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Chapter One

1.1 Introduction: [Parametric and nonparametric methods ]

-parametric model or parametric family or finite-dimensional model is a

particular class of statistical models. Specifically, a parametric model is a collection

of probability distributions or a family of probability distributions that has a finite

number of parameters.

-What is parametric statistical test?

Parametric tests are used when the information about the population parameters is 

completely known in simple words, parametric test assumes that the data is normally 

distributed. or a “bell-shaped curve. Involve Population Parameters (Mean)

-What is Nonparametric method(sometimes called a distribution free test) ?

Nonparametric statistics is the branch of statistics that is not based solely on

parameterized families of probability distributions (common examples of parameters

are the mean and variance).

Nonparametric statistics is based on either being distribution-free or having a

specified distribution but with the distribution's parameters unspecified.

(Hint)Generally

-data transformation can sometimes make the data suitable for parametric analyses.

- if both parametric and nonparametric methods are applicable to a particular 

problem, we should use the more efficient parametric method.



Advantages of nonparametric statistics

The following are some of the advantages of the available nonparametric statistical procedures. 
1. Make fewer assumptions. 

Nonparametric Statistical Procedures are procedures that generally do not need rigid parametric 

assumptions with regards to the populations from which the data are taken. 

2. Wider scope. 

Since there are fewer assumptions that are made about the sample being studied, nonparametric 

statistics are usually wider in scope as compared to parametric statistics that actually assume a 

distribution. 

3. Need not involve population parameters. 

Parametric tests involve specific probability distributions (e.g., the normal distribution) and the tests 

involve estimation of the key parameters of that distribution (e.g., the mean or difference in means) 

from the sample data. However, nonparametric tests need not involve population parameters. 

4. The chance of their being improperly used is small. 

Since most nonparametric procedures depend on a minimum set of assumptions, the chance of their 

being improperly used is small. 

5. Applicable even when data is measured on a weak measurement scale. 

For interval or ratio data, you may use a parametric test depending on the shape of the distribution. 

Non-parametric test can be performed even when you are working with data that is nominal or 

ordinal. 

6. Easy to understand. 

Researchers with minimum preparation in Mathematics and Statistics usually find nonparametric 

procedures easy to understand. 

7. Computations can quickly and easily be performed. 

Nonparametric tests usually can be performed quickly and easily without automated instruments 

(calculators and computers). They are designed for small numbers of data, including counts, 

classifications and ratings. 



Some Hypothesis Testing 

Procedures

Many More Tests Exist

2 Test                     F test



Benefits of non-parametric
There are several benefits to using non-parametric methods:
1. Distribution-free
Non-parametric methods do not require any assumptions about the
underlying probability distribution of the data. This means you can
use any type of data, including data that is not normally distributed
or has outliers.
2. Robustness
Non-parametric methods are often more robust to outliers and
extreme values than parametric methods. They can provide more
accurate results in the presence of such data points.
3. Simplicity
Non-parametric methods are often simpler and easier to use than
parametric methods. They do not require advanced mathematical
knowledge or complex software.



4. Small Sample Sizes
Non-parametric methods can be used with small sample sizes, as they do
not require large sample sizes to provide accurate results.
Why is non-parametric important to understand?
Understanding non-parametric methods is important for several reasons:
5-Real-world data
Real-world data often does not meet the assumptions of parametric
methods. Non-parametric methods can be used to analyze such data
accurately.
6-Complementary
Non-parametric methods can complement parametric methods. By
understanding non-parametric methods, you can use the appropriate
method for their data type and ensure accurate results.
7-Flexibility
Non-parametric methods provide a flexible set of tools that can be used to
analyze a wide range of data types, including data that is not normally
distributed or has outlier. Non-parametric methods are very flexible and
can be used to analyze a wide range of data types, including ordinal and
nominal data.



Chapter  Two 

2. One-Sample Nonparametric Methods

2.1 Introduction

In classical parametric tests (which assume that the population

from which the sample data have been drawn is normally

distributed), the parameter of interest is the population mean. In

this chapter, we shall be concerned with the nonparametric analog

of the one-sample z and t tests. These are nonparametric

procedures (which utilize data consisting of a single set of

observations that are appropriate when the location parameter is

the median, rather than the mean).

Several nonparametric procedures are available for making

inferences about the median. Two of the nonparametric tests

which are useful in situations where the conditions for the

parametric z and t tests are not met, are the one-sample sign test

and the Wilcoxon signed-ranks test.



Recall that the median of a set of data is defined as the middle value when

data are arranged in order of magnitude. For continuous distributions, we

define the median as the point for which the probability that a value selected

at random from the distribution is less than and the probability that a value

selected at random from the distribution is greater than are both equal to(1/2)

When the population from which the sample has been drawn is symmetric,

any conclusions about the median are applicable to the mean, since in

symmetrical distributions the mean and the median coincide.

In this chapter, we shall also discuss procedures for making inferences

concerning the population proportion and testing for randomness and the

presence of trend .

Steps for presenting the hypothesis-testing procedures:
1. Assumptions

We list the assumptions necessary for the validity of the test, and describe the

data on which the calculations are based.

2. Parameter of interest

From the problem context, we identify the parameter of interest.



3. Hypotheses

We state the null hypothesis 𝐻0 and the alternative hypothesis𝐻1
4. Significance level

We choose a significance level ∝ .

5.Test statistic

We write down a formula or direction for computing the relevant test statistic.

When we give a formula, we describe the methodology for evaluating it.

6. Value of the test statistic

We compute the value of the test statistic from the sample data.

7. Decision rule

We determine the critical region. The Appendix gives appropriate tables for the

distribution of the test statistic. From these tables, we can determine the critical

values of the test statistic corresponding to the chosen ∝ .

8. Decision

If the computed value of the test statistic is as extreme as or more extreme than a

critical value, we reject 𝐻0 and conclude that 𝐻1 is true. If we cannot

reject 𝐻0 we conclude that there is not enough information to warrant its

falsity.



2.2 The one-sample sign test 

The sign test is perhaps the oldest of all nonparametric procedures. Let

𝑋1,𝑋2,𝑋3, …,𝑋𝑛 be an observed random sample of size (𝒏 )from a population with

median ( ෤𝜇 ) The sign test utilizes only the signs of the differences between the

observed values ( 𝑋𝑖 ) and the hypothesized median ( ෤𝜇0)

Thus, the data is converted into a series of plus (+) and minus (–) signs.

2.2.1 Assumptions

1. The sample available for analysis is a random sample of independent

measurements from a population with an unknown median ෤𝜇

2. The variable of interest is measured on at least an ordinal scale.

3. The variable of interest is continuous.



2.2.2 Hypotheses

The hypothesis to be tested concerns the value of the population median. To test the hypothesis  

𝐻0 ∶ ෤𝜇 = ෤𝜇0
Where    ෤𝜇0 is a specified median value, against a corresponding one-sided or two-sided alternative, 

we use the Sign Test. 

The test statistic S depends on the alternative hypothesis, 𝐻1 .

(a) One-sided test

For a one sided test, the alternative hypothesis is either 𝐻1∶ ෦𝜇 < ෤𝜇0 or ෦𝜇 > ෤𝜇0
(1) If we wish to test

𝐻0 ∶ ෤𝜇 = ෤𝜇0 against 𝐻1∶ ෦𝜇 < ෤𝜇0
then the test statistic is  defined by𝑠0 = 𝑁+

where 𝑁+=  Number of observations     𝑋𝑖 greater than   ( ෤𝜇0)

𝑁+= Number of + signs when the differences(  𝑋𝑖 -෥𝜇0 ) are computed, 𝑖 = 1,2, … , 𝑛
If the alternative hypothesis is true, then we should expect (  𝑋𝑖 − ෥𝜇0 ) to

yield significantly fewer positive (+) signs than negative (−) signs. Thus, a smaller number of (+) signs 

leads to the rejection of  𝐻0
When  𝐻0 is true, we expect the number of (−) signs to be equal to that of the (+) signs and hence

𝑃 𝑆 < ෤𝜇0 = 𝑃 𝑆 > ෤𝜇0 =
1

2

Thus, when 𝐻0 is true, 𝑆 has the binomial distribution with parameters n and
1

2

That is, 𝑆~𝑏(𝑛,
1

2
)

Decision rule 

The p-value of the test is defined by 𝑃 = 𝑃(S ≤ 𝑠0 𝐻0𝑖𝑠 𝑡𝑟𝑢𝑒 )

Where    𝒔𝟎 is    the observed value of the test statistic S 

Decision We reject 𝐻0 at significance level ∝ if  𝑃 ≤∝ .



