for every chemically

homogeneous substance in a perfect crystalline state

Justification:

1 It works!

L Statistical mechanics (5.62) allows us to calculate the

entropy and indeed predicts S °(0OK) = O.

This leads to the following interesting corollary:
It isimpossible o decrease the temperature of any system to T=0
Kin a finite number of steps

How can we rationalize this statement?

Recall the fundamental equation, dU=TdS - p dV
dU=C.dT

For 1 mole of ideal gas, P = RT/V

so C,dT=TdS-(RT/V)dV

dS=C.d(InT)+Rd(InV)
For a spontaneous adiabatic process which takes the system from T 1to a
lower temperature T,
AS=C vln (Tz/T1) +RIn (Vz/V1) =0
but if T 2=0, C,In(T2/T1) equals minus infinity !
Therefore R In (V2/V1) must be greater than plus infinity, which is
impossible. Therefore no actual process can get you to T 2= O K.

But you can get very very closel



InProf. W. Ketterle's experiments on "Bose Einstein Condensates" (MIT
Nobel Prize), atoms are cooled to nanoKelvin temperatures (T = 10 °K) ..
but not to O K|
Another consequence of the Third Law is that
It is impossible to have T=0K.
How can we rationalize the alternate statement?

Consider the calculation of S starting at T=0K

C,(s)dT
S(s, T Ibar) = jg%

to prevent a singularity at T=0,C ,— 0as T— 0K

in fact, experimentally € =yT + AT °+ ..

That is, the heat capacity of a pure substance goes to zero as T goes to

zero Kelvin and this is experimentally observed.

Combining the above with dT = dq,/C ,, at T=0 any infinitesimally small

amount of heat would result in a finite femperature rise.
In other words, because C ,— 0 as T — 0 K, the heat dq ;needed to
achieve a temperature rise dT, (dq,=C,dT) also goes to zero at O K.
If you somehow manage to make it to O K, you will not be able to
maintain that temperature because any stray heat from a warmer
object nearby will raise the temperature above zero, unless you have
perfect thermal insulation, which is impossible.

- Some apparent violations of the third law (but which are not!)
Any disorder at T=0 K givesrise to 5S> 0
* For example in mixed crystals

AS,, =-NR[X,InX, +X;InX;] >0

Always even at OK



But a mixed crystal is not a pure substance, so the third law is not
violated.
* Any impurity or defect in a crystal also causes S > O at
0K
* Any orientational or conformational degeneracies such is
in a molecular crystal causes S >0 at O K, for example in
a carbon monoxide crystal, two orientations are possible:
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