Double Integrals

Before starting on double integrals let’s do a quick review of the definition of a definite integrals
for functions of single variables. First, when working with the integral,

_[:f[x}ir

we think of x’s as coming from the interval a < x < b _ For these integrals we can say that we are
integrating over the interval @ < x < b _ Note that this does assume that a < b _ however, if we
have b < a then we can just use the interval b<x<a.

MNow, when we derived the definition of the definite integral we first thought of this as an area
problem. We first asked what the area under the curve was and to do this we broke up the

interval @ < x < b into » subintervals of width Ax and choose a point, .Tr.. , from each interval as
shown below,

¥

o

M
L

H -
M

i

I
2
-

Ky
WH L]

&

£

Each of the rectangles has height of f [xj.') and we could then use the area of each of these
rectangles to approximate the area as follows.
A= f(x)Ax+ f(x))Ax oot f () Ax oot f () Ax

To get the exact area we then took the limit as n goes to infinity and this was also the definition of
the definite integral.

["£(x)dx=1m3 f(x)Ax

n—s i1
In this section we want to integrate a function of two variables, f I[;r, y}. With functions of one

variable we integrated over an interval (i.e. a one-dimensional space) and so it makes some sense

then that when integrating a function of two variables we will integrate over a region of ” (two-
dimensional space).



We will start out by assuming that the region in R* is a rectangle which we will denote as

follows,
R= [a,b]x[c,d]

This means that the ranges forxand yare a<x<b and c<y<d.

Also, we will initially assume that [ (x, )20 although this doesn’t really have to be the case.

Let’s start out with the graph of the surface S give by graphing f (x, y) over the rectangle R.
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Now, just like with functions of one variable let’s not worry about integrals quite yet. Let’s first
ask what the volume of the region under § (and above the xy-plane of course) is.

We will first approximate the volume much as we approximated the area above. We will first
divide up @ = x = b into n subintervals and divide up ¢ = y =d into m subintervals. This will
divide up R into a series of smaller rectangles and from each of these we will choose a point

(x: . 1}:) . Here 1s a sketch of this set up.



3 (xs")’;‘)

c = Yo

T T T T T T T &
a=zx X x; Zya b =x,

Now, over each of these smaller rectangles we will construct a box whose height is given by
f(x:_y: ) . Here is a sketch of that.

Each of the rectangles has a base area of A4 and a height of f (xr . y;) so the volume of each of

these boxes is f [x].: }:; }ﬁ_d . The volume under the surface § 1s then approximately,
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i=l j=1
We will have a double sum since we will need to add up volumes in both the x and y directions.

To get a better estimation of the volume we will take » and m larger and larger and to get the
exact volume we will need to take the limit as both n and m go to infinity. In other words,



V= lim "Zif[x:,y;}ﬁf!
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MNow, this should look familiar. This looks a lot like the definition of the integral of a function of
single vanable. In fact this 15 also the defimtion of a double integral, or more exactly an integral
of a function of two variables over a rectangle.

Here 1s the official definition of a double integral of a function of two vanables over a rectangular
region & as well as the notation that we’ll use for it.

[[£(ry)da=tim 33 f(x,7;)ad

i=l =1

Note the similarnties and differences in the notation to single integrals. We have two integrals to
denote the fact that we are dealing with a two dimensional region and we have a differential here
as well. Note that the differential 1s 44 instead of the dx and 4y that we're used to seeing. Note
as well that we don’t have limits on the integrals in this notation. Instead we have the R written
below the two integrals to denote the region that we are integrating over.

Note that one interpretation of the double integral of f {Jr, y] over the rectangle R is the volume

under the function f'(x, ) (and above the xy-plane). Or,

Volume = ([ £ (x,y)d4

We can use this double sum in the definition to estimate the value of a double integral if we need

r

to. We can do this by choosing (Jr , };) to be the midpoint of each rectangle. When we do this

we usually denote the point as (i , I;) . This leads to the Midpoint Rule,

[[£(xy)da=3 3 1 (5.5,)a4

i=1 j=l

In the next section we start looking at how to actually compute double integrals.