(2) For a one-sided test, we test

𝐻0: ෤𝜇 = ෤𝜇0 against 𝐻1: ෦𝜇 > ෤𝜇0
The test statistic is

S = N−

where N−= Number of observations less than ෤𝜇0
= Number of – signs when the differences ( 𝑋𝑖 -෥𝜇0) are computed, i = 1, 2, ...n.

If the alternative hypothesis 𝐻1 is true, then we should expect ( 𝑋𝑖 -෥𝜇0) to yield

less

negative (−) signs than would be expected if the null hypothesis were true.

Likewise, when 𝐻0 is true, S has the binomial distribution with parameters n and
1

2
. That is, 𝑆~𝑏(𝑛,

1

2
)

Decision rule

The p-value of the test is defined by 𝑝 = 𝑃(𝑆 ≤ 𝑠0 𝐻0𝑖𝑠 𝑡𝑟𝑢𝑒
where 𝑠0 is the observed value of .𝑠0 = 𝑁−

Decision We reject 𝐻0 at significance level  if 𝑝 ≤∝.



b) Two-sided test

If we wish to test

𝐻0: ෤𝜇 = ෤𝜇0 against

𝐻0: ෤𝜇 ≠ ෤𝜇0,

then the test statistic is defined by

𝑠0 = min 𝑁−, 𝑁+ s the number of – signs and 𝑁+ is the number of +signs

when the differences 𝑋𝑖 -෥𝜇0 are computed.

We should reject the null hypothesis if we have too few negative (–) signs or

too few positive (+) signs. When 𝐻0 is true, S has the binomial distribution

with parameters n and
1

2

Decision Rule

The p-value of the test is defined by 𝑃 = 2𝑃(𝑆 ≤ 𝑠0 𝐻0𝑖𝑠 𝑡𝑟𝑢𝑒 where 𝑠0 is

the observed value of the test statistic S.

Decision We reject 𝐻0 at significance level ∝ if 𝑃 ≤∝.

Problem with zero differences

- We assume that the variable of interest is continuous. Therefore, in theory, no

zero differences should occur when we compute 𝑋𝑖 -෥𝜇0 .

- In practice, however, zero differences do occur. The usual procedure is to

discard observations leading to zero differences and reduce n accordingly. In

that case the hypothesis may be re-stated in probability terms. For example, a

two-sided case will have its null hypothesis as. 𝑃 𝑆 < ෤𝜇0 = 𝑃 𝑆 > ෤𝜇0 =
1

2



Example 2.1 
Appearance transit times for 11 patients with significantly occluded right coronary arteries are 

given below: 

Can we conclude, at the 0.05 level of significance, that the median appearance 

transit time in the population from which the data were drawn, is different from 

3.50 seconds? 

Solution 

The parameter of interest is ෤𝜇 the median appearance transit time in the 

population. We wish to

The parameter of interest is ෤μ the median

Test the hypothesis 𝐻0: ෤𝜇 = 3.50 against 𝐻1: ෤𝜇 ≠ 3.50

Level of significance at the   ∝ = 0.05,

Test statistic   Since this is a two-sided test statistic is𝑠0 = 𝑚𝑖𝑛 𝑁− , 𝑁+

Where   𝑁− is the number of observations less than 3.50 and  𝑁+ is the 

number of observations greater than 3.50. 

Subject 1 2 3 4 5 6 7 8 9 10 11

Transit time(insec) 1.80 3.30 5.65 2.25 2.50 3.50 2.25 3.10 2.70 2.70 3.00



From the above table,   𝑁− = 9 and    𝑁+ =1                  

The observed value of the test statistic is therefore given by 𝑠0= min{9,1} = 1
Decision rule 

Since this is a two-sided test, the p-value of the test is given by
𝑝 = 2𝑃 𝑆 ≤ 𝑠0 10 , 1 = 2  X   0.0107

Since the p-value of the test, 0.0214, is less than 0.05, we reject  𝐻0 at the 0.05 
level of  significance and conclude that the population median is not 3.50.

Note: We discard one observation which has the same value as the hypothesized 
median, leaving us with a usable sample size of 10.

1 2 3 4 5 6 7 8 9 10 11

𝑋𝑖 1.80 3.30 5.65 2.25 2.50 3.50 2.25 3.10 2.70 2.70 3.00

Sign of  𝑋𝑖- 3.50 − − + − − 0 − − − − −



Example 2.2 
The following data are IQs of arrested drug abusers who are

aged 16 years or older. Is there any evidence that the median IQ

of drug abusers in the population is greater than 107?

Use ∝ = 0.05

Solution

The parameter of interest is ෤𝜇 the median IQ of drug abusers in the

population. We wish to test the hypothesis,
The parameter of interest is ෤μ the median

Test the hypothesis 𝐻0: ෤𝜇 = 107 against 𝐻1: ෤𝜇 > 107
Level of significance at the   ∝= 0.05

Test statistic           𝑠0=𝑁−

Where   𝑁− is the number of observations less than 107. When   𝐻0 is 
true 𝑆~𝑏 14, 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

99 100 90 94 135 108 107 111 119 104 127 109 117 105 125



Let  𝑠0 be the observed value of the test statistic. We reject   𝐻0 at the 0.05 
level of significance when 𝑝 ≤∝= 0.05 , where the p-value of the test is given by
𝑝 = 𝑃(𝑆 ≤ 𝑠0|14 , 0.5 )
Here, 𝑁− = 6
The observed value of the test statistic is 𝑠0= 𝑁− = 6 Thus 𝑠0 = 6

Decision rule
Since this is a one-sided test, the p-value of the test is given by
𝑝 = 𝑃 𝑆 ≤ 𝑠0 14 , 6 = 0.3953
Since the p-value of the test, 0.3953, is greater than 0.05, we fail to reject 𝐻0
at the 0.05 level of significance. Hence, there is not enough evidence to conclude

that the median IQ of the subjects in the population is greater than 107.

The following table gives the signs of 𝑋𝑖 − 107

1 2 3 4 5 6 7 8 9 10 11 12 13 14

99 100 90 94 135 108 111 119 104 127 109 117 105 125

− − − − + + + + − + + + − +



2.2.3 Large sample approximation

If the sample size is larger than 15, we can use the normal approximation

to the binomial distribution with a continuity correction. Thus, if n is

large and 𝑆~𝑏 𝑛 ,
1

2

then it can be shown that S is approximately normally distribution with

mean (𝑛𝑝 )and variance 𝑛𝑝 1 − 𝑝 That is, 𝑆~𝑁 𝑛𝑝, 𝑛𝑝 1 − 𝑝

Thus, for the sign test, when 𝑝 =
1

2
and 𝑛 > 15, we can use the

test statistic . 𝑍 =
𝑆−

1

2
𝑛

𝑛 ×
1

2
×
1

2

=
𝑆−

1

2
𝑛

1

2
𝑛

----------(1)

When 𝐻0 is true and 𝑛 > 15, 𝑍 is approximately 𝑁 0,1
For the large sample approximation, it is common to use a continuity

correction, by replacing S by 𝑆 +
1

2
in the definition of 𝑍. Equation

(1) then becomes

𝑍0 =
𝑠0+

𝟏

𝟐
−
1

2
𝑛

1

2
𝑛

----------(2)



Example 2.3 

The following data give the ages, in years, of a random sample of 20

students from a training course. It is believed that the median age of students

in this school is smaller than 22 years. Based on these data, is there

sufficient evidence to conclude that the median age of students from a

training course is smaller than 22 years?

