Data Distribution (Normal Distributions and the Standard

Distribution)

1. Normal Distribution

- Example:1 Using the empirical rule in a normal distribution You collect SAT scores from students in a new test preparation course. The data follows a normal distribution with a mean score (M) of 1150 and a standard deviation $(S D)$ of 150.

Solution:

Following the empirical rule:

- Around 68\% of scores are between 1000 and 1300, 1 standard deviation above and below the mean.
- Around 95% of scores are between 850 and 1450, 2 standard deviations above and below the mean.
- Around 99.7% of scores are between 700 and 1600, 3 standard deviations above and below the mean.

- Example 2: the average test score in a certain class as 74 with a standard deviation of 8 . There are 2000 students in this class. Use the empirical rule to answer the following questions:

1. What percentage of students scored less than 58 ?
2. What is the probability that a student scored between 66 and 82 on the exam?
3. How many students scored at most 90 ?
4. What percentage of students scored at least 66
5. How many students scored more than 98 on the test?

Solution:

- 1. $P\left(x^{<} 58\right)=2.35 \%+0.15 \%=2.50 \%$
- 2. $P\left(66^{<} x^{<} 82\right)=34 \%+34 \%=\% 68$
- 3. $p\left(x^{<} 90\right)=13.5+34+34+13.5+2.35+0.15=97.5 \%$
- $97.5 / 100 * 2000=0.975 * 2000=1950$
- 4. $p\left(x^{>} 66\right)=34 \%+34 \%+13.5 \%+2.35 \%+0.15 \%=84 \%$
- 5. $p\left(x\right.$ 98) $=0.15 \%=2000^{*}(0.15 / 100)=3$

2. The Standard Normal Distribution (Z-distribution)

Standard normal distribution

Standard deviation below the mean
Standard deviation above the mean
> To standardize a value from a normal distribution, convert the individual value into a z-score:

Z-score formula

$$
Z=\frac{x-\mu}{\sigma} \quad x=\text { individual value }
$$

- $\sigma=$ standard deviation

Transforming z Scores into Raw Scores (x)

$$
X=z \sigma+\mu
$$

- Example 1: Given $\mathrm{X} \sim \mathrm{N}(50,10)$,

1. what are the values of the mean and standard deviation?
2. What value of x has a z-score of 1.4 ?
3. What is the z-score that corresponds to $x=30$

1/ $X \sim N(\mu, \sigma) \quad \mu=50 \quad \sigma=10$
2/ $Z=1.4 \quad, \quad x=$?
$X=\mu+z \sigma$

$$
X=50+1.4(10)=64
$$

3/

$$
x=30 \quad z=?
$$

$$
z \quad=\frac{x-\mu}{\sigma}
$$

$$
z=\frac{30-50}{10}=\frac{-20}{10}=-2
$$

Example 2: Mark scored a 43 on chemistry test. The mean score in the class was a 38 and the standard deviation was 4 . Marshall scored a 67 on his AP Calculus test and the mean in that class was a 65, with a standard deviation of 7.

Whose score was better?
Mark Marshall
$X=43 \quad x=67$

Mean=38 mean=65
$\mathrm{SD}=4 \quad \mathrm{SD}=7$
Mark: $z=\quad$ Marshall: $z=(67-65) / 7$

$$
(43-38) / 4=1.25 \quad 0.286 \quad 1.25
$$

$\checkmark \quad$ Mark did better because he was further above the mean than Marshall.

