Chapter Seven: Gibbs Free Energy

The Gibbs Free Energy

- With the free energies

$$
\begin{array}{ll}
\text { Helmholtz free energy } & A=U-T S \\
\text { Gibbs free energy } & G=H-T S
\end{array}
$$

we've introduced all our state functions. For closed systems,

$$
\begin{array}{|lll|}
\hline U(S, V) & \Rightarrow & d U=T d S-p d V \\
H(S, p) & \Rightarrow & d H=T d S+V d p \\
A(T, V) & \Rightarrow & d A=-S d T-p d V \\
G(T, p) & \Rightarrow & d G=-S d T+V d p \\
\hline
\end{array}
$$

Fundamental equations

From $\quad d A=\left(\frac{\partial A}{\partial T}\right)_{V} d T+\left(\frac{\partial A}{\partial V}\right)_{T} d V$
and $\quad d G=\left(\frac{\partial G}{\partial T}\right)_{p} d T+\left(\frac{\partial G}{\partial p}\right)_{T} d p$

$$
\begin{array}{ll}
\left(\frac{\partial A}{\partial T}\right)_{V}=-S & \left(\frac{\partial A}{\partial V}\right)_{T}=-p \\
\left(\frac{\partial G}{\partial T}\right)_{p}=-S & \left(\frac{\partial G}{\partial p}\right)_{T}=V
\end{array}
$$

The Maxwell relations: $\quad \frac{\partial^{2} A}{\partial V \partial T}=\frac{\partial^{2} A}{\partial T \partial V} \quad$ and $\quad \frac{\partial^{2} G}{\partial p \partial T}=\frac{\partial^{2} G}{\partial T \partial p}$
now allow us to find how S depends on V and p.

$$
\Rightarrow \quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \quad\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

These can be obtained from an equation of state.
We can now also relate T and H to $p-V-T$ data.
$\left.\begin{array}{l}\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p=T\left(\frac{\partial p}{\partial T}\right)_{V}-p \\ \left(\frac{\partial H}{\partial p}\right)_{T}=T\left(\frac{\partial S}{\partial p}\right)_{T}+V=V-T\left(\frac{\partial V}{\partial T}\right)_{p}\end{array}\right\} \rightarrow U$ and H from equations of state!

- For an ideal gas $p V=n R T$

$$
\begin{array}{ll}
\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{n R}{V}=\frac{p}{T} \quad \Rightarrow \quad\left(\frac{\partial U}{\partial V}\right)_{T}=0 \\
\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{n R}{p}=\frac{V}{T} \quad \Rightarrow \quad\left(\frac{\partial H}{\partial p}\right)_{T}=0
\end{array}
$$

This proves that for an ideal gas $U(T)$ and $H(T)$, functions of T only. We had assumed this was true from Joule and Joule-Thomson expansion experiments. Now we know it is rigorously true.

- For a van der Waals gas

$$
\begin{aligned}
& \left(p+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T \\
& p=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}}
\end{aligned}
$$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{R T}{\bar{V}-b}-p=\frac{a}{\bar{V}^{2}} \neq 0 \quad \Rightarrow \quad U(T, V)
$$

The special role of $G(T, p)$: If you know $G(T, p)$, you know everything!

$$
S=-\left(\frac{\partial G}{\partial T}\right)_{p} \cdot \quad V=\left(\frac{\partial G}{\partial p}\right)_{T}
$$

$H=G+T S \quad H=G-T\left(\frac{\partial G}{\partial T}\right)_{p}$
$U=H-p V \quad \exists \quad U=G-T\left(\frac{\partial G}{\partial T}\right)_{p}-p\left(\frac{\partial G}{\partial p}\right)_{T}$
$A=U-T S \quad \Rightarrow A=G-p\left(\frac{\partial G}{\partial p}\right)_{T}$
$C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \Rightarrow \quad_{p}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{p}$
Can get all the thermodynamic functions from $G(T, p)$!