Solution 

The parameter of interest is the median age of students from a training 

course. 

The parameter of interest is ෤μ the median

Testing the hypothesis 

𝐻0: ෤μ = 22 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: ෤μ < 22
Level of significance at the   ∝ = 0.05

The test statistic is  𝑠0 = 𝑁+

9          13         16          16          16            17        18        19         19        19
19         20          20         21          21            23        24         25         25 27



When  𝐻0 is true,  S~𝑏(20,
1

2
) . 

Since n > 15, we use the normal approximation to the binomial distribution with a continuity 

correction. 

The test statistic then becomes 

𝑍0 =
𝑠0+

𝟏

𝟐
−
1

2
𝑛

1

2
𝑛

=
𝑠0+

𝟏

𝟐
−
1

2
𝑋 20

1

2
20

From this table 𝑁+=5, Thus, the observed value of the statistic S is   𝑠0= 5. 

This gives, When    𝐻0 is true, 𝑍 ~ 𝑁(0, 1).
Decision rule 

Let  𝑧0 denote the observed value of the test statistic 𝑍. 

𝑍0 =
𝑠0 +

1
2

−
1
2
𝑋 20

1
2

20

𝑍0 =
5+

𝟏

𝟐
−
1

2
𝑋 20

1

2
20

= −2.0125

Since −2.0125 is less than − 1.645, we reject 𝐻0 at the 0.05 level of significance and

we conclude that the median age of students of training course is less than 22 years. 

9 13 16 16 16 17 18 19 19 19 19 20 20 21 21 23 24 25 25 27

− − − − − − − − − − − − − − − + + + + +



2.3 The Wilcoxon signed-ranks test 
As we have seen, the sign test utilizers only the signs of the differences between observed values and the

hypothesized median. For testing 𝐻0 ∶ ෤𝜇 = ෤𝜇0 there is another procedure that uses the magnitude of the

differences when these are available.

The Wilcoxon signed-ranks procedure makes use of additional information to rank the differences between the

sample measurements and the hypothesized median. The Wilcoxon signed-ranks test uses more information than

the sign test, making it a more powerful test when the sampled population is symmetric. However, the sign test is

preferred when the sampled population is not symmetric.

2.3.1 Assumptions

1. The sample available for analysis is a random sample of size n from a population with an

unknown median ෤𝜇
2. The variable of interest is measured on a continuous scale.

3. The sampled population is symmetric.

4. The scale of measurement is at least interval.

5. The observations are independent.

2.3.2 Hypotheses 

The parameter of interest ෤𝜇 is the population median. To test the hypothesis , 

𝐻0 ∶ ෤𝜇 = ෤𝜇0
Where  ෤𝜇0 is the hypothesized median, against a corresponding one-sided or two-sided 

alternative 𝐻1, we can also use the Wilcoxon signed-ranks test. 

2.3.3 Test statistic 

To obtain the test statistic, we use the following procedure. 

1-Subtract the hypothesized median ෤𝜇0 from each observation 𝑋𝑖 that is, for each observation 

𝑋𝑖 , find  𝐷𝑖=𝑋𝑖 − ෤𝜇0 ∀ 𝑖 = 1,2,3,⋯ , 𝑛
2- If any observation 𝑋𝑖 is equal to the hypothesized median, ෤𝜇0 eliminate it from the calculations 

and reduce the sample size accordingly. 



3- Rank the differences 𝐷𝑖 , from the smallest to largest without regard to their 

signs. If two or more 𝐷𝑖 are tied, assign each tied value the mean of the rank 

positions of the tied differences.

4- Assign to each rank the sign of the difference of which it is ranked.

5-Obtain the sum of the ranks with positive signs; call it W.

Obtain the sum of the ranks with negative signs; call it W  . 

6- Note that:W=
𝑛 𝑛+1

2
− W −

7-For a given sample, we do not expect W to be equal toW − . 

2.3.4 Carrying out the Wilcoxon signed ranks test

When the null hypothesis, 𝐻0 ∶ ෤𝜇 = ෤𝜇0
is true, we do not expect a great difference between W and . W Consequently, a sufficiently

small value of W or a sufficiently small value of W causes us to reject𝐻0
a) One-sided test: To test

𝐻0 ∶ ෤𝜇 = ෤𝜇0, against

𝐻1 ∶ ෤𝜇 < ෤𝜇0 at the α level of significance.

Test statistic

A sufficiently small value of W leads to the rejection of the null hypothesis𝐻0
The test statistic therefore is W0=W.

Decision rule

We reject 𝐻0 at significance level ∝ if the observed of W value =𝑊0is less than or equal to

the tabulated W value for n and a preselected ∝



(b) One-sided test: To test 

𝐻0 ∶ ෤𝜇 = ෤𝜇0, against 𝐻1 ∶ ෤𝜇 > ෤𝜇0
at the ∝ level of significance.

Test statistic

For a sufficiently small 𝑊− value, we reject 𝐻0
The test statistic therefore is, 𝑊0 = 𝑊−

since a small value causes us to reject the null hypothesis.

Decision rule

We reject 𝐻0 at significance level ∝ if the observed of W value =𝑊0is less than or 

equal to the tabulated W value for n and a preselected value of ∝.

(c) For a two-sided test, we test

𝐻0 ∶ ෤𝜇 = ෤𝜇0, against 𝐻1 ∶ ෤𝜇 ≠ ෤𝜇0
at the ∝ level of significance.

Test statistic

The test statistic is

𝑊0 = min(𝑊−,𝑊+) since a small value of either 𝑊− 𝑜𝑟 𝑊+causes us to reject the 

null hypothesis 𝐻0.

Decision rule

We reject 𝐻0 at significance level ∝ if the observed W value, w0 is less than or equal 

to

the tabulated W value for n and a preselected value of 
∝

2



The distribution of W
1. The smallest value W can take is zero (0) and the largest value that W can take is the

sum of the integers from 1 to n: that is,
𝑛 𝑛+1

2
. 

W is therefore a discrete random variable whose support ranges between 0 and          
𝑛 𝑛+1

2

2. It can be shown that the probability mass function of the discrete random variable W 

is given by

𝑃 𝑊 = 𝑤 = 𝑓(𝑤) =
c(w)
2𝑛

, 0 < w <
𝑛 𝑛+1

2

where c(w) = the number of possible ways to assign a +sign or a −sign to the first n 
integers the sum of the ranks with +signs (or –signs) is equal to w.



No 1 2 3 4 5 6 7 8 9 10 11 12

𝑋𝑖 114 118 144 150 152 157 158 163 178 179 183 194

𝐷𝑖 = 𝑋𝑖 − 165 -51 -47 -21 -15 -13 -8 -7 -2 13 14 18 29

𝐷𝑖 Ranks(−) 12 11 9 7 4.5 3 2 1 49.5

𝐷𝑖 Ranks(+) 4.5 6 8 10 28.5

Example 2.4

The following are the systolic blood pressures (mmHg) of 13 patients undergoing a drug therapy for 

hypertension

Can we conclude on the basis of these data that the median systolic blood pressure is less than 165 

mmHg? Take ∝ = 0.05.

Solution

The parameter of interest is ෤μ the median systolic blood pressure of the population. We wish to

Test the hypothesis

𝐻0: ෤μ = 165 against   𝐻1: ෤μ < 165
Level of significance ∝ = 0.05. 
Test statistic

Wilcoxon signed rank test, the test statistic is𝑊0 = 𝑊+

Where 𝑊+ is the sum of the ranks with positive signs

183 178 152 157 194 163 144 114 179 150 118 158 165 



From this  table,

the sum of the ranks with negative signs = 𝑊−= 49.5 and

the sum of the ranks with positive signs = 𝑊+= 28.5

the test statistic is𝑊0 = 𝑊+

The value of the test statistic is therefore 𝑊0 = 28.5

Decision rule

We reject 𝐻0 if  at  0.05 level of significance  the value of  𝑊0 ≤ 𝑊𝑛,0.05

In this case 𝐟𝐨𝐫 ∝ = 𝟎. 𝟎𝟓 𝒂𝒏𝒅 𝒏 = 𝟏𝟐

𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑊𝑛,∝ = 𝑊12,0.05 = 13 

Decision

𝑊0> 𝑊12,𝟎.𝟎𝟓 28.5 > 13

We fail to reject 𝐻0

We conclude that the median systolic blood pressure of the subjects in the population 

is not less than 165 mm Hg.