In the previous section we gave the definition of the double integral. However, just like with the
definition of a single integral the definition 1s very difficult to use in practice and so we need to
start looking into how we actually compute double integrals. We will continue to assume that we
are integrating over the rectangle

R=[a,b]x[c.d]

We will look at more general regions in the next section.
The following theorem tells us how to compute a double integral over a rectangle.

Fubini’s Theorem

If f[x,y) is continuous on R = [ajb] x[c,a’] then,

JI 7 (xy)aa- f:ff(w]afydr = J'd [* £ (x.p)dedy

These integrals are called iterated integrals.

MNote that there are in fact two ways of computing a double integral and also notice that the inner
differential matches up with the limits on the inner integral and similarly for the out differential
and limits. In other words, if the inner differential 1s dy then the limits on the inner integral must
be y limits of integration and if the outer differential i1s dy then the limits on the outer integral
must be y limits of integration.

Mow, on some level this is just notation and doesn’t really tell us how to compute the double
integral. Let’s just take the first possibility above and change the notation a hittle.
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We will compute the double integral by first computing

[ 1)y

and we compute this by holding x constant and integrating with respect to y as if this were an
single integral. This will give a function involving only x’s which we can in turn integrate,

We've done a similar process with partial derivatives. To take the derivative of a function with
respect to ¥ we treated the x"s as constants and differentiated with respect to v as 1f it was a
function of a single vanable.

Double integrals work in the same manner. We think of all the x’s as constants and integrate with
respect to v or we think of all ¥'s as constants and integrate with respect to x,

Let’s take a look at some examples.




Example 1 Compute each of the following double integrals over the indicated rectangles.
(a) [[61} dA, R=[2,4]x[1,2] [Solution]

(b) HZI—4}= dA, R=[-54]x[0,3] [Solution]

(c) Hx y* +cos(mx)+sin(7y)dd, R=[-2,-1]x[0,1] [Solution]

{}J'.[ a’A R=[0,1]x[L2] [Solution]

(e) IIJL’E' dd, R :[—],E]X[ﬂ,l] [Solution]
R

Solution 2
In this case we’ll integrate with respect to x first and then y. Here is the work for this solution.

[[6:0 dat = f 12 [ 607 axdy
R
Ferts

- L‘ 36 dy
e ,3 "
=12) Il
=84

Sure enough the same answer as the first solution.

So, remember that we can do the integration in any order.
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(b) HEI—4J;3 d4, R=[-54]x[0,3]

For this integral we’ll integrate with respect to y first.

[[2x-ay'aa= ;j’:z.r— 4y dy dx
B
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Remember that when integrating with respect to y all x’s are treated as constants and so as far as

the inner integral 1s concerned the 2x 1s a constant and we know that when we integrate constants
with respect to y we just tack on a y and so we get 2xy from the first term.

(e) -[[11}’1 +cns{ﬁx] +Sil‘l{.?f}'}ﬂ'A , R= [—2,—1])([{],]]

In this case we’ll integrate with respect to x first.

I

ﬂ‘x;yz +cos(mx)+sin(my)dd =f _[ ;xlyl +cos(mx)+sin(xy)drdy
o=
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1
Q) || ————dd, R=[0,1]x[1,2
( }H(hﬂy}_ [0.1]x[1.2]

In this case because the limits for x are kind of nice (i.e. they are zero and one which are often
nice for evaluation) let’s integrate with respect to x first. We’ll also rewrite the integrand to help
with the first integration.

[[(2x+3y)" aa= ffj:{?x-r—i’ry]_z dx dy

= f(-%ihﬂy}_']l; dy

2
2), 243y 3y

1(1 [
_—E[§1n|2+3}|—§]n|}|]‘

1

=—l In8=In2-In5
6



(@ [[xe”da, R=[-12]x[0,1]

Mow, while we can technically integrate with respect to either variable first sometimes one way 1s
significantly easier than the other way. In this case it will be significantly easier to integrate with
respect to v first as we will see.

