Salahaddin University \Erbil College of Agriculture Plant protection Department 4th class

Phytobacteriology\Practical Medium for isolation of bacteria 2nd lab.

Assist lecturer:

Nask SH. Salh

Email: nask.salh@su.edu.krd

2023-2024

outlines

- Types of media.
- Components of some media.
- Isolation from plant materials and others.

Types of media

- General media
- Semi-selective (differential)media
- Selective (specific) media

General-Purpose Media

- Basal media also called general-purpose media are basically simple media that support the growth of most non-fastidious bacteria.
- Peptone water, Nutrient broth, and Nutrient agar (NA) are considered basal mediums.
- These media are generally used for the primary isolation of microorganisms.

- <u>Differential media</u> contain compounds that allow groups of microorganisms to be visually distinguished by the appearance of the colony or the surrounding media
- <u>Selective or specific media</u> contain ingredients that inhibit the growth of some organisms but allow others to grow.

Some examples of different media :

- a)Nutrient agar (NA)
- b) Nutrient gelatin (NG)
- c) Nutrient glucose agar (NGA)
- d)Yeast extract dextrose CaCo3 (YDC)
- e) Nutrient broth yeast extract agar (NBY)
- f)) King's B medium (KB)
- g) MacConkey Agar
- All media should be autoclaved at 121°C for 15 min, at 15 bar, and adjusted to pH 7.2.

Nutrient agar (NA)

- Beef extract
- Peptone
- Agar 15.0 g
- Distilled water 1.0 L
- Prepared formulations of NA are commercially available and usually preferred.

5.0 g

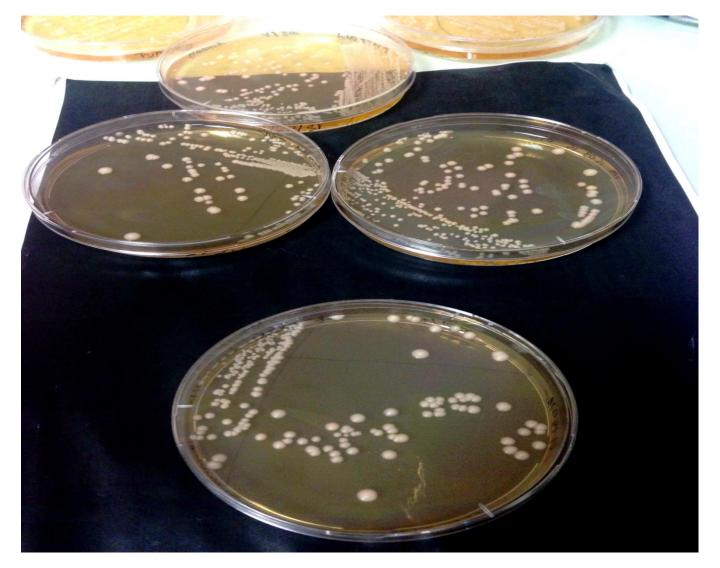
• Nutrient broth is NA without agar.

Nutrient gelatin (NG)

- Beef Extract
- Tryptone
- Gelatin
- dH2O
- pH

MB-N1214 Nutrient Gelatin Cultivated Staphylococcus aureus (up)

3.0 g 5.0 g 40 g 1 L


7.0

Nutrient glucose agar (NGA) g\L Beef extract 3.0 5.0 Peptone Glucose 2.5 15.0 Agar

• Or adding glucose to commercial nutrient agar

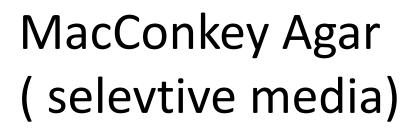
Yeast extract-dextrose-calcium carbonate agar (YDC)

- Yeast extract 10.0 g
 Dextrose 20.0 g
 Calcium carbonate (light powder) 20.0 g
 Agar 15.0 g
 Distilled water 1.0 L
 Yeast Extract Calcium Carbonate Glucose Aga
- Yeast Extract Calcium Carbonate Glucose Agar is used for the isolation and cultivation of *Erwinia species*

Yeast extract-dextrose-calcium carbonate agar (YDC)

Nutrient broth yeast extract agar (NBY)

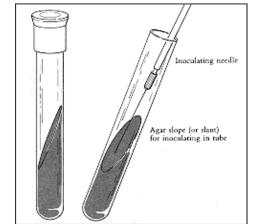
	g\L
Nutrient broth	8.0
Yeast extract	2.0
K2HPO4	2.0
KH2HPO4	0.5
Glucose	2.5
Agar	15.0


King's B medium (KB)

