1.1 Definition A set is collection of distinct objects. These objects are called the elements, or members.

Important Sets of Real Numbers

The set \mathbb{N} of natural numbers is define by

 $\mathbb{N} = \{1, 2, 3, \dots\}$

The set \mathbb{Z} of integers is define by

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$

The set \mathbb{Q} of rational numbers is define by

 $\mathbb{Q} = \{a/b: a, b \in \mathbb{Z}, b \neq 0\}.$

Non-periodic decimal fractions are called irrational numbers and denoted by Irr.

For example, $\sqrt{2}$, $\sqrt{3}$, π

Real numbers

Real Numbers are made up of rational numbers and irrational numbers and denoted by \mathbb{R} .

The Number Line

We may use the number line to represent all the real numbers graphically; each real number corresponds to exactly one point on the number line. ∞ and $-\infty$ are not real numbers because there is no point on the number line corresponding to either of them.

 \mathbb{C} , denoting the set of all complex numbers: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

For example, $1 + 2i \in \mathbb{C}$.

Intervals

A subset of the real line is called an **interval** if it contains at least two numbers and also contains all real numbers between any two of its elements.

Types of intervals

	Notation	Set description	Туре	Pic	ture
Finite:	(a, b)	$\{x a \le x \le b\}$	Open	0	
	[<i>a</i> , <i>b</i>]	$\{x \mid a \le x \le b\}$	Closed		b
	[<i>a</i> , <i>b</i>)	$\{x a \le x \le b\}$	Half-open	a	b
	(a, b]	$\{x a \le x \le b\}$	Half-open	a	b
Infinite:	<i>(a,</i> ∞)	$\{x x \ge a\}$	Open	a	die.
	[<i>a</i> , ∞)	$\{x x \ge a\}$	Closed	a	
	$(-\infty, b)$	$\{x x \le b\}$	Open 🕳		b
	(−∞, b]	$\{x x\leq b\}$	Closed 🔶		
	(−∞, ∞)	R (set of all real numbers)	Both open ←		v

Absolute value

1.11 Definition The **absolute value** of a number *x*, denoted by is defined by the formula

$$|x| = \begin{cases} x & if \quad x \ge 0\\ -x & if \quad x < 0 \end{cases}$$

1.12 Example |2| = 2, |-5| = -(-5) = 5.

Some properties of the absolute value

Let *a*, *b* and *x* be any real numbers then:

- **1)** $|x| = \sqrt{x^2}$
- **2)** |ab| = |a||b|
- 3) $|a+b| \le |a|+|b|$
- **4)** $|a b| \ge ||a| |b||$
- **5)** $|x| \le a$ if and only if $x \le a$ and $x \ge -a$ (or $-a \le x \le a$)
- 6) $|x| \ge a$ if and only if $x \ge a$ or $x \le -a$

Cartesian product

Definition Let *A* and *B* be any two non empty sets, the Cartesian product of *A* with *B* denoted by $A \times B$ is defined by

 $A \times B = \{(a, b): a \in A \text{ and } b \in B\}$ $B \times A = \{(a, b): a \in B \text{ and } b \in A\}$

Remark

- **1)** $A \times B \neq B \times A$
- **2)** $A \times B = B \times A$ iff A = B
- **3)** If *A* contains *m* elements and *B* contains *n* elements, then $A \times B$ contains $m \times n$ elements.
- **4)** $A \times B = \phi$ iff $A = \phi$ or $B = \phi$
- **5)** The Cartesian product of \mathbb{R} with itself is $\mathbb{R} \times \mathbb{R}$ denoted by \mathbb{R}^2 , $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}, \mathbb{R}^2$ denotes the Cartesian plane.

The Function

Definition Let *A* and *B* be any two non empty sets then a function (denoted by *f*) from *A* to *B* is a relation from *A* to *B* provided that for each $x \in A$ there exist only a unique $y \in B$ such that $(x, y) \in f$ and *f* can be written as:

Example Let $f: \mathbb{R} \to \mathbb{R}$. Does the following *f* are functions or not?

1)
$$f(x) = \sqrt{x}$$
 2) $f(x) = x^2$ **3)** $f(x) = 3$

Solution:

1. Is not a function because $\sqrt{-1}$ is undefined.

2. Is a function since for all *x* there exist *y* such that $(x, y) \in f$.

3. is a function since for all *x* there exist *y* such that $(x, y) \in f$.

Example Let $f: \mathbb{R}^+ \to \mathbb{R}$, $x = y^2$. Is not a function because

 $(4, -2) \in f$ and $(4, 2) \in f$

Example Let $f: \mathbb{R}^+ \to \mathbb{R}^+$, $x = y^2$. Is a function

Definitions

1) The set *A* of all possible input values is called the *domain* of the function.

That means $D_f = \{x : x \in A \text{ and } y = f(x) \text{ for a unique } y \in B\}$

2) The set of all values of f(x) as x varies throughout A is called the *range* of the

function, i.e. $R_f = \{y : y \in B \text{ and } y = f(x) \text{ for at least one } x \in A\}$

The range may not include every element in the set *Y*.

Function	Domain (x)	Range (y)		
$y = x^2$	$(-\infty,\infty)$	[0, ∞)		
y = 1/x	$(-\infty, 0) \cup (0, \infty)$	$(-\infty, 0) \cup (0, \infty)$		
$y = \sqrt{x}$	[0, ∞)	[0, ∞)		
$y = \sqrt{4-x}$	$(-\infty, 4]$	[0, ∞)		
$y=\sqrt{1-x^2}$	[-1, 1]	[0, 1]		

Examples Find the domains and ranges of these functions.