Example 2.5

The following data are IQs of arrested drug abusers who are aged 16 years or older. Use 

the Wilcoxon signed-ranks test to determine if there is any evidence that the median 

IQ of drug abusers in the population is different from  107?  Use ∝= 0.05

Solution 

The parameter of interest is ෤μ denote the median IQ of drug abusers

who are aged 16 years or older We wish to

Test the hypothesis

𝐻0: ෤μ = 107 against   𝐻1: ෤μ ≠ 107

Level of significance.  ∝= 0.05

The test statistic is

𝑊0 = min ( 𝑊−, 𝑊+ ).

We arranged the data ascending



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

al

𝑋𝑖 90 94 99 100 104 105 107 108 109 111 117 119 125 127 135

𝐷𝑖 = 𝑋𝑖 − 107 −17 −13 −8 −7 −3 −2 0 1 2 6 10 12 18 20 28

| |𝐷𝑖 Ranks(−) 11 10 7 6 4 2.5 40.5

| |𝐷𝑖 Ranks(+) 1 2.5 5 8 9 12 13 14 64.5

The value of the test statistic is therefore = 𝑚𝑖𝑛(𝑊−,𝑊+ ) = 𝑚𝑖𝑛 40.5 , 64.5 = 40.5

𝑊0 = 40.5

Decision rule: We reject 𝐻0 if the 0.05 level of significance if 𝑤0 ≤ 𝑤14,𝟎.𝟎𝟓

Decision 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑊14,𝟎.𝟎𝟓 = 21 40.5 > 21 𝑊0 > 𝑊14,𝟎.𝟎𝟓

We fail to reject 𝐻0

We conclude that the median IQ of the subjects in the population may be 107

ascending



2.3.5 Large sample approximation 

Theorem 2.1

When the null hypothesis is true, 

𝐸 𝑊 =
𝑛 𝑛+1

4
and       𝑉 𝑊 =

𝑛 𝑛+1 2𝑛+1

24

Proof 

When 𝐻0 true, W can  be defined as

𝑊 = σ𝑖=1
𝑛 𝑤𝑖 where

𝑤𝑖 = 0 with probability 
1

2

𝑤𝑖 = 𝑖 with probability
1

2 𝑖

Thus,      𝐸 𝑊 = 𝐸 σ𝑖=1
𝑛 𝑤𝑖 = σ𝑖=1

𝑛 𝐸 𝑤𝑖 = σ𝑖=1
𝑛 ሾ𝑤𝑖 . 𝑝 𝑤𝑖



𝑉 𝑊 =?
Since (𝑤1 , 𝑤2 , 𝑤3 , ⋯ , 𝑤𝑛 are independent

𝑉 𝑊 = 𝑉 σ𝑖=1
𝑛 𝑤𝑖 = σ𝑖=1

𝑛 𝑉 𝑤𝑖

𝑉 𝑤𝑖 = 𝐸 𝑤𝑖
2 − 𝐸 𝑤𝑖

2

= 02
1

2
+ 𝑖2

1

2
−

𝑖

2

2

=
1

2
𝑖2 −

1

4
𝑖2

𝑉 𝑤𝑖 =
1

4
𝑖2

𝑉 𝑊 = ෍

𝑖=1

𝑛

𝑉 𝑤𝑖 =෍

𝑖=1

𝑛
1

4
𝑖2 =

1

4
෍

𝑖=1

𝑛

𝑖2

𝑉 𝑊 =
1

4

𝑛 𝑛+1 2𝑛+1

6
=

𝑛 𝑛+1 2𝑛+1

24



Theorem 2.2
When the null hypothesis is true, for large n:

𝑍 =
𝑊−

𝑛 𝑛+1

4

𝑛 𝑛+1 2𝑛+1

24

follows an approximate standard normal 

distribution N(0, 1).

Proof

If W is a random variable with mean   
𝑛 𝑛+1

4

and variance   
𝑛 𝑛+1 2𝑛+1

24
then by the central limit theorem 

𝑍 =
𝑊−

𝑛 𝑛+1

4

𝑛 𝑛+1 2𝑛+1

24

is approximately N(0, 1).



Adjustment for Ties 
- We can incorporate an adjustment for ties among nonzero 
differences in the large sample approximation in the following way. 
- Let t be the number of absolute differences tied for a particular 
nonzero rank. Then the correction factor is

The correction factor =
σ 𝑡3 −σ𝑡

48
We can subtract this quantity from the expression in the 
denominator under the square root sign. 

Thus the adjusted statistic for a large sample approximation is 

𝑍 =
𝑊−

𝑛 𝑛+1

4

𝑛 𝑛+1 2𝑛+1

24
−
σ 𝑡3−σ 𝑡

48



We illustrate the calculation of an adjustment for ties in the following data: 

Computation of correction factor 

Observation Rank t 𝑡3

3 1.5

2 83 1.5

4 3

6 5

3 276 5

6 5

8 7.5

2 88 7.5

9 10.5

4 64

9 10.5

9 10.5

9 10.5

11 107

σ 𝑡3 − σ𝑡

48
=
107 − 11

48
= 2



Example 2.6
The following data show the life span, in years, of a random

sample of 21 recorded deaths in a certain country. It has been

known in the past years that the median life span in the country

is 50 years. Can we conclude from these data that the median life

span in the country has improved? Use α = 0.05

39 42 42 47 47 53 59 59 59 60 62 65 66 68 69 70 72

75 75 85 90
Solution: 

Let   ෤𝜇 denote the median life span in the population. We wish to test the 

hypothesis 

Test the hypothesis 𝐻0: ෤𝜇 = 50 aginst𝐻1: ෤𝜇 > 50

Level of significance:∝ = 0.05. 

Test statistic:       𝑊0 = 𝑊−

But we have Ties we must use Adjustment for Ties

The test statistic is :



𝑋𝑖 𝐷𝑖 𝐷𝑖 Rank t 𝑡3

− +

1 39 −11 11 10

2 42 −8 8 4.5 2 8

3 42 −8 8 4.5

4 47 −3 3 2

3

27

5 47 −3 3 2

6 53 3 3 2

7 59 9 9 7

3

27

8 59 9 9 7

9 59 9 9 7

10 60 10 10 9

11 62 12 12 11

12 65 15 15 12

13 66 16 16 13

14 68 18 18 14

15 69 19 19 15

16 70 20 20 16

17 72 22 22 17

18 75 25 25 18.5 2 8

19 75 25 25 18.5

20 85 35 35 20

21 90 40 40 21

23 210 10 70

computation of test statistic



The value of the test statistic is

𝑍0 =
𝑊− −

𝑛 𝑛 + 1
4

𝑛 𝑛 + 1 2𝑛 + 1
24

−
σ𝑡3 − σ 𝑡

48

𝑍0 =
23 −

21 21 + 1
4

21 21 + 1 2 × 21 + 1
24

−
70 − 10
48

= −3.2175

Decision rule

Reject 𝐻0 at the 0.05 level of significance if 𝑍,∝ = −1.645

where 𝑍0 is the computed value of Z =−3.2175

Decision

Since   calculated𝑍0 ≤ tabulated 𝑍∝, (–3.2175 < –1.645), we reject  𝐻0 at the 0.05 

level of significance. We therefore conclude that, the median life span in the country has improved 

significantly. 



