

Physics department

**College of Education** 

Salahaddin University-Erbil

**Subject: Numerical Analysis** 

**Course Book – (Third year Physics Student)** 

Lecturer's name: Dr. Mohammad Mustafa Dzayi

Academic Year: 2023/2024

# **Course Book**

| 1. Course name                 | Numerical Analysis                                                   |
|--------------------------------|----------------------------------------------------------------------|
| 2. Lecturer in charge          | Dr. Mohammad Mustafa Dzayi                                           |
| 3. Department/ College         | Physics, Education                                                   |
| 4. Contact                     | e-mails: muhamad.othman@su.edu.krd                                   |
| 5. Time (in hours)<br>per week | Theory: 2 Hours                                                      |
| 6. Office hours                | Saturday: GB 8:30 AM To 10:30 AM   Saturday: GA 10:30 AM To 12:30 AM |
| 7. Course code                 |                                                                      |

# **Contents of Course Book**

#### **CHAPTER 1—Errors**

- 1.1 Introduction
- 1.2 Significant digits
- 1.3 Rounding off numbers
- 1.4 Errors
- 1.5 Relative error and the number of correct digits
- 1.6 General error formula
- 1.7 Application of errors to the fundamental

operations of arithmetic

Exercise

# CHAPTER 2—Solution of Algebraic and Transcendental Equations

- 2.1 Graphical solution of equations
- 2.2 The iteration method
- 2.3 Newton-Raphson method or Newton iteration method
- 2.4 Generalized Newton's method for multiple roots

## **CHAPTER 3—Interpolation with Equal Intervals and Unequal Intervals**

- 3.1 Newton's forward interpolation formula
- 3.2 Newton-Gregory backward interpolation formula
- 3.3 Error in the interpolation formula
- 3.4 Newton's general divided differences formula
- 3.5Lagrange's interpolation formula

Exercise

#### **CHAPTER 4—Numerical Differentiation**

- 4.1 Derivatives using Newton's forward interpolation formula
- 4.2 Derivatives using Newton's backward interpolation formula
- 4.3 Derivatives using Stirling's formula

Exercise

## CHAPTER 5—Numerical Integration and Ordinary Differential Equations

- 5.1 Trapezoidal rule
- 5.2 Simpson's one-third rule
- 5.3 Simpson's three-eighths rule
- 5.4 Taylor's series method
- 5.5 Runge-Kutta method

Exercise

#### **CHAPTER 6—Curve Fitting**

- 6.1 Introduction
- 6.2 The straight line
- 6.3 Fitting a straight line
- 6.4 Fitting a parabola
- 6.5 Exponential function  $y = ae^{bx}$

Exercise