Solution The formula $y = x^2$ gives a real y-value for any real number x, so the domain is $(-\infty, \infty)$. The range of $y = x^2$ is $[0, \infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root, $y = (\sqrt{y})^2$ for $y \ge 0$.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y = \sqrt{4 - x}$, the quantity 4 - x cannot be negative. That is, $4 - x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 - x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y = \sqrt{1 - x^2}$ gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, $1 - x^2$ is negative and its square root is not a real number. The values of $1 - x^2$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1 - x^2}$ is [0, 1].

H.W. Find the domains and ranges of these functions.

1)
$$y = f(x) = \frac{x+3}{x^3+1}$$
 2) $y = f(x) = \sqrt{\frac{x+1}{x}}$

Definition (The Graph of Function)

The graph of the function y = f(x) is the set of all points (x, y) in the Cartesian plane $X \times Y$ such that (x, y) satisfies the function y = f(x).

That means the graph is $\{(x, y): y = f(x)\}$.

Example Find the graph of this function y = f(x) = x

Solution:

x	1	2	3	0	-1	-2	-3
y = f(x)	1	2	3	0	-1	-2	-3
(x, y)	(1,1)	(2,2)	(3,3)	(0,0)	(-1, -1)	(-2, -2)	(-3, -3)

1.34 Example : Graph this function $f(x) = \sqrt{x}$ Solution:

1.35 Example : graph of this function

Solution:

Note Let f(x) and g(x) be two functions having D_f and D_g as a domain respectively. Then

1)
$$D_{f+g} = D_{f-g} = D_{f \times g} = D_f \cap D_g$$

2) $D_{f/g} = D_f \cap D_g - \{x: g(x) = 0\}$

Example Find the domain for the function $K(x) = \frac{x+1}{\|x\|-1}$ *Solution:* Let f(x) = x + 1 and g(x) = [x] - 1

$$D_f = \mathbb{R} \text{ and } D_g = \mathbb{R}$$
$$\implies D_K = \mathbb{R} \cap \mathbb{R} - \{x \colon \llbracket x \rrbracket - 1 = 0\} = \mathbb{R} - \{x \colon \llbracket x \rrbracket = 1\} = \mathbb{R} - [1, 2)$$

Definition Type of Functions

1) *Constant function* y = f(x) = c where $c \in \mathbb{R}$ is called the constant function.

2) *Identity function* y = f(x) = x is called the identity function.

3) Polynomial function $y = f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ where $a_i \in \mathbb{R}$,

i = 0, 1, ..., n. For $a_0 \neq 0$ and $n \ge 0$ an integer is called a polynomial of degree n.

For example $y = f(x) = x^6 + x - 6$.

4) Definition The greatest integer function. The function whose value at any number x is the greatest integer less than or equal to x is called the greatest integer function, or the integer floor function. It is denoted $\lfloor x \rfloor$, or, in some books, [x] or [[x]].

 $f(-x) = f(x) \forall x \in L$

For example $y = f(x) = x^2 + 1$ is an even function.

6) *Odd function* The function y = f(x) is called an even function if

 $f(-x) = -f(x) \forall x \in D_f.$

For example $y = f(x) = x^3$ is an odd function.

7) *Injective function (1-1 one to one)* The function y = f(x) is said to be a one to one function if for any $x_1, x_2 \in D_f$, $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$ or $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$

For example y = f(x) = x + 1 is one to one function. Since for any $x_1, x_2 \in \mathbb{R}$, if

$$f(x_1) = f(x_2) \Longrightarrow x_1 + 1 = x_2 + 1 \Longrightarrow x_1 = x_2.$$

Remark (Horizontal Line Test) A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example Is the function $y = x^2$ from \mathbb{R} to \mathbb{R} one-to-one? **Solution**¹: This function is not one-to-one because, for instance,

$$g(1) = 1 = g(-1)$$

and so 1 and -1 have the same output.

*Solution*²: From Figure 1.21 we see that there are horizontal lines that intersect the graph of more than once. Therefore, by the Horizontal Line Test, is not one-to-one.

8) *Surjective function (onto)* The function y = f(x) is said to be an on to function if for any $y \in R_f$ there exist at least one value of $x \in D_f$ such that y = f(x).

For example y = f(x) = x + 1 is one to one function. Since if we put

 $x = y - 1 \Longrightarrow f(x) = f(y - 1) = y - 1 + 1 = y$

9) *bijective function* The function y = f(x) is said to be bijective function if f are both Surjective and Injective function.

For example y = f(x) = x + 1.

10) *Inverse function* Let $f: A \to B$ be a bijective function, the inverse function of f(x) denoted by $f^{-1}(x)$ is defined by $f^{-1}: B \to A$ satisfying $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

i. e. The composition of any function with its inverse is the identity function and if $(x, y) \in f$ then $(y, x) \in f$.

Note 1) $f^{-1}(x) \neq \frac{1}{f(x)}$ 2) $(f^{-1}(x))^{-1} = f(x)$

3) Any function is symmetric with its inverse about line y = x.

Example If f(1) = 5, f(3) = 7, and f(8) = -10, find $f^{-1}(7)$, $f^{-1}(5)$, and $f^{-1}(-10)$. SOLUTION From the definition of f^{-1} we have

$f^{-1}(7) = 3$	because	f(3) = 7
$f^{-1}(5) = 1$	because	f(1) = 5
$f^{-1}(-10) = 8$	because	f(8) = -10

The diagram in Figure 6 makes it clear how f^{-1} reverses the effect of f in this case.