Chapter Three

Two Independent Samples

3.1The Mann-Whitney U test (Wilcoxon rank-sum) test

3.1The Mann-Whitney U test (Wilcoxon rank-sum) test

The key contributions of Mann Whitney U Test or(Wilcoxon Rank Sum Test) is by Henry

Mann and Donald Whitney in their original paper on the test in 1947

this is a popular nonparametric test to compare outcomes between two independent groups

is used to test whether two samples are likely to derive from the same population (i.e., that

the two populations have the same shape)or (both have the same median).

This test in the nonparametric equivalent of the two sample t-test. While the t-test makes an

assumption about the distribution of a population (i.e. that the sample came from a t-

distributed population), the Mann Whitney U Test makes no such assumption.

Some investigators interpret this test as comparing the medians between the two

populations.

Assumptions

1- The sample is independent random sample and

2-The variable should be measured on an ordinal scale or a continuous scale.

3-The variable should be two independent, categorical groups. In other words, there should

be no relationship between the two groups or within each group.

4-The-sample does not require normally distributed. However, they should follow the same

shape (i.e. both are bell-shaped and skewed



Test the hypotheses

H0: The two populations are equal versus

H1: The two populations are not equal.

Level of significance α =0.05

The test statistic

The test statistic is U= min{𝑈1 , 𝑈2 }

1-The test is often performed as a two-sided test and, thus, the research hypothesis indicates

that the populations are not equal as opposed to specifying directionality.

2-A one-sided research hypothesis is used if interest lies in detecting a positive or negative

shift in one population as compared to the other. The procedure for the test involves pooling

the observations from the two samples into one combined sample, keeping track of which

sample each observation comes from, and then ranking lowest to highest from 1 to n1+n2,

respectively.

to Compute the test statistic assign ranks the smallest through largest values in the total

sample, and find U1 and U2 as follows

𝑈1 = 𝑛1𝑛2 +
𝑛1 𝑛1+1

2
− 𝑅1 and 𝑈2 = 𝑛1𝑛2 +

𝑛2 𝑛2+1

2
− 𝑅2

where R1 and R2 are the sums of the ranks in groups 1 and 2, respectively.

Decision rule.

The appropriate critical value can be found in the table above. To determine the appropriate 

critical value we need sample sizes and level of significance α

The decision rule is as follows: Reject H0 if U calculated < U tabulated 



Mann-Whitney Test Works
What does Mann Whitney U test show?

The Mann-Whitney U test is used to compare whether there is a difference in

the dependent variable for two independent groups. It compares whether the

distribution of the dependent variable is the same for the two groups and therefore

from the same population.

Why we use Mann Whitney test?

The Mann-Whitney U test is a non-parametric test that can be used in place of an

unpaired t-test. It is used to test the null hypothesis that two samples come from the

same population (i.e. have the same median) or, alternatively, whether observations in

one sample tend to be larger than observations in the other.

The Mann-Whitney test can be completed in four steps:

1-Combine the data from the two samples into one

2-Rank all the values, with the smallest observation given rank 1, the second 

smallest rank 2, etc.

3-Calculate and assign the average rank for the observations that are tied (the 

ones with the same value)

4-Calculate the sum of the ranks of the first sample (the U-value)



Example

Consider a Phase II clinical trial designed to investigate the effectiveness of a

new drug to reduce symptoms of asthma in children. A total of n=10

participants are randomized to receive either the new drug or a placebo.

Participants are asked to record the number of episodes of shortness of breath

over a 1 week period following receipt of the assigned treatment. The data are

shown below.

Placebo 7 5 6 4 12

New Drug 3 6 4 2 1

Is there a difference in the number of episodes of shortness of

breath over a 1 week period in participants receiving the new drug

as compared to those receiving the placebo and is this statistically

significant at the 5% level by the Mann-Whitney U test ?



Solution
In addition, the sample size is small (n1=n2=5), so a 

nonparametric test is appropriate. 

The hypothesis test

H0: The two populations are equal versus
H1: The two populations are not equal.
level of significance (α=0.05)

The test statistic

U= min{𝑈1 , 𝑈2 }

The first step is to assign ranks and to do so we order the data

from smallest to largest. This is done on the combined or total

sample (i.e., pooling the data from the two treatment groups

(n=10)), and assigning ranks from 1 to 10, as follows. We also

need to keep track of the group assignments in the total sample.



Total Sample
(Ordered Smallest to 

Largest)

Ranks

Placebo New 
Drug

Placebo New 
Drug

Placebo New 
Drug

7 3 1 1

5 6 2 2

6 4 3 3

4 2 4 4 4.5 4.5

12 1 5 6

6 6 7.5 7.5

7 9

12 10



the goal of the test is to determine whether the observed data support a difference 

in the populations of responses. 

we produce a test statistic based on the ranks.

sum the ranks in the placebo group=37=R1

the sum of the ranks in the new drug group=18= R2

the sum of the ranks will always equal n(n+1)/2 = 10(11)/2=55 which is equal to 

37+18 = 55.

U=min(3 , 22) = 3

Decision rule

The critical value of U can be found in the table below. To determine the

appropriate critical value we need sample sizes (for Example: n1=n2=5) and our

two-sided level of significance (α=0.05). the critical value is 2, and

The decision

rule is to reject H0 if U < 2. We do not reject H0 because 3 > 2.

We do not have statistically significant evidence at α =0.05, the failure to reach

statistical significance may be due to low power.



Example

Usual Care 8 7 6 2 5 8 7 3

New Program 9 9 7 8 10 9 6

A new approach to prenatal care is proposed for pregnant women living in a rural

community. The new program involves in-home visits during the course of

pregnancy in addition to the usual or regularly scheduled visits. A pilot

randomized trial with 15 pregnant women is designed to evaluate whether women

who participate in the program deliver healthier babies than women receiving

usual care.

Is there statistical evidence of a difference in women receiving the New Program
versus usual prenatal care?



Solution
• Test  the hypotheses.

H0: The  two populations are equal                    versus

H1: The two populations are not equal. 

•Level of significanceα =0.05

•The test statistic. 

Because  the data are not normally distributed and the samples are 

small (n1=8 and n2=7), we use the Mann Whitney U test. The test 

statistic is U, the smaller of

where R1 and R2 are the sums of the ranks in groups 1 and 2, 

respectively.

• Compute the test statistic. 

The first step is to assign ranks of 1 through 15 to the smallest through 

largest values in the total sample, as follows



Total Sample
(Ordered Smallest to 

Largest)

Ranks

Usual 
Care

New 
Program

Usual 
Care

New 
Program

Usual 
Care

New 
Program

8 9 2 1

7 8 3 2

6 7 5 3

2 8 6 6 4.5 4.5

5 10 7 7 7 7

8 9 7 7

7 6 8 8 10.5 10.5

3 8 8 10.5 10.5

9 13.5

9 13.5

10 15

R1=45.5 R2=74.5



Next, we sum the ranks in each group. In the usual care group, the sum of the 

ranks is R1=45.5 and in the new program group, the sum of the ranks is R2=74.5. 

Recall that the sum of the ranks will always equal n(n+1)/2. As a check on our 

assignment of ranks, we have n(n+1)/2 = 15(16)/2=120 which is equal to 

45.5+74.5 = 120. 

We now compute U1 and U2, as follows:

Thus, the test statistic is U=9.5.

•Decision rule.

The appropriate critical value can be found in the table above. To

determine the appropriate critical value we need sample sizes

(n1=8 and n2=7) and our two-sided level of significance (α=0.05).

The critical value for this test with n1=8, n2=7 and α =0.05 is 10

and the decision rule is as follows: Reject H0 if U < 10
. Decision

Reject H0 if U < 10

U=9.5

Reject H0 9.5 < 10



Normal Approximation

For large samples, U is approximately normally distributed. In that case,
the standardized value

𝑧 =
𝑈 − 𝜇𝑈
𝜎𝑈

where 𝜇𝑈 and 𝜎𝑈 are the mean and standard deviation of U, is
approximately a standard normal deviate whose significance can be
checked in tables of the normal distribution. 𝜇𝑈 and𝜎𝑈 are given by

𝜇𝑈 =
𝑛1𝑛2
2

𝜎𝑈=
𝑛1𝑛2 𝑛1+𝑛2+1

12

Note that since U1 + U2 = n1n2, the mean n1n2/2 used in
the normal approximation is the mean of the two values
of U. Therefore, the absolute value of the z statistic
calculated will be same whichever value of U is used.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Standard_score


Example
Two processing systems were used to clean wafers. The following data represent 

the (coded) particle counts. is there a difference between two processing systems 

were used to clean wafers. 