[[xe” da=[" [ xe” dydx

R

The y integration can be done with the quick substitution,

u=Xxy du =xdy
e aa= [ 6]
R

= [ e —1ax

(e’ __r)|1]

e’ —2—[&"+l]

which gives

e —e ' -3

S0, not too bad of an integral there provided you get the substitution. Now let’s see what would
happen if we had integrated with respect to x first.

[[xe” da= [ xe” dxdy

R

In order to do this we would have to use integration by parts as follows,

H=x dv=e" dx
du = dx V= le":"
’}J

The integral 1s then,

xe” dd = i*—"—fl*}'i]_ :
j;j‘re [ye ye x _laj

1
= [Eez-" —L,_ez-‘)—[—le‘-" —L,_E_-"]dj;
Jo\Y y y o

We're not even going to continue here as these are very difficult integrals to do.



Fact

It f [_t,y] =g [x}ﬁ (}] and we are integrating over the rectangle R = [ajb] ® [c,d] then,

_[;[f[x,}')ﬁ'zi =’gg{x]ﬁ[‘y]d‘4 :(j:g[x}it]“:h[y)dy)

S0, if we can break up the function into a function only of x times a function of y then we can do
the two integrals individually and multiply them together.

Let’s do a quick example using this integral.

Example 2 Eval *(y)d4, R=[-2,3]x| 0,= |
xample vamwﬂxcns (v)d4, R=[ ,]:{,2}

Solution
Since the integrand is a function of x times a function of y we can use the fact.

L[xcnsz (y)dA= (J’xdx][jf cos’ }'}ava
_ [zlf ] j [%ju_] + cr.-:-:[Ey]dy]
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Double Integrals Over General Regions

In the previous section we looked at double integrals over rectangular regions. The problem with
this is that most of the regions are not rectangular so we need to now look at the following double

integral,
[[ £(x.7)d4

where ) 1s any region.

There are two types of regions that we need to look at. Here 15 a sketch of both of them.
Case 1 ¥ Case 2

db--

We will often use ser builder notation to describe these regions. Here 1s the defimifion for the
region in Case |

D={{I,_}'}|a£x£b, SL[I}EJ"EEE(I}}

and here 1s the definition for the region 1n Case 2.

D:{{_r,y]lh]{y}ixihz{y],ciiyid}

This notation 15 really just a fancy way of saying we are going to use all the points, I[;n y}, n
which both of the coordinates satisfy the two given inequalities.

The double integral for both of these cases are defined in terms of iterated integrals as follows.

In Case | where D = {{Jr,y} lasx<h, g(x)<y=<g, {t]} the integral is defined to be,
b rgalx)
[[ 1 (x.y)d =J' I:m f(x,y)dvdx
D a

In Case 2 where D = {{I, y} | Ay [}} =x=h, { y },c =y= d} the integral is defined to be,

d .
[[f(xy)da= f f o2 () dedy
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Here are some properties of the double integral that we should go over before we actually do
some examples. Note that all three of these properties are really just extensions of properties of
single integrals that have been extended to double integrals.

Properties

1. Hf[x,y}+g{x,y]d,4 = Hf[x,y}dﬂ +Hg (x,v)d4
. Hcf{t}] d4 = cﬂf{t y)dA , where ¢ is any constant.

3. If the region D can be split into two separate regions [); and D), then the integral can be written

[1 7 Ge.y)da=[[ £ (x,y)da+ [[ £ (x.v)dA

Let’s take a look at some examples of double integrals over general regions.

Example 1 Evaluate each of the following integrals over the given region .
(a) jje-‘_' dd | D={{_r,y] [1=y=2 y=x iysi [ Solution
o
(b) ” dxy - y" d4 . D is the region bounded by y = xf; and y=x"_ [Solution]
Iy

(c) Hﬁxz =40y dA, Dis the triangle with vertices {ﬂ,3], {'L]] . and (5,3}.
n

[Solution
Solution

(a) J‘J‘EFdA, Dz{{x,y}”iyil], yiri}'si
D

Okay, this first one 1s set up to just use the formula above so let’s do that.
o 2 -
x RPN x|
e as-| [ &ma-| re| &
0 T i

¥

2 3
—_ - . v — |
= j] ve' —yedy
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(b) H 4xy—y’ dA, D is the region bounded by y = Jx and y=x'.

i

In this case we need to determine the two inequalities for x and y that we need to do the integral.
The best way to do this 1s the graph the two curves. Here 1s a sketch.