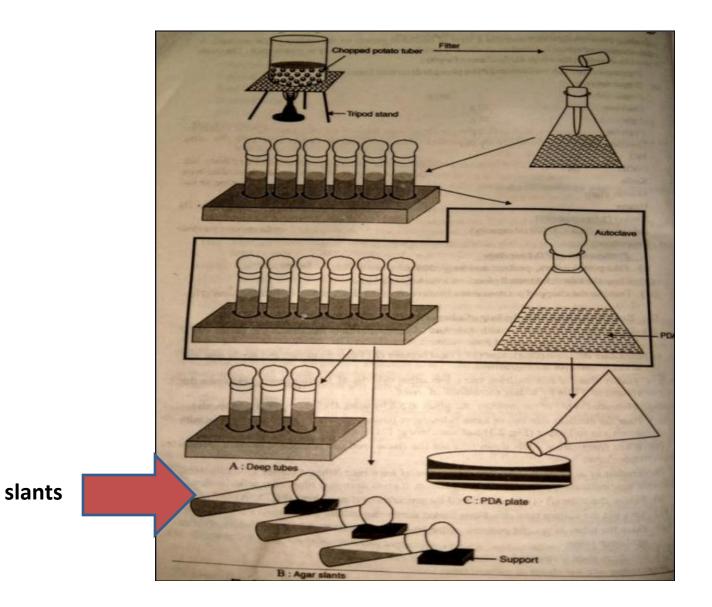
•	Proteose peptone (Difco No.3/Oxoid L46)	20.0 g
•	K2HPO4	1.5 g
•	MgSO4. 7H2O	1.5 g
•	Agar	15.0 g
•	Glycerol	10.0 ml
•	Distilled water	1.0 L
•	This general nurnose medium is narticularly	useful for

 This general purpose medium is particularly useful for detecting fluorescent Pseudomonads, but other bacteria also grow easily on it.

• Kings B Broth (KBB) these components without agar

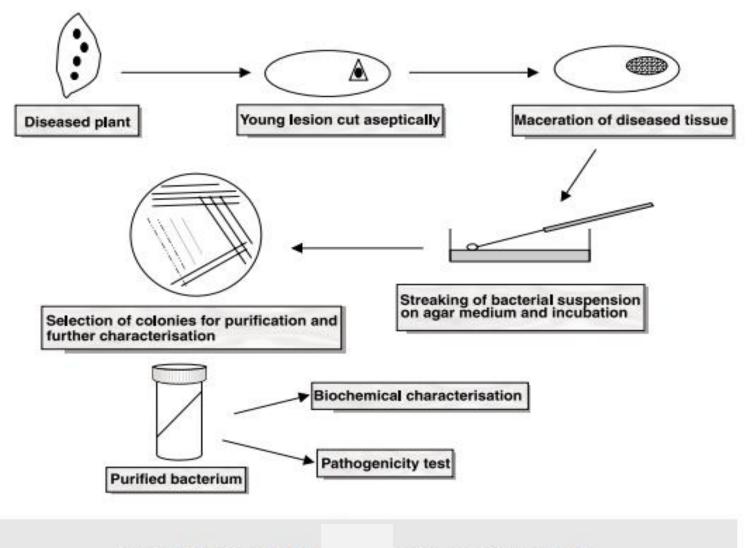

Pepton 17gm
Proteose peptone (meat and casein) 3gm
Lactose monohydrate 10gm
Bile salts 1.5gm
Sodium chloride 5gm
Neutral red 0.03gm

PREPARATION OF SLANTS


• The media slants are used to subculture and maintain the bacterial cultures. It is always easy and safe to maintain the bacterial cultures on media slants.

Procedure

- Pour the media in test tube at one-third of test tube length or volume and plug with a cotton plug.
- Put the media test tubes in a sterilization basket in an upright position and sterilize in the autoclave under pressure at 15 pounds for 30 minutes.
- Remove the test tubes after sterilization and keep them in a slanted position by using a wooden bar so as to get slants.
 When the media is solidified in the slanted positions, collect the slants and store in freezer or use as per requirements.


PREPARATION OF SLANTS

Isolation

- 1- From diseased plant sample
- 2- From disease field soil sample
- 3 From field water sample
- 4- From infected seed material

Isolation

Steps to isolate and identify phytopathogenic bacteria.

Isolation

- Sterilize your loop and put the loop to the agar surface against the far end of your first streak. Repeat by dragging back and forth.
 - Do not drag into the center of your plate.
 - You should be able to see the faint indentations of your streaking line on the agar surface.
- Using a sterile loop, repeat the procedure on your second streak.
- Using a sterile loop, repeat the procedure on your third streak. Zigzag the last part into the center of the plate.
 - You should end up with isolated colonies somewhere in your last streak.
- Place your completed plates agar side up on the incubation rack on the front desk in the incubate section.