The solution shows the typical kind of output software for this procedure would 

generate, based on the large sample approximation.

Solution:

Test the hypothesis
𝐻0 :there is no difference between the two processing systems were used to clean wafers.
𝐻1 :there is difference between the two processing systems were used to clean wafers.

Significance level α = 0.05
Test the Statistic:

The test statistic is U= min{𝑈1 , 𝑈2 }



Compute test statistic

Group A Rank Group B Rank

0.55 8 0.49 5

0.67 15.5 0.68 17

0.43 1 0.59 9.5

0.51 6 0.72 19

0.48 3.5 0.67 15.5

0.60 11 0.75 20.5

0.71 18 0.65 13.5

0.53 7 0.77 22

0.44 2 0.62 12

0.65 13.5 0.48 3.5

0.75 20.5 0.59 9.5

Sum of Ranks  106.000 147.000



Decision rule

𝑛1= 𝑛2=11

𝑅1=106

𝑅2=147

𝑈1 = 81

𝑈2 = 40

𝜇𝑈=E(U) =
𝑛1𝑛2

2
=
(11)(11)

2
= 60.5

𝑧 =
𝑈−𝜇𝑈

𝜎𝑈
=

40−60.5
15.23

= −1.346

For a two-sided test with significance level α = 0.05, the critical value
is z1−α/2 = -1.96. Since |z| is less than the critical value,

Decision

we do not reject the null hypothesis and conclude that there is not enough
evidence to claim that two groups have different central tendencies.

𝜎𝑈=
𝑛1𝑛2 𝑛1+𝑛2+1

12 =
11 11 11+11+1

12
=15.23



The one-sample runs test for 

randomness 

What is run test for randomness?

Runs test is a statistical procedure which

determines whether a sequence of data within

a given distribution have been derived with a

random process or not. It may be applied

to test the randomness of data in a survey

that collect data from an ordered population.



The one-sample runs test for randomness

In many situations we want to know whether we can conclude

that a set of observations constitute a random sample from an

infinite population. Test for randomness is of major importance

because the assumption of randomness underlies statistical

inference (see Ofosu & Hesse, 2011). In addition, tests for

randomness are important for time series analysis. The runs test

procedure is used to examine whether or not a sequence of

sample values is random.

Consider, for example, the following sequence of sample values

21 23 24 27 30 28 27 26 25 23 22 21

Each observation is denoted by a ‘+’ sign if it is more than the

previous observation and by a ‘– ‘ sign if it is less than the

previous observation as shown in the following table.

21 23 24 27 30 28 27 26 25 23 22 21 

+ + + + – – – – – – –

1 2



A run is a sequence of signs of the same kind bounded by signs 

of other kind. In this case, we doubt the sequence’s randomness, 

since there are only two runs . If the order of occurrence were 

we would doubt the sequence’s randomness because there are

too many runs (10 in this instance).

Too few runs indicate that the sequence is not random (has

persistency) whilst too many runs also indicate that the sequence

is not random (is zigzag). Let us now consider the one sample

runs test. This procedure helps us to decide whether a sequence

of sample values is the result of a random process.

25 22 27 23 27 28 21 26 23 30 21 24 

– + – + + – + – + – + 

1 2 3 4 4 6 7 8 9 10 



we would doubt the sequence’s randomness because there are too 

many runs (10 in this instance). 

Too few runs indicate that the sequence is not random (has 

persistency) whilst too many runs also indicate that the sequence is 

not random (is zigzag). Let us now consider the one sample runs 

test. This procedure helps us to decide whether a sequence of 

sample values is the result of a random process. 

Assumptions 

The data available for analysis consist of a sequence of sample 

values, recorded in the order of their occurrence. 

Hypotheses test 

H0 :The sequence of sample values is random, against

H1 : The sequence of sample values is not random. 

Test Statistic

The test statistic is R, the total number of runs.



Decision Rule

Since the null hypothesis does not specify the direction, a two-sided test is appropriate. The critical 

value, r, for a given sample size n and at a desired level of significance α.

If lower 𝑟𝑐 ≤ r ≤ upper 𝑟𝑐 accept H0 Otherwise reject H0 

Tied Values 

If an observation is equal to its preceding observation, denote it by zero. While counting the number 

of runs, ignore it and reduce the value of n accordingly.

Large Sample Sizes 

If 𝒏 > 𝟐𝟓 then the test statistic can be approximated by

𝑍 =
𝑅 − 𝜇𝑅

𝑣𝑎𝑟 𝑅

which is N(0, 1), when 𝐻0 is true, 𝜇𝑅=E(R)=
2𝑛−1

3
and 𝑣𝑎𝑟 𝑅 =

16𝑛−29

90

where. We reject 𝐻0 at the level of significance ∝ if 𝑧 > 𝑧
1−

∝

3
where z is the computed value of Z.



Example
The following are the blood glucose levels of 12 patients who attend St. 

Thomas Hospital: Test, at the 0.05 level of significance whether the 

sequence is random?

Solution

Test Hypothesis

H0 The sequence is random, against

H1 The sequence is not random.

The test statistic is

The test statistic is R, the total number of runs. 

Desicion rule

We reject H0 at the 0.05 level of significance if lower 𝑟𝑐 ≤ r ≤ upper 𝑟𝑐
accept H0 Otherwise reject H0

where r is the observed value of R and 𝑟𝑐 is the critical value. 

86 99 98 90 109 101 100 110 110 93 108 120



Chapter Four

Three or More Independent Samples

The Kruskal-Wallis one-way analysis of variance by Ranks

The Kruskal Wallis test is the non parametric alternative to the One way ANOVA. The H

test is used when the assumptions for ANOVA aren’t met (like the assumption of

normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data

values are used in the test rather than the actual data points.

The test determines whether the medians of Three or more groups are different. Like most

statistical tests, you calculate a test statistic and compare it to a distribution cut-off point.

The test statistic used in this test is called the H statistic.

The Kruskal–Wallis test has its goal to determine if all k populations are identical or if at

least one of the populations tends to give observations that are different from those of other

populations.

The test is used when we have k samples, with k≥3

Advantages of the H Test

1-The H test is simply an analog to the F test in that the statistic is calculated using ranked

data rather than the original observations.

2-it is simple to use, it does not require a computer to calculate, and it is widely available in

applied text. Compared with the F test, the H test is quicker and easier to apply and it

makes fewer assumptions of the population under study.

3- H test can be calculated for interval- or ratio-level data by transforming it to the ordinal

scale through ranking.

The H test is distributed approximately as a chi-square distribution (with df = C- 1),



Assumptions

Regarding Use The hypothetical example presented covered

the four main assumptions underlying the use of the H test.

1-It was assumed that the dependent variable under study has

continuous distribution.

2- The observations should be independent. In other words,

there should be no relationship between the members in each

group or between groups. .

3-One independent variable with two or more levels

(independent groups). The test is more commonly used when

you have three or more levels. For two levels, consider using

the Mann Whitney U Test instead.

Ordinal scale, Ratio Scale or Interval scale variables.



The hypotheses Test :

H0: population medians are equal.

H1: population medians are not equal.

level of significant : ∝

Test Statistic:

1- Sort the data for all groups/samples into ascending order in one combined set

2- Assign ranks to the sorted data points. Give tied values the average rank.

3- Add up the different ranks for each group/sample.

4- Calculate the H statistic:

𝑯 =
𝟏𝟐

𝑵 𝑵 + 𝟏
෍

𝒊=𝟏

𝒄
𝑹𝒊
𝟐

𝒏𝒊
− 𝟑 𝑵 + 𝟏

Where:

n = sum of sample sizes for all samples,

c = number of samples,

Ri = sum of ranks in the ith sample,

ni = size of the ith sample.

