Ministry of Higher Education and Scientific research

Department of Electrical Engineering

College of Engineering

Salahaddin University-Erbil

Subject: Adaptive Control Systems

Course Book of 4th CC

Lecturer: Mustafa Mohammed Mustafa, M.Sc.

Academic Year: 2019/2020

1. Course name	Adaptive Control Systems
2. Lecturer in charge	Mustafa Mohammed Mustafa
3. Department/College	Electrical/College of Engineering
4. Contact	e-mail: mustafa.atrushi@su.edu.krd
5. Time (in hours) per week	Theory: 3
	Practical: 0
6. Office hours	Monday 08:30 AM - 2:30 PM
	Tuesday 8:30 AM - 10:30 AM
7. Course code	EE402
8. Teacher's academic	https://academics.su.edu.krd/mustafa.atrushi
profile	
9. Keywords	Nonlinear, Adaptive, Autonomous

Course Book

10. Course overview:

This course studies nonlinear analysis and control systems theory. The course will present engineering problems, including new techniques, depending on the analysis tools and basics. Topics include: Autonomous and Nonautonomous Systems, Input-to-State Stability, Feedback and Input/output linearization, Observers and Filters, and Adaptive Control. Mathematical analysis will be applied to some examples, taken from engineering systems, to illustrate the theory of the analysis tools. Knowledge of circuits analysis, dynamic of simple mechanical systems, calculus, linear algebra, and ordinary differential equations is assumed. The student must be able to use MATLAB to do course assignments.

11. Course objective:

The objective of this course is to introduce students to the nonlinear systems, how to analyse, and how to control these systems using adaptive control theory and some other tools.

12. Student's obligation

There are two midterm exams, a final project, and a final exam. All the assignments are important and must be accomplished, otherwise the student will not be familiar with the exams. After covering the course, each student has to do a project and submit it within the allowed time. Details about the project will be posted on the website. Students will not earn grades for attendance, <u>but</u> they are responsible for everything presented in the class. So, attendance is highly recommended.

13. Forms of teaching

This course is an analysis and design course, so I will depend on the white board in the class. Data show will be used in some lectures to support the analysis and present some examples of nonlinear systems from the industry.

14. Assessment scheme

First Term Exam	15%
Second Term Exam	15%
Project and Quiz	10%
Final Exam	60%
Total	100%

15. Student learning outcome:

Students will, upon completion of the course, be able to:

- 1. Emphasize on the basic mathematical background and experience to understand and analyze the behavior of adaptive systems.
- 2. Analyze the stability and performance properties of nonlinear systems.
- 3. Understand the design of nonlinear feedback controllers, so they can control nonlinear systems.
- 4. Gain insight about the complexity of nonlinear systems.

16. Course Reading List and References:

- Nonlinear Systems: Third Edition by H. Khalil, 2002.
- Applied Nonlinear Control by Jean-Jacques Slotine, Weiping Li, Pearson Education, 1990.
- Nonlinear and Adaptive Control Design by Miroslav Kristic, Ioannis Kanellakopoulos, Petar Kokotovic, John Wiley and Sons, 1995.

17. The Topics:	Lecturer's name
Introduction	Mustafa M. Mustafa
An Overview of The Syllabus	(4 Weeks)
Linear vs Nonlinear Systems	
 Motivation for Nonlinear Control 	
Behavior of Nonlinear Systems	
Mathematics: Basic Theorems	
Phase Plane Analysis	Mustafa M. Mustafa
Concepts of Phase Plane Analysis	(5 Weeks)
Phase Portraits	
Constructing Phase Portraits	
 Determining Time from Phase Portraits 	
Phase Plane Analysis of Linear Systems	
 Phase Plane Analysis of Nonlinear Systems 	
Existence of Limit Cycles	
Fundamentals of Lyapunov Theory	Mustafa M. Mustafa
 Nonlinear Systems and Equilibrium Points 	(5 Weeks)
Concepts of Stability	

Ministry of Higher Education and Scientific research

21 Door roy	view	پێداچوونەوەى ھاوەڵ	
20. Extra no None	tes:		
in all the exam	is multiple choices type questions are expecte	20.	
19. Examina	Itions:		
None		None	
18. Practica	I Topics (If there is any)		
Compo	Site Adaptation		
• On-Lin	e Parameter Estimation		
 Robust 	ness of Adaptive Control Systems		
 Adapti 	ve' Control of Nonlinear Systems		
Feedba	ack		
 Adapti 	ve Control of Linear Systems with Output		
Feedb	ack		
 Adapti 	ve Control of Linear Systems with Full State		
 Adapti 	ve Control of First-Order Systems		
Basic (Concepts in Adaptive Control	(8 Weeks)	
Adaptive Cont	rol	Mustafa M. Mustafa	
 Multi-l 	input Systems		
 Input-3 Input-4 	Output Linearization of SISO Systems		
	Maucal 1001s State Linearization of SISO Systems		
 Matha 	matical Tools		
	anzanon ve Concents		
EXISTER			
Lyapur	10V-LIKE Analysis Using Barbalat's Lemma		
• Exister	ice of Lyapunov Functions		
 Instabi 	lity Theorems		
 Lyapur 	10v Analysis of Non-Autonomous Systems		
 Concept 	ots of Stability for Non-Autonomous Systems	(4 Weeks)	
Advanced Stal	oility Theory	Mustafa M. Mustafa	
• contro	Design based on Lyapunov's Direct Method		
System Control	Analysis Based on Lyapunov's Direct Method		
	Analysis Based on Lyanunov's Direct Method		