¥
l.p
08l y=Ax
0.6
0.4
Y-
N2k
1 1 | | x
n2 04 06 NEg 1.
So, from the sketch we can see that that two imequalities are,
D<x<l X <yeafx
We can now do the integral,
Uedx
H 4xy - Vvdd= j _[ , 4xy - v dvdx
I3 0¥
1 | N
= 2xp” —— " dx
J ( ¥ ] :
U X
1
= j lx: -2x" + lx': dx
i 4
1
7
(L Lo L) o3
12 4 52 o 156

(c) ” 6x" —40vdA, D is the triangle with vertices I[IJ,S}, {1, l}, and {5,3}.
D

We got even less information about the region this time. Let’s start this off by sketching the
triangle.

13



2

y=-2x+3"
1k

Since we have two points on each edge it 1s easy to get the equations for each edge and so we’ll
leave it to you to verify the equations,

MNow, there are two ways to describe this region. If we use functions of x, as shown in the image
we will have to break the region up into two different pieces since the lower function 1s different

depending upon the value of x. In this case the region would be given by D =D, D, where,
D ={(x,y)|0=x<l, —2x+3<y<3}

D, ={{x,y}|1£x£5, %_r+2l£y£3}

Note the ) 1s the “union™ symbol and just means that [7 1s the region we get by combing the two
regions. If we do this then we’ll need to do two separate integrals, one for each of the regions.

To avoid this we could turn things around and solve the two equations for x to get,

y==2x+3 = X==—=y+=
g 2':Ir 2

y:EJr+E — x=2y-1

If we do this we can notice that the same function 15 always on the nght and the same function 1s
always on the left and so the region 1s,

D={{x,y}|—%y+%£x£ 2y-1, ]5}:53}

Writing the region in this form means doing a single integral instead of the two integrals we'd
have to do otherwise.

Either way should give the same answer and so we can get an example in the notes of splitting a
region up let’s do both integrals.

14



Solution |

[]6x* —40ydA = [[ 6x* —40ydd + [ 6x* —40ydA
o o [

1 5
=I [ jﬁxz—mydydx+J [} 162 —40ydyax
o= —2x+ 1 -E-J:—E-

1 . 3 k]
=IU(6_I y=20y }

—21x+3

dx+ f S(ﬁf}-— 20y ]E dx
i )

= ["12x" ~180+20(3 - 2x)" dr + [ -3x +15x" ~180+20(4x+4)" dx
L 1 2 2

1

= [?-x" ~180x—12(3-2x)’ )L + [—%x" +5x° ~180x +42(Lx+ 1?}’)

935
3

5
1

That was a lot of work. Notice however, that after we did the first substitution that we didn’t
multiply everything out. The two quadratic terms can be easily integrated with a basic Cale 1

substitution and so we didn’t bother to multiply them out. We'll do that on occasion to make
some of these integrals a little easier.

Solution 2
This solution will be a lot less work since we are only going to do a single integral.

[[6x* ~40yda= f |7 6x*~d0ydvdy
1 ¥ 2

[ (2 -aom

1
2

s dy
_ 3 . -2 e 3_ —_—1 13 H
= [1100y-100y* +2(2y-1)' -2(~4y+3) d

= (50"~ 25" +4(2y-1)" + {—%y+%}4)
_3%
3

3

S0, the numbers were a little messier, but other than that there was much less work for the same

result. Also notice that again we didn’t cube out the two terms as they are easier to deal with
using a Calc [ substitution.
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Example 2 Evaluate the following integrals by first reversing the order of integration.

L 3
(a) j J'q;rf‘e-" dydx  [Solution]
i

-
b j _Ax'+ldrdy [Soluti
(b) uLJ"_ [y |Solution]

Solution

3 3
@ [ [Lxe dyax
ik r

First, notice that 1f we try to integrate with respect to v we can’t do the integral because we would
need a " in front of the exponential in order to do the v integration. We are going to hope that if
we reverse the order of integration we will get an integral that we can do.