Decision Rule: Find the critical chi-square value, with c-1 degrees of freedom at specific level of

significant 

Decision: Compare the H value from to the critical chi-square value .

If the critical chi-square value is less than the H statistic, reject the null hypothesis that the medians are 

equal . If the chi-square value is not less than the H statistic, there is not enough evidence to suggest 

that the medians are unequal.



A company wants to know if three groups of workers have different salaries at 5%

Level of significant

Solution :

H0: The workers salaries are same

H1: The workers salaries are different 

level of significant 5%

Example1

Women 23K 41K 54K 66K 78K

Men 45K 18K 55K 30K 60K

Minorities 34K 70K 40K 72K 44K



Test Statistic

Wom
en

Men Minorities Al l salaries Ordered 

Smallest to largest

All Ranks Women Ranks Men Ranks Minoritie
s Ranks

23K 45K 18K 18K 1 1

41K 55K 30K 23K 2 2

54K 60K 34K 30K 3 3

66K 70K 40K 34K 4 4

78K 72K 44K 40K 5 5

41K 6 6

44K 7 7

45K 8 8

54K 9 9

55K 10 10

60K 11 11

66K 12 12

70K 13 13

72K 14 14

78K 15 15

44 56 20



Calculate the H statistic:

H = 6.72

Find the critical chi-square value, with c-1 degrees of freedom. For 3 – 1 degrees 

of freedom and an alpha level of .05, the critical chi square value is 5.9915.

Compare the H value from 4 to the critical chi-square value from .

In this case, 5.9915 is less than 6.72, so you can reject the null hypothesis.

𝑯 =
𝟏𝟐

𝑵 𝑵+ 𝟏
෍

𝒊=𝟏

𝒄
𝑹𝒊
𝟐

𝒏𝒊
− 𝟑 𝑵 + 𝟏

𝑯 =
𝟏𝟐

𝟏𝟓 𝟏𝟓 + 𝟏

𝟒𝟒𝟐

𝟓
+
𝟓𝟔𝟐

𝟓
+
𝟐𝟎𝟐

𝟓
− 𝟑 𝟏𝟓 + 𝟏



Example 2
In a manufacturing unit, four teams of operators were randomly selected and sent to

four different facilities for machining techniques training. After the training, the

supervisor conducted the exam and recorded the test scores.

At 5% level of significant does the scores are same in all four facilities?

Solution :

The hypothesis test

H0: The distribution of operator scores are same

H1: The scores may vary in four facilities

level of significant 5%



Test Statistic: 𝑯 =
𝟏𝟐

𝑵 𝑵+𝟏
σ𝒊=𝟏
𝒄 𝑹𝒊

𝟐

𝒏𝒊
− 𝟑 𝑵 + 𝟏

Compute Test Statistic

Facility1 Facility2 Facility3 Facility4 all Facility Ordered 

Smallest to Largest

Ranks

F1 F2 F3 F4

64 77 71 52 51 5 10 8 2

81 76 86 65 52 11 9 14 6

56 84 88 68 56 3 13 16 7

87 59 51 82 59 15 4 1 12

64

65

68

71

76

77

81

82

84 

86

87

88

Total 34 36 39 27



𝑯 =
𝟏𝟐

𝑵 𝑵 + 𝟏
෍

𝒊=𝟏

𝒄
𝑹𝒊
𝟐

𝒏𝒊
− 𝟑 𝑵 + 𝟏

H =
12

16 17

342+362+392+272

4
− 3 17 = 0.7

While for a right tailed chi-square test with 5% significant level, and df =3, 

critical χ2 value is 7.815

Critical values of Chi-Square Distribution

Calculated χ2 value is smaller than the critical value of χ2for a 0.05 significance level. H

(χ2
critical >χ2

calculated hence can not reject the null hypothesis So, there is not enough evidence

to conclude that difference in test scores exists for four teaching methods at different

facilities.



Adjusting for tied ranks in the Kruskal-Wallis test

When you have tied values, you will get tied ranks. In these circumstances you
should apply a correction to your calculated test statistic. The notes show you
how this can be done.

Calculating the adjustment factor

In order to correct for tied ranks you first need to know which values are tied. 
Then you need to know how many ties there are for each rank value. Finally, 
you’ll need to know how many replicates there are in the dataset.

Once you’ve ascertained these things you can use the following formula to work 
out a correction, or adjustment, factor:

𝐷 = 1 −
σ 𝑡3−𝑡

𝑁−1 𝑁 𝑁+1

In the formula t is the number of ties for each rank value. For each value of t, you evaluate the t-
cubed minus t part. This is then summed for all the tied values (values without ties can also be 
evaluated but 13 – 1 = 0). Once you have the numerator you work out the denominator using n, the 
number of replicates in the original dataset.

The final value of D is then 1 – your fraction.



Adjusting the KW test statistic
Once you have the value of D, the correction factor, you can use it to adjust the original

Kruakal-Wallis test statistic (H) 𝐻𝑎𝑑𝑗 =
𝐻

𝐷

Formula for adjustment of the Kruskal-Wallis statistic in the case of tied ranks.

The correction is simple: H/D.

You then use the Hadj value in place of the original to determine the final test 

significance (using critical values tables –

Upper Mid Lower

3 4 11

4 3 12

5 7 9

9 9 10

8 11 11

10

9

Example



Upper ranks Mid ranks Lower ranks

1.5 3.5 15

3.5 1.5 17

5 6 9.5

9.5 9.5 12.5

7 15 15

12.5

9.5

෍ 48.5 35.5 69

The first step is to evaluate the ranks. Each value is replaced by its rank in the overall dataset.

Sample data shown as ranks instead of original values. Samples are combined for ranking.

The Kruskal-Wallis test looks at the sum of the ranks from each sample. If the ∑rank is

different between samples there is a good chance that differences are statistically

significant. If the ∑rank are close, then differences are less likely to be significant.



You can now calculate the Kruskal-Wallis test statistic, H.

Original H value

Once you have the rank sums you can compute the Kruskal-Wallis test statistic:

𝑯 =
𝟏𝟐

𝑵 𝑵+ 𝟏
෍

𝒊=𝟏

𝒄
𝑹𝒊
𝟐

𝒏𝒊
− 𝟑 𝑵 + 𝟏

Formula for calculating the Kruskal-Wallis statistic for non-parametric samples.

The Kruskal–Wallis formula looks pretty horrendous but actually it is not that bad.

The numbers 12 and 3 are constants. Uppercase N is the total number of observations.

The R refers to the ranks of the observations in each sample and n is the number of

observations per sample.

In the example the final value of the Kruskal-Wallis statistic works out to be

H = 6.403.

Tied ranks

The formula for working out the correction factor was given earlier. You need to
work out, for each rank value, the number of repeats.



Rank Ord Ties 𝑇3 − 𝑇

1.5 1.5
2 6

3.5 1.5

5 3.5
2 6

9.5 3.5

7 5

12.5 6

9.5 7

3.5 9.5

4 60
1.5 9.5

6 9.5

9.5 9.5

15 12.5
2 6

17 12.5

9.5 15

3 2412.5 15

15 15

15 17

102

Rearranging ranked data to make calculation of tied ranks easier.



Once you have the ranks in order it is easy to work out the number of repeats by

inspection. You can simply fill in the values as you work down the column. In the

preceding table the 3rd column shows the tied rank repeats. So, for example the rank

1.5 is repeated 2 times. The rank 9.5 has 4 repeats.

The final column shows the T3 – T values. In other words, you take the number of

repeats and cube it, then subtract the number of repeats.

Once you have these values you can sum them to get an overall value, in this case 102.

Final H adjustment

Once you have your final sum of T3 -T values you can work out the value of D using

the formula given earlier. You need to know the total number of replicates in the

original dataset (in this case 17).

The final value of D works out at: 0.9792.

