- 1) 1) What is the electric flux through a sphere that has a radius of 2.00 m and carries a charge of \$1.00 %C at its center? (10 marks)
- **2)** The Electric Flux depends on how ------, how -----, and the -----, and the respect to -----
- 4) Charge Q is distributed uniformly throughout an insulating sphere of radius R. Calculate the magnitude of the electric field at a point R/2 from the center.
- 5) Charge is distributed uniformly along a long straight wire. The electric field 2 cm from the wire is 20 N/C. Calculate the electric field 4 cm from the wire.
- 6) A total charge of  $6.3 \times 10-8$  C is distributed uniformly throughout sphere with radius of 2.7-cm. Find the volume charge density of this sphere.
- 7) Drive the Gauss's law: Consider a positive point charge  $\mathbf{q}$  located at the origin of a sphere of radius  $\mathbf{r}$ . (Gauss's law derivation).
- 8) An insulating solid sphere of radius R has a uniform volume charge density  $\rho$  and carries a total positive charge Q.

Calculate the magnitude of the electric field:

- (A) At a point outside the sphere r > R.
- (B) At a point inside the sphere r < R.
- **9**) Find the electric field due to an infinite plane of positive charge with uniform surface charge density  $\sigma$  .
- **10**) Four closed surfaces are sketched in the Figure. Find the electric flux through each surface.



- 11) The electric flux through a surface of fixed area A is maximum when the surface is:
- a. parallel to the electric field.
- b. antiparallel to the electric field.
- c. perpendicular to the electric field.
- d. at an angle of 45° to the electric field.
- e. closed, but does not contain the charge.

 $\Phi_E$  is zero when  $\theta = ---$  that is when the normal to the surface is ----- to the electric field.

- 12) Two conductors having net charges of  $+10 \mu C$  and  $-10 \mu C$  have a potential difference of 10 V between them. (a) Determine the capacitance of the system.
- (b) What is the potential difference between the two conductors if the charges on each are increased to  $+100 \mu C$  and  $-100 \mu C$ ? (5 Marks)
- 13) Four capacitors are connected as shown in Figure.
- (a): Find the equivalent capacitance between points  $\boldsymbol{a}$  and  $\boldsymbol{b}$ .
- $T_{ab} = 15 V.$ (b): Calculate the c



- 14) Three resistors are connected in parallel as shown in Figure. A potential difference of 18.0 V is maintained between points  $\boldsymbol{a}$  and  $\boldsymbol{b}$ .
- (a): Find the current in each resistor.
- (b): Calculate the power de

combination of resistors.



otal power delivered to the (5 Marks)

(5 Marks)

15) (a) Find the equivalent resistance between points a and b in Figure.

(b) A potential difference of **34 V** is app.

Calculate the current in each resistor.



## **16) Define the following:**

Electric Current:
Capacitor:

17) Four capacitors are connected as shown in Figure (a) Find the equivalent capacitance between points a and b. 15.0 µF 3.00 µF (b) Calculate

capacitance between points a and b. the charge on each capacitor if  $\Delta V_{ab}$ 



= 15 V. (5 marks)

(2 marks)

18) Find the equivalent resistance of the circuit shown in the Figure below.



**19**) Determine the current in each branch of the circuit shown in Figure. (5 marks)



- **20**) Factors Affecting Resistance R are: (4 marks)
- 1) Iron has ...... than a geometrically similar copper conductor.
- 2) The higher temperatures usually result in ..... resistances.
- 3) Larger cross-sectional area of the material offer ...... resistance.
- 4) Longer materials have ..... resistance.