Streak plate method

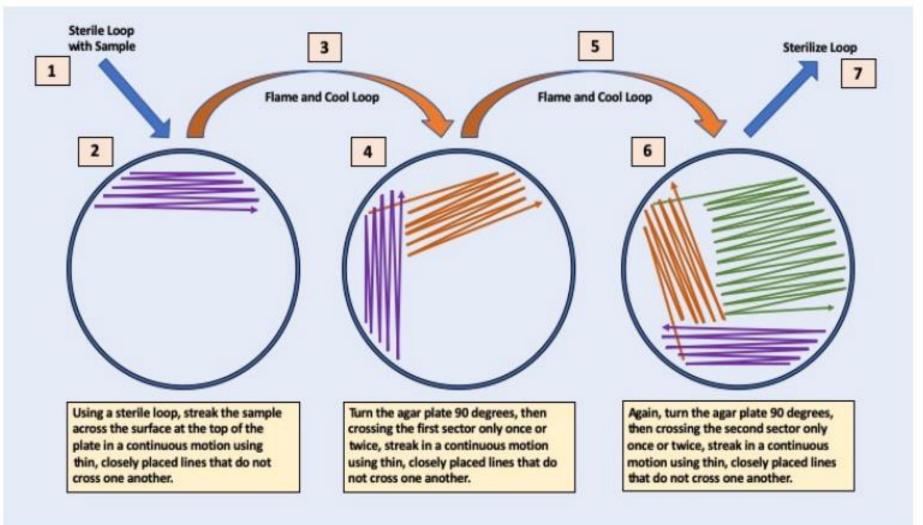
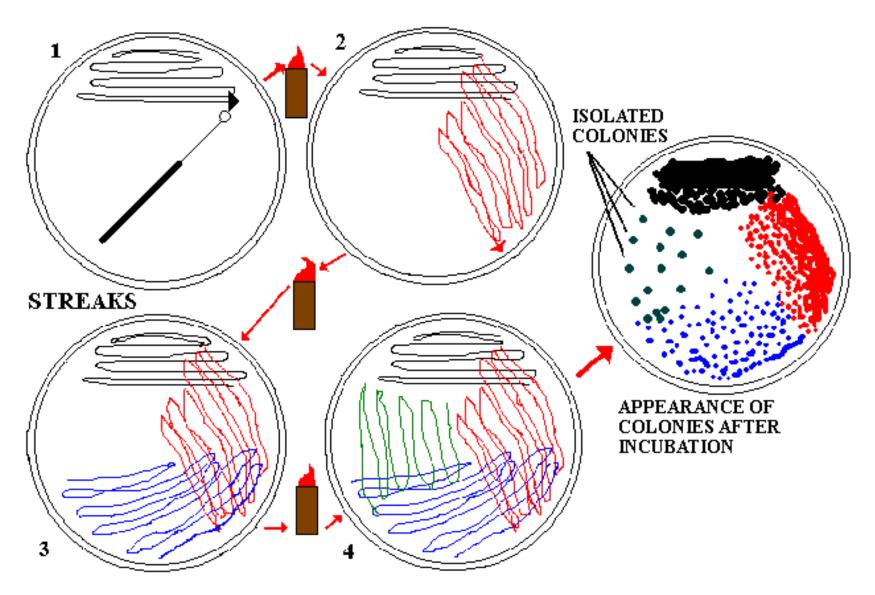
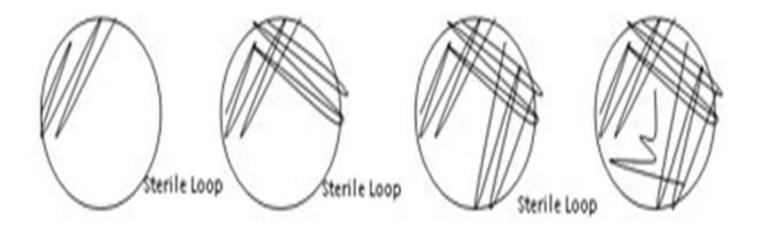
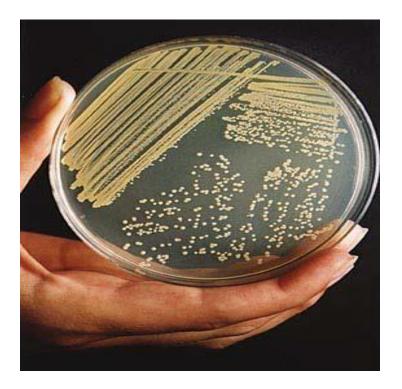





Figure 1. A diagrammatic depiction of the three-phase streak plate method. The individual steps noted above correspond with the directions given elsewhere in this exercise.

Streak plate method

The purpose: to isolate individual colonies of bacteria from large mixed populations.