The adjusted H value is then H/D = 6.403 / 0.9792 = 6.540.

You can now use the adjusted H-value to compare to critical value tables to see if your

result is statistically significant.



Chapter Five

5.1Chi-Square Test of Independence

The chi-square test of independence is used to determine whether there is a

relationship between two categorical variables. This lesson explains how to

conduct a chi-square test for independence. The test is applied when you have

two categorical variables from a single population. It is used to determine whether

there is a significant association between the two variables.

For example, in an election survey, voters might be classified by gender (male or

female) and voting preference (Democrat, Republican, or Independent). We could

use a chi-square test for independence to determine whether gender is related to

voting preference.

When to Use Chi-Square Test for Independence the test procedure described is

appropriate when the following conditions are met:

-The sampling method is simple random sampling.

-The variables under study are each categorical.

-If sample data are displayed in a contingency table,

https://stattrek.com/statistics/dictionary.aspx?definition=Categorical variable
https://stattrek.com/statistics/dictionary.aspx?definition=Simple random sampling
https://stattrek.com/statistics/dictionary.aspx?definition=Categorical variable
https://stattrek.com/statistics/dictionary.aspx?definition=Contingency table


This approach consists of four steps:

1-State the Hypotheses
Suppose that Variable A has r levels, and Variable B has c levels

The null hypothesis states that knowing the level of Variable A does not 

help you predict the level of Variable B., the variables are independent.

Ho: Variable A and Variable B are independent.

H1: Variable A and Variable B are not independent.

2-Formulate an Analysis Plan
The analysis plan describes how to use sample data to accept or reject the 

null hypothesis. The plan should specify the following elements

•Significance level. Often, researchers choose significance levels equal to 

0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.

•Test method. Use the chi-square test for independence to determine 

whether there is a significant relationship between two categorical 

variables.

3-Analyze Sample Data
Using sample data, find the degrees of freedom, expected frequencies, test 

statistic, and the P-value associated with the test statistic..

4- Interpret results

https://stattrek.com/statistics/dictionary.aspx?definition=Null hypothesis
https://stattrek.com/statistics/dictionary.aspx?definition=Significance level
https://stattrek.com/statistics/dictionary.aspx?definition=Chi-square test for independence


•Degrees of freedom. The degrees of freedom [ df = (r - 1) * (c - 1)]
•where r is the number of levels for one categorical variable, and c is the number of levels

for the other categorical variable.

•Expected frequencies. The expected frequency counts are computed separately for each

level of one categorical variable at each level of the other categorical variable.

•expected frequencies, according to the following formula .Er,c = (nr * nc) / n
•where is the expected frequency count for level r of Variable A and level c of Variable B,

nr is the total number of sample observations at level r of Variable A, nc is the total number

of sample observations at level c of Variable B, and n is the total sample size.

•Test statistic. The test statistic is a chi-square random variable (𝒳 2) defined by the

following equation.𝒳 2 = Σ [ (Or,c - Er,c)
2 / Er,c ] where:

•Or,c is the observed frequency count at level r of Variable A and level c of Variable B,

•Er,c is the expected frequency count at level r of Variable A and level c of Variable B.

•P-value. The P-value is the probability of observing a sample statistic as extreme as the

test statistic. Since the test statistic is a chi-square, use the Chi-Square Distribution

Calculator to assess the probability associated with the test statistic. Use the degrees of

freedom computed above. 𝒳∝
2

Interpret Results

If the sample findings are unlikely, given the null hypothesis, the researcher rejects the null

hypothesis. Typically, this involves comparing the P-value to the significance level, and

rejecting the null hypothesis when the P-value is less than the significance level.

https://stattrek.com/statistics/dictionary.aspx?definition=Degrees of freedom
https://stattrek.com/Tables/ChiSquare.aspx
https://stattrek.com/statistics/dictionary.aspx?definition=Significance level


Example

Example:
A public opinion poll surveyed a simple random sample of 1000 voters. 

Respondents were classified by gender (male or female) and by voting 

preference (Republican, Democrat, or Independent). Results are shown in 

the contingency table below. Do the men's voting preferences differ 

significantly from the women's preferences? Use a 0.05 level of significance.

Solution

State the hypotheses.

Ho: Gender and voting preferences are independent.

H1: Gender and voting preferences are not independent.

Formulate an analysis plan. the significance level is 0.05.

Voting preference Row Total

( n r )Repu. Demo. Inde.

Male 200 150 50 400

Female 250 300 50 600

Column Total ( n c  ) 450 450 100 1000  ( n )

https://stattrek.com/statistics/dictionary.aspx?definition=Contingency table


Analyze sample data. Applying the chi-square test for independence to

sample data,

we compute the degrees of freedom,.

df = (r - 1) * (c - 1) = (2 - 1) * (3 - 1) = 2

The expected frequency counts:

E r,c = (n r * n c) / n
E1,1 = (400 * 450) / 1000 = 180000/1000 = 180

E1,2 = (400 * 450) / 1000 = 180000/1000 = 180

E1,3 = (400 * 100) / 1000 = 40000/1000 = 40

E2,1 = (600 * 450) / 1000 = 270000/1000 = 270

E2,2 = (600 * 450) / 1000 = 270000/1000 = 270

E2,3 = (600 * 100) / 1000 = 60000/1000 = 60

the chi-square test statistic. Based on the chi-square statistic and the degrees

of freedom,

𝒳2= Σ [ (Or,c - Er,c)
2 / Er,c ]

𝒳2 = (200 − 180)2/180 + (150 − 180)2/180 + (50 − 40)2/40

+ (250 − 270)2/270 + (300 − 270)2/270 + (50 − 60)2/60

𝒳2 = 400/180 + 900/180 + 100/40 + 400/270 + 900/270 + 100/60

𝒳2 = 2.22 + 5.00 + 2.50 + 1.48 + 3.33 + 1.67 = 16.2

https://stattrek.com/statistics/dictionary.aspx?definition=Degrees of freedom


The P-value is the probability that a chi-square

statistic having 2 degrees of freedom is more

extreme than 16.2.

We use the Chi-Square Distribution Calculator to

find P(𝒳2 > 16.2) = 0.0003.

Interpret results. Since the P-value (0.0003) is less

than the significance level (0.05), we cannot accept

the null hypothesis. Thus, we conclude that there is a

relationship between gender and voting preference.

https://stattrek.com/Tables/ChiSquare.aspx


Chapter Five

5.2  Chi-Square Test of Homogeneity

nonparametric test used in a situation where the

dependent variable is categorical. Data can be

presented using a contingency table in which

populations and categories of the variable are the

row and column labels.



Example

In a study of the television viewing habits of children, a developmental

psychologist selects a random sample of 300 first graders - 100 boys and 200

girls. Each child is asked which of the following TV programs they like best: The

Lone Ranger, Sesame Street, or The Simpsons. Results are

shown in the contingency table below.

Do the boys' preferences for these TV programs differ significantly from the

girls' preferences? Use a 0.05 level of significance.

Viewing Preferences Total

Like alone 

Ranger 

Sesame 

Street 

The 

Simpsons 

Boys 50 30 20 100

Girls 50 80 70 200

Total 100 110 90 300

https://stattrek.com/Help/Glossary.aspx?Target=Contingency table


Solution
State the hypotheses.

Null hypothesis: The null hypothesis states that the proportion of

boys who prefer the Lone Ranger is identical to the proportion of

girls. Similarly, for the other programs. Thus,

Ho: Pboys like Lone Ranger = Pgirls like Lone Ranger

Ho: Pboys like Sesame Street = Pgirls like Sesame Street

Ho: Pboys like Simpsons = Pgirls like Simpsons

H1: At least one of the null hypothesis statements is false.

Formulate an analysis plan. For this analysis, the significance

level is 0.05. Using sample data, we will conduct a chi-square test

for homogeneity

https://stattrek.com/Help/Glossary.aspx?Target=Chi-square test for homogeneity


Analyze sample data. Applying the chi-square test for homogeneity to

sample data, we compute the degrees of freedom, the