Chapter Seven
Numerical Integration

7-1 Basic Concepts : In this chapter we are going to explore various ways for approximating the
Integral of a function over a given domain. Since we can not analytically integrate every function , the
need for approximate integration formulas is obvious. In addition, there might be situations where the
given function can be integrated analytically, and still, an approximation formula may end up being a
more efficient alternative to evaluating the exact expression of the integral. is called the rectangular

method [7 fx)dx = f(b) - f(a)




while the lower (Darboux) sum of f(x) with respect to the
partition P is defined The upper integral of f(x) on [a, b] is
defined as v =ui(.r). the lower integral of f(x) is fined as

L(f)=sup(L(f,P)), where both the infimum vv.» Zm and the
supremum L.r) - mar. are taken over all possible partitions,
P, of the interval [a, b]. If the upper and lower integral of f(x)
are equal to each other, their common value is denoted by

and is referred to as the Riemann integral of f(x) J‘bf{x}dx



7-2Composite Integration Rules

In a composite quadrature, we divide the interval into subintervals and apply
an integration rule to each subinterval. We demonstrate this idea with a
couple of examples.
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If f (x) is a function, then the integral of f from a to b is Written by L flddx
This integral gives the area under the graph of f, with the area under the
positive part counting as positive area, and the area under the negative
part of f counting as negative area, 1 — J-bf{_x}dx



7-3 Integration via Interpolation Methods

In this section we will study how to derive quadratures by integrating
an interpolant .As always, our goal is to evaluate. We select nodes
Xo, . . ., Xn [a, b],and write the Lagrange interpolate (of degree < n)
through these points Univariate quadrature methods are designed
to approximate the integral of areal-valued function f depened on a
bounded interval [a; b] of the real line.

7-4 -1 Newton-Cotes method are widely used,

7-4 -2 Simpson's Rule

Both rules are easy to implement and are typically adequate for
computing the area under a continuous function. Both rules are
easy to implement and are typically adequate for computing

the area under a continuous function



7-4-1Newton-Cotes Method

If B, (x) is the Lagrange interpolation Polynomial for the
function y=f(x) for which the following(n+1) points are given:
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7-4 -2 Simpsons Method

If P, (x)is the Lagrange interpolation
Polynomial for the function y=f(x) for
which the following(n+1) points are
given:
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We must solve the final integral by part the result is :
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