So, let’s see how we reverse the order of integration. The best way to reverse the order of
integration 1s to first sketch the region given by the oniginal limits of integration. From the
integral we see that the inequalities that define this region are,

D=x=3

¥ <y<9

These mequalities tell us that we want the region with y = x” on the lower boundary and y =9
on the upper boundary that lies between x =0 and x =3_ Here is a sketch of that region.

¥
10

Since we want to integrate with respect to x first we will need to determine limits of x (probably
in terms of y) and then get the limits on the y's. Here they are for this region.
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Any horizontal line drawn in this region will start at x=0 and end at x = .J'; and so these are
the limits on the x’s and the range of y’s for the regions 15 0 to 9.

The integral, with the order reversed, 1s now,
3 k' ¥ v ]
j j x'e dydx= f jJ'_ x'e” dxdy
B o i}

and notice that we can do the first integration with this order. We’ll also hope that this will give
us a second integral that we can do. Here is the work for this integral.

3 i LI -
j r‘ x'e’ dydx= j j{ x'e” drdy
e =0
L

| 1J':
(1l s
4 i}
1]
J e
=| —ye'd
“4} i
I
=—E'1.
12 o

(b) j: IJTJI‘ +1dxdy

As with the first integral we cannot do this integral by integrating with respect to x first so we’ll
hope that by reversing the order of integration we will get something that we can integrate. Here
are the limits for the vanables that we get from this integral,

Yrex<2

0=y=8

and here 1s a sketch of this region.

17



So, if we reverse the order of integration we get the following limits.

0=x=2

D<y<x
N 2 3
JHI_ \.I'_rd+]irdy:J’ I Vx' +1dydx
o T
2 &
:J, y\,l'x‘+]| dx
o o

2 )
=[xVt +1 dx=l(1?2 —1]
‘ 6

The integral 1s then,

The volume of the solid that lies below the surface given by z = f {Jr, y} and above the region I
in the xy-plane 1s given by,

V=0 £ (5.) s

Example 3 Find the volume of the solid that lies below the surface given by z =16xy + 200
and lies above the region in the xy-plane bounded by ¥ =x" and y=28 -x.

Solution

Here is the graph of the surface and we’ve tried to show the region in the xy-plane below the
surface.

Here is a sketch of the region in the xy-plane by itself.
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By setting the two bounding equations equal we can see that they will intersect at x =2 and
x=-2_ So, the inequalities that will define the region D in the xy-plane are,
-2=x=2

¥ <y<8—-x

The volume 1s then given by,

v = [[16xy +20044
o

=f'j”,'"1axy+zmaydx

|
Lo

dx

3

B—x”
"
22

= j_:{ﬁly: +200y)

=Ii—]2313 —400x° +512x+ 1600 dx

12800

= [—321’" - ?f +256x° +]6'EI'EIJ:J

=

Example 4 Find the volume of the solid enclosed by the planes 4x+2y+z =10, y=3x,
z=0,x=0.

Solution This example 1s a little different from the previous one. Here the region ) is not
explicitly given so we're going to have to find it. First, notice that the last two planes are really
telling us that we won’t go past the xy-plane and the y=-plane when we reach them.

The first plane, 4x+2y+ z =10, is the top of the volume and so we are really looking for the
volume under,

z=10-4x-2y
and above the region D in the xy-plane. The second plane, y = 3x (yes that is a plane), gives one
of the sides of the volume as shown below.
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The region [ will be the region in the xy-plane (i.e. =z =0) that is bounded by y=3x, x=0,
and the line where =+ 4x + 2y =10 intersects the xy-plane. We can determine where

z+4x+ 2y =10 intersects the xy-plane by plugging = =0 into it.

0+4x+2y=10 — 2x+y=35 =  y==2x+5

So, here is a sketch the region D.

y=-2x+5

1] 1 L =
0. 05 1.

The region I 1s really where this solid will sit on the xy-plane and here are the inequalities that
define the region.

Here 15 the volume of this solid.
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