- $\quad G(T, p) \quad$ for liquids, solids, and gases (ideal)

From $\quad V=\left(\frac{\partial G}{\partial p}\right)_{T}$
$\Rightarrow \quad \overline{\boldsymbol{G}}\left(T, p_{2}\right)=\overline{\boldsymbol{G}}\left(T, p_{1}\right)+\int_{\beta_{1}}^{\beta_{2}} \bar{V} d p$

- Liquids and solids $\Rightarrow \bar{V}$ is small

$$
\bar{G}\left(T, p_{2}\right)=\bar{G}\left(T, p_{1}\right)+\bar{V}\left(p_{2}-p_{1}\right) \approx \bar{G}\left(T, p_{1}\right) \quad \Rightarrow \quad \bar{G}(T)
$$

Ideal gases

$\bar{G}\left(T, p_{2}\right)=\bar{G}\left(T, p_{1}\right)+\int_{R_{1}}^{p_{2}} \frac{R T}{p} d p=\bar{G}\left(T, p_{1}\right)+R T \ln \frac{p_{2}}{p_{1}}$

Take $p_{1}=p^{\circ}=1 \mathrm{bar}$

$$
\bar{G}(T, p)=\bar{G}^{\circ}(T)+R T \ln \frac{p}{p_{0}} \text { or } \bar{G}(T, p)=\bar{G}^{\circ}(T)+R T \ln p
$$

From $\quad S=-\left(\frac{\partial G}{\partial T}\right)_{p} \Rightarrow \quad \bar{S}(T, p)=\bar{S}^{\circ}(T)-R \ln p$

Eexample(6. 1):

Calculate the Gibbs free energy change for the reaction below at $25^{\circ} \mathrm{C}$ if the standard enthalpy of the reaction is $-187.8 \mathrm{~kJ} / \mathrm{mol}$ and the standard entropy change is -97.96 J/(mol.K).
$2 \mathrm{H} 2 \mathrm{~S}(\mathrm{~g})+3 \mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+2 \mathrm{SO} 2(\mathrm{~g})$
Solution:
The Gibbs free energy change $(\Delta \mathrm{G})$ can be calculated using the following formula:
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
where
$\Delta \mathrm{H}=$ standard enthalpy change
$\mathrm{T}=$ temperature (in Kelvin)
$\Delta \mathrm{S}=$ standard entropy change
Substituting the given values, we get:
$\Delta \mathrm{G}=(-187.8 \mathrm{~kJ} / \mathrm{mol})-(298 \mathrm{~K})(-97.96 \mathrm{~J} /(\mathrm{mol} . \mathrm{K}) / 1000 \mathrm{~J} / \mathrm{kJ})$
$\Delta \mathrm{G}=-187.8 \mathrm{~kJ} / \mathrm{mol}+29.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{G}=-158.3 \mathrm{~kJ} / \mathrm{mol}$
Therefore, the Gibbs free energy change for the reaction is $-158.3 \mathrm{~kJ} / \mathrm{mol}$.

Example (6.2) : Calculate the change in Gibbs free energy for a chemical reaction given the following information, and determine if the reaction takes place spontaneously:
$\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
$\Delta \mathrm{H}=-51.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{S}=-116.2 \mathrm{~J} / \mathrm{mol} * \mathrm{~K}$
$\mathrm{T}=298 \mathrm{~K}$

Solution:

To calculate the change in Gibbs free energy, we use the equation:
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Plugging in the values given:
$\Delta \mathrm{G}=-51.8 \mathrm{~kJ} / \mathrm{mol}-(298 \mathrm{~K})(-116.2 \mathrm{~J} / \mathrm{mol} * \mathrm{~K}) /(1000 \mathrm{~J} / \mathrm{kJ})$
$\Delta \mathrm{G}=-51.8 \mathrm{~kJ} / \mathrm{mol}+34.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{G}=-17.2 \mathrm{~kJ} / \mathrm{mol}$
Since $\Delta \mathrm{G}$ is negative, this means that the reaction is spontaneous under standard conditions (1 atm and 298 K). This is because the reaction results in a decrease in free energy, and a spontaneous process must have a decrease in free energy.

Therefore, the reaction $\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$ is spontaneous under standard conditions

