
1

Experiment 11

Cruise Control by PID

Theory

A proportional–integral–derivative controller (PID controller or three-term controller) is a control

loop feedback mechanism widely used in industrial control systems and a variety of other

applications requiring continuously modulated control. A PID controller continuously calculates

an error value 𝑒(𝑡) as the difference between a desired setpoint (SP) and a measured process

variable (PV) and applies a correction based on proportional, integral, and derivative terms

(denoted P, I, and D respectively), hence the name.

In practical terms it automatically applies accurate and responsive correction to a control

function. An everyday example is the cruise control on a car, where external influences such as

hills (gradients) would decrease speed. The PID algorithm restores from current speed to the

desired speed, with small delay and overshoot, by controlling the power output of the vehicle's

engine.

Fundamental operation of PID

The distinguishing feature of the PID controller figure 1 is the ability to use the three control

terms of proportional, integral and derivative influence on the controller output to apply accurate

and optimal control. The block diagram on the right shows the principles of how these terms are

generated and applied. It shows a PID controller, which continuously calculates an error value

𝑒(𝑡) as the difference between a desired setpoint 𝑆𝑃 = 𝑟(𝑡) and a measured process variable

𝑃𝑉 = 𝑦(𝑡), and applies a correction based on proportional, integral, and derivative terms. The

controller attempts to minimize the error over time by adjustment of a control variable 𝑢(𝑡) ,

such as the opening of a control valve, to a new value determined by a weighted sum of the

control terms.

Fig 1 A block diagram of a PID controller in a feedback loop

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Cruise_control
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Control_valve
https://en.wikipedia.org/wiki/Weighted_sum
https://en.wikipedia.org/wiki/Block_diagram

2

So, in this model:

• Term P is proportional to the current value of the SP − PV error e(t). For example, if the

error is large and positive, the control output will be proportionately large and positive,

considering the gain factor "K". Using proportional control alone in a process with

compensation such as temperature control, will result in an error between the setpoint

and the actual process value as shown in figure 2, because it requires an error to generate

the proportional response. If there is no error, there is no corrective response.

• Term I accounts for past values of the SP − PV error and integrates them over time to

produce the I term. For example, if there is a residual SP − PV error after the application

of proportional control, the integral term seeks to eliminate the residual error by adding

a control effect due to the historic cumulative value of the error. When the error is

eliminated, the integral term will cease to grow. This will result in the proportional effect

diminishing as the error decreases, but this is compensated for by the growing integral

effect. So, in the case of a steady state error, the integral of this is a linear rise or slope

and we can see why this would eliminate the error; the control signal is either

accumulating for a positive error or dissipating for a negative error. And it will keep

accumulating or dissipating the control signal until the error reaches zero. This is the main

advantage of integral control is that it allows us to eliminate the steady state error

completely. Now by tuning the Ki term we can adjust the control effort of our integral

controller. Now in this case for a high Ki value, we can see that we get a steeper slope,

and this would make our control signal more aggressive as in figure 3.

Fig 2 P-controller explaining the steady state error

3

For the temperature control example, turning on the integral control we can see that the

control signal accumulates and rises until the error is zero. We have now eliminated the

offset that is appeared in p-controller and we have finally reached a set point of 80

degrees. But if 𝐾𝑖 is too low, we end up with the large overshoot and overall a very slow

response. This is bad when it comes to rejecting disturbances or constant changes in the

setpoint. We can add the I-controller to P-controller to overcome the disadvantages of

both, but another problem will appear which is overshoot. Figure 4 explain the step

response of PI controller for room temperature example.

Fig 3 I-controller explaining the effect of Ki value

Fig 4 PI-controller explaining the overshoot

4

We learned that the proportional controller provided us with a fast rise time but with a

steady state offset. The PI-controller solves that using the integral control to reduce the

error to zero. But when neither the controller can solve is the large overshoots and rising

time in order to reduce or dampen this response, we will need to add a controller and

they'll quickly respond fast enough to keep the output from overshooting or

undershooting the setpoint.

