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Properties of systems

Xsig ´ set of all piecewise continuous signals x:[0,T) ! Rn, T2(0,1]

Qsig ´ set of all piecewise constant signals q:[0,T)! Q, T2(0,1]

Sequence property ´ p : Qsig £ Xsig ! {false,true}

E.g.,

A pair of signals (q, x) 2 Qsig £ Xsig satisfies p if p(q, x) = true

A hybrid automaton H satisfies p ( write H ² p ) if

p(q, x) = true, for every solution (q, x) of H

“ensemble properties” ´ property of the whole family of solutions

(cannot be checked just by looking at isolated solutions)

e.g., continuity with respect to initial conditions…
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Lyapunov stability

equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

thus x(t) = xeq 8 t ¸ 0 is a solution to the ODE

E.g., pendulum equation

q m

l

two equilibrium points:

x1 = 0, x2 = 0 (down)

and x1 = p, x2 = 0 (up)
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Lyapunov stability

equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

thus x(t) = xeq 8 t ¸ 0 is a solution to the ODE

Definition (e–d definition):
The equilibrium point xeq 2 Rn is (Lyapunov) stable if

8 e > 0 9 d >0 : ||x(t0) – xeq|| · d ) ||x(t) – xeq|| · e 8 t¸ t0¸ 0

xeq

d

e

x(t)
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Example #1: Pendulum

xeq=(0,0)

stable

xeq=(p,0)

unstable

q m

l



College of Engineering

Department of Electrical Engineering

Lyapunov stability – continuity definition

Definition (continuity definition):
The equilibrium point xeq 2 Rn is (Lyapunov) stable if T is continuous at xeq:

8 e > 0 9 d >0 : ||x0 – xeq|| · d ) ||T(x0) – T(xeq)||sig · e

Xsig ´ set of all piecewise continuous signals taking values in Rn

Given a signal x2Xsig, ||x||sig supt¸0 ||x(t)||

ODE can be seen as an operator
T : Rn ! Xsig

that maps x0 2 Rn into the solution that starts at x(0) = x0

supt¸0 ||x(t)  – xeq|| · e

xeq

d

e

x(t)
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Stability of arbitrary solutions

Definition (continuity definition):
A solution x*:[0,T)!Rn is (Lyapunov) stable if T is continuous at x*

0x*(0), i.e.,

8 e > 0 9 d >0 : ||x0 – x*
0|| · d ) ||T(x0) – T(x*

0)||sig · e

Xsig ´ set of all piecewise continuous signals taking values in Rn

Given a signal x2Xsig, ||x||sig supt¸0 ||x(t)||

ODE can be seen as an operator
T : Rn ! Xsig

that maps x0 2 Rn into the solution that starts at x(0) = x0

signal norm

supt¸0 ||x(t)  – x*(t)|| · e
d

e
x(t)

x*(t)
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Example #2: Van der Pol oscillator

x* Lyapunov stable
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Stability of arbitrary solutions

E.g., Van der Pol oscillator

x* unstable
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Lyapunov stability

equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class K ´ set of functions a:[0,1)![0,1) that are

1. continuous

2. strictly increasing

3. a(0)=0

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t)  – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

s

a(s)

xeq

a
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x e

q
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0
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x e

q
||

x(t)

t
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Asymptotic stability

Definition:
The equilibrium point xeq 2 Rn is (globally) asymptotically stable if 

it is Lyapunov stable and for every initial state the solution exists on [0,1) and

x(t) ! xeq as t!1.

xeq

a
(|

|x
(t

0
) 

–
x e

q
||)

||x
(t

0
) 

–
x e

q
||

x(t)

s

a(s)
equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class K ´ set of functions a:[0,1)![0,1) that are

1. continuous

2. strictly increasing

3. a(0)=0

t
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Asymptotic stability

Definition (class KL function definition):

The equilibrium point xeq 2 Rn is (globally) asymptotically stable if 9 b2KL:

||x(t) – xeq|| · b(||x(t0) – xeq||,t – t0) 8 t¸ t0¸ 0

xeq

b
(|

|x
(t

0
) 

–
x e

q
||,

0
)

||x
(t

0
) 

–
x e

q
||

x(t)

equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class KL ´ set of functions b:[0,1)£[0,1)![0,1) s.t.

1. for each fixed t, b(¢,t) 2 K
2. for each fixed s, b(s,¢) is monotone 

decreasing and b(s,t) ! 0 as t!1

s

b(s,t)

(for each fixed t)

t

b(s,t)
(for each fixed s)

b(||x(t0) – xeq||,t)

t

We have exponential stability

when 

b(s,t) = c e –l t s

with c,l > 0
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Example #1: Pendulum

x2

xeq=(0,0)

asymptotically

stable

xeq=(p,0)

unstable

k > 0 (with friction) k = 0 (no friction)

xeq=(0,0)

stable but not

asymptotically

xeq=(p,0)

unstable
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Example #3: Butterfly

Convergence by itself does not imply stability, e.g., 

all solutions converge to zero but xeq= (0,0) system is not stable

equilibrium point ´ (0,0)
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Lyapunov’s stability theorem

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Suppose we could show that ||x(t)  – xeq|| always decreases along solutions to 

the ODE. Then

||x(t) – xeq|| · ||x(t0) – xeq|| 8 t¸ t0¸ 0

we could pick a(s) = s

We can draw the same conclusion by using other measures of how far the solution 

is from xeq:

V: Rn ! R positive definite ´ V(x) ¸ 0  8 x 2 Rn with = 0 only for x = 0

V: Rn ! R radially unbounded ´ x! 1 ) V(x)! 1
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Lyapunov’s stability theorem

V: Rn ! R positive definite ´ V(x) ¸ 0  8 x 2 Rn with = 0 only for x = 0

Q: How to check if V(x(t) – xeq) decreases along solutions?

A: V(x(t) – xeq) will decrease if
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Lyapunov’s stability theorem

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Theorem (Lyapunov):

Suppose there exists a continuously differentiable, positive definite function V: 
Rn ! R such that

Then xeq is a Lyapunov stable equilibrium.

V(z – xeq)

z
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Example #1: Pendulum

q m

l

For xeq = (0,0)
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Example #1: Pendulum

q m

l

For xeq = (p,0)
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Lyapunov’s stability theorem

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Theorem (Lyapunov):

Suppose there exists a continuously differentiable, positive definite, radially 
unbounded function V: Rn ! R such that

Then xeq is a Lyapunov stable equilibrium and the solution always exists 

globally. Moreover, if = 0 only for z = xeq then xeq is a (globally) asymptotically 

stable equilibrium.
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Lyapunov’s stability theorem

What if 

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Theorem (Lyapunov):

Suppose there exists a continuously differentiable, positive definite, radially 
unbounded function V: Rn ! R such that

Then xeq is a Lyapunov stable equilibrium and the solution always exists 

globally. Moreover, if = 0 only for z = xeq then xeq is a (globally) asymptotically 

stable equilibrium.
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Example #1: Pendulum

q m

l

For xeq = (0,0)
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LaSalle’s Invariance Principle

Theorem (LaSalle Invariance Principle):

Suppose there exists a continuously differentiable, positive definite, radially 
unbounded function V: Rn ! R such that

Then xeq is a Lyapunov stable equilibrium and the solution always exists globally.

Moreover, x(t) converges to the largest invariant set M contained in
E { z 2 Rn : W(z) = 0 } 

M 2 Rn is an invariant set ´ x(t0) 2 M ) x(t)2 M8 t¸ t0

(in the context of hybrid systems: Reach(M) ½ M…)
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Example #1: Pendulum

q m

l

For xeq = (0,0)

E { (x1,x2): x12 R , x2=0}

Inside E, the ODE becomes
define set M for which 

system remains inside E



College of Engineering

Department of Electrical Engineering

Linear systems

Solution to a linear ODE:

Theorem: The origin xeq = 0 is an equilibrium point. It is

1. Lyapunov stable if and only if all eigenvalues of A have negative or zero real 

parts and for each eigenvalue with zero real part there is an independent 

eigenvector.

2. Asymptotically stable if and only if all eigenvalues of A have negative real 

parts. In this case the origin is actually exponentially stable
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Lyapunov equation

Solution to a linear ODE:

Theorem: The origin xeq = 0 is an equilibrium point. It is asymptotically stable if 

and only if for every positive symmetric definite matrix Q the equation

A’ P + P A =  – Q

has a unique solutions P that is symmetric and positive definite
Lyapunov equation

Recall: given a symmetric matrix P

P is positive definite ´ all eigenvalues are positive

P positive definite ) x’ P x > 0 8 x  0

P is positive semi-definite ´ all eigenvalues are positive or zero

P positive semi-definite ) x’ P x ¸ 0 8 x
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Lyapunov equation

Theorem: The origin xeq = 0 is an equilibrium point. It is asymptotically stable if 

and only if for every positive symmetric definite matrix Q the equation

A’ P + P A =  – Q

has a unique solutions P that is symmetric and positive definite

Why?

1. P exists ) asymp. stable

Consider the quadratic Lyapunov equation: V(x) = x’ P x

V is positive definite & radially unbounded because P is positive definite

V is continuously differentiable:

Solution to a linear ODE:

thus system is asymptotically stable by Lyapunov Theorem
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Lyapunov equation

Theorem: The origin xeq = 0 is an equilibrium point. It is asymptotically stable if 

and only if for every positive symmetric definite matrix Q the equation

A’ P + P A =  – Q

has a unique solutions P that is symmetric and positive definite
Lyapunov equation

Why?

2. asympt. stable ) P exists and is unique (constructive proof)

change of integration

variable t = T – s

A is asympt. stable ) eAt decreases to 

zero exponentiall fast ) P is well 

defined (limit exists and is finite)

Solution to a linear ODE:


