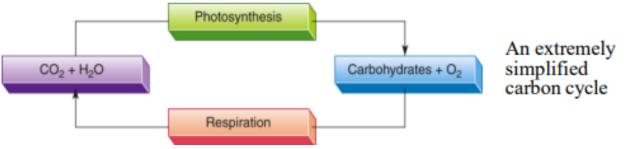
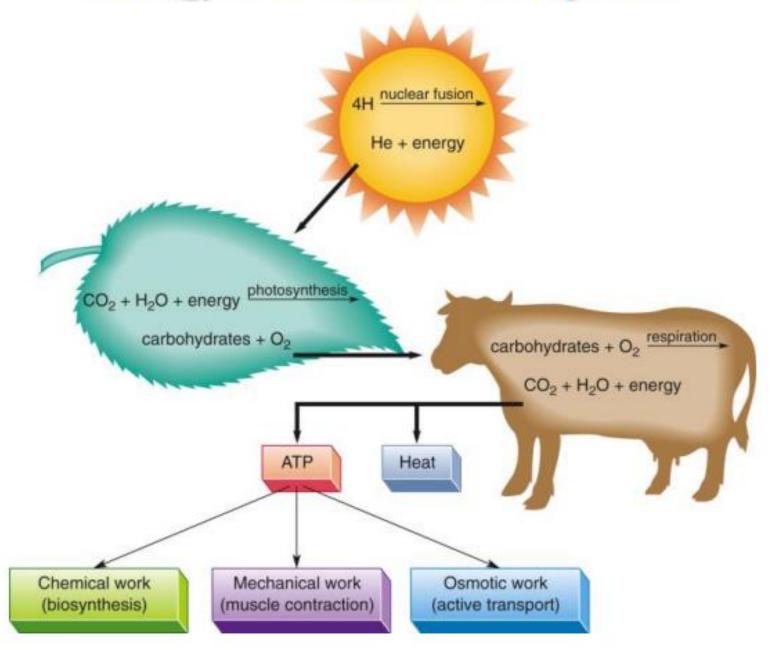
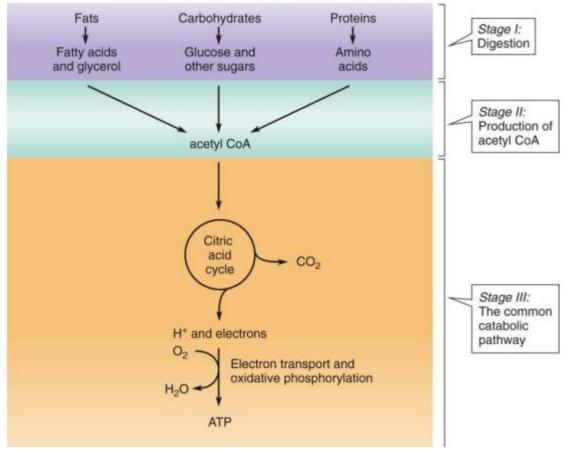
ATP: The Primary Energy Carrier


Stage 3 Biochemistry

Cellular Respiration


- During cellular respiration, plants and animals combine energy-rich compounds with oxygen from the air, producing CO₂ and releasing energy.
- Cellular respiration can be represented as:

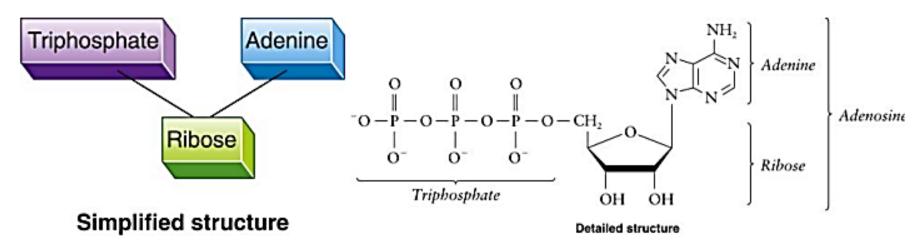
 $C_6H_{12}O_6 + 6O_2 \xrightarrow{\text{respiration}} 6CO_2 + 6H_2O + \text{energy}$


- A portion of the energy released during respiration is captured in the form of adenosine triphosphate (ATP), which stores energy for use in other processes.
- The remainder of the energy from respiration is released as heat.

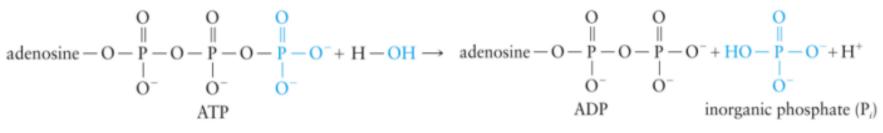
Energy Flow in the Biosphere

The Catabolism of Food

Metabolism


- **Metabolism** is the sum of all reactions occurring in an organism:
 - catabolism the reactions involved in the *breakdown* of biomolecules.
 - anabolism the reactions involved in the synthesis of biomolecules.
 - In general, energy is released during catabolism and required during anabolism.

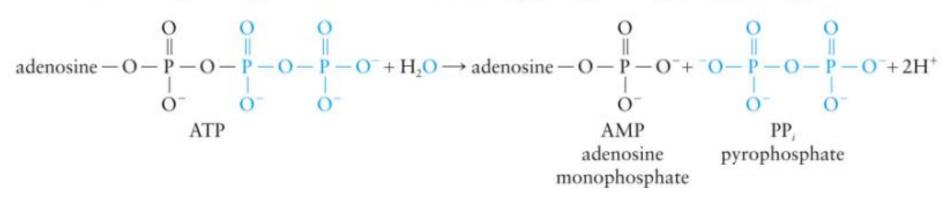
The Structure of ATP


- Adenosine triphosphate, ATP, consists of:
 - the heterocyclic base adenine
 - the sugar **ribose**

adenine + ribose is called **adenosine**

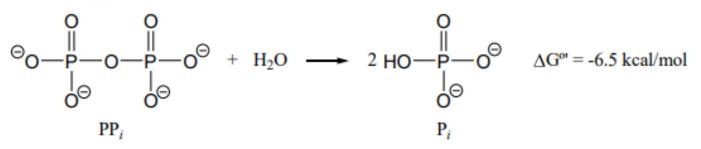
- a triphosphate group
- At physiological pH, the protons on the triphosphate group are removed, giving ATP a charge of -4.
 - In the cell, it is complexed with Mg²⁺ in a 1:1 ratio, giving it a net charge of -2.

- The triphosphate group is the part of the molecule that is important in the transfer of biochemical energy. The key reaction is the transfer of a **phosphoryl group**, —PO₃²⁻, from ATP to another molecule.
 - During the hydrolysis of ATP in water, a phosphoryl group is transferred from ATP to a water molecule:


- The products are adenosine diphosphate (ADP) and a phosphate ion, often referred to as an inorganic phosphate, P_i , or just *phosphate*.

- The transfer of a phosphoryl group from ATP to water is accompanied by a release of energy.
- Free energy, ΔG, is used as a measure of the energy change.
 - When energy is released, ΔG is negative.
 - When energy is absorbed, ΔG is positive.
 - When ΔG is measured under standard conditions, it is represented by ΔG° .
 - When ΔG° is measured under body conditions, it is represented by $\Delta G^{\circ'}$.

Table 22.5 Free Energy Changes for the Hydrolysis of Some Phosphate Compounds


Reaction			$\Delta G^{\circ'}$ (kcal/mol)
Phosphoenolpyruvate + H ₂ O	\rightarrow	pyruvate + phosphate	-14.8
Carbamoyl phosphate + H ₂ O	\rightarrow	ammonia + CO_2 + phosphate	-12.3
1,3-bisphosphoglycerate + H ₂ O	\rightarrow	3-phosphoglycerate + phosphate	-11.8
Phosphocreatine + H ₂ O	\rightarrow	creatine + phosphate	-10.3
$ATP + H_2O$	\rightarrow	ADP + phosphate	-7.3
$ADP + H_2O$	\rightarrow	AMP + phosphate	-7.3
Glucose-1-phosphate + H ₂ O	\rightarrow	glucose + phosphate	-5.0
$AMP + H_2O$	\rightarrow	adenosine + phosphate	-3.4
Glucose-6-phosphate + H ₂ O	\rightarrow	glucose + phosphate	-3.3
Glycerol-3-phosphate + H ₂ O	\rightarrow	glycerol + phosphate	-2.2

- Compounds that liberate a large amount of free energy on hydrolysis are called **high-energy compounds**.
- The hydrolysis of ATP to ADP is the principal energy-releasing reaction for ATP. Some other hydrolysis reaction occur under some conditions, such as the hydrolysis of ATP to adenosine monophosphate, AMP, and pyrophosphate, PP_i:

 $ATP + H_2O \rightarrow AMP + PP_i + 2H^+, \Delta G^{o'} = -8.0 \text{ kcal/mol}$

 This is usually followed by immediate hydrolysis of the pyrophosphate, which releases even more energy:

 The hydrolyses of ATP and related compounds are summarized below:

Reaction			$\Delta G^{\circ \prime}$ (kcal/mo
$ATP + H_2O$	\rightarrow	$ADP + P_i + H^+$	-7.3
$ATP + H_2O$	\rightarrow	$AMP + PP_i + 2H^+$	-8.0
$PP_i + H_2O$	\rightarrow	$2P_i$	-6.5
$ADP + H_2O$	\rightarrow	$AMP + P_i + H^+$	-7.3

The ATP-ADP Cycle

- ATP functions as an immediate donor of free energy rather than as an energy storage medium.
 - The turnover rate of ATP is very high: typically, an ATP molecule is hydrolyzed within 1 minute after its formation.
 - At rest, a human body hydrolyzes ATP at the rate of about 40 kg every 24 hours.
 - During strenuous exertion, this rate may be as high as 0.5 kg per minute.
- ATP must be continuously regenerated from ADP if cellular work is to occur.