• Term D is a best estimate of the future trend of the SP − PV error, based on its current

rate of change. It is sometimes called "anticipatory control", as it is effectively seeking to

reduce the effect of the SP − PV error by exerting a control influence generated by the

rate of error change. The more rapid the change, the greater the controlling or dampening

effect. The derivative term takes the rate of change of the error as its control signal by

applying the step change in the setpoint. In this case we again get a positive error in term

in response produces a control signal. The main benefit of the derivative term is that for

a sudden change maybe due to disturbances or a change in the setpoint the controller

reacts quickly and aggressively, but this is a response to a stepper when an overshoot

takes place. The error tends to be more sinusoidal as opposed to a step. Figure 5 shows

the control signal is leading the error signal, before the error goes up the control goes up

and before the error swings back down the control is already been there. In this way the

D-control is predicting the future error over and it's in this leading behavior that allows it

to reduce the overshoots before they become significant. Adding the derivative term can

reduce the overshoots.

Fig 5 D-controller explaining the leading of control signal

5

As a conclusion we can say that the proportional term decreases rise time, Integral term

eliminates steady state error and the derivative term reduces the overshoot. Figure 6 explain the

step response of a PID controller.

Mathematical form

The PID controller 𝑢(𝑡) in fig 1 can be mathematically written as shown:

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)
𝑡

0

𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

 where a control signal is a summation of three mathematical operations.

 Part I Implementation and testing the PID algorithm

Procedure

1) Implement the PID algorithm

The mathematical equation of PID written above is a controller expressed in continuous time
or in the analog domain. In order to make the signal generated by the microcontroller, we
need to implement it digitally in software. The discrete time of the PID will be expressed as:

𝑢[𝑛] = 𝐾𝑃 ∗ 𝑒[𝑛] + 𝐾𝑖 ∗ ∑ 𝑒[𝐾]𝑇 + 𝐾𝑑 ∗
(𝑒[𝑛] − 𝑒[𝑛 − 1])

𝑇

𝑛

𝐾=0

Fig 6 PID-controller explaining the step response

6

Where T is essentially the delta t of the continuous domain. Because in the loop we're going to

call the function in intervals of t seconds, we can treat this as a fixed constant.

2) Make the PID function code

7

3) Build the equivalent circuit of the cruise control

For this experiment we will build a circuit to control the brightness of a LED using PID

algorithm. We consider this circuit as a demo for the cruise control that is a system

automatically controls the speed of a motor vehicle. The system is a servomechanism that

takes over the throttle of the car to maintain a steady speed as set by the driver. The driver

must bring the vehicle up to speed manually and use a button to set the cruise control to the

current speed. The cruise control takes its speed signal from a rotating driveshaft,

speedometer cable, wheel speed sensor from the engine's RPM, or from internal speed

pulses produced electronically by the vehicle. The vehicle will maintain the desired speed

by pulling the throttle cable with a solenoid, a vacuum driven servomechanism, or by

using the electronic systems built into the vehicle (fully electronic) if it uses a 'drive-by-

wire' system. Some modern vehicles have systems for adaptive cruise control (ACC), which is a

general term meaning improved cruise control. These improvements can be automatic braking or

dynamic set-speed type controls. The automatic braking type use either a single or

combination of sensors (radar, lidar,and camera) to allow the vehicle to keep pace with

the car it is following, slow when closing in on the vehicle in front and accelerating again

to the preset speed when traffic allows.

For our circuit we consider

• Photo sensor as headway sensor

• Arduino as a control unit of the automobile

• Potentiometer as an input to set the desired speed

• Brightness of the LED as a speed. The circuit is shown in figure 7

Fig 7 Circuit diagram

https://en.wikipedia.org/wiki/Speed
https://en.wikipedia.org/wiki/Motor_vehicle
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Throttle
https://en.wikipedia.org/wiki/Driveshaft
https://en.wikipedia.org/wiki/Speedometer
https://en.wikipedia.org/wiki/Wheel_speed_sensor
https://en.wikipedia.org/wiki/Revolutions_per_minute
https://en.wikipedia.org/wiki/Throttle
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Servomechanism

8

4) Program

After building the PID code, we save it as a function in the library so we can call it while

coding the UNO to control the circuit above.

9

10

5) Compile the program and upload to Arduino UNO board

• Open the serial monitor/plotter

• fix the setpoint by the potentiometer

• apply a physical light to the photo sensor

• observe the values of the input and output while changing the brightness of the
applied light

• adjust the values of 𝐾𝑃, 𝐾𝑖 𝑎𝑛𝑑 𝐾𝐷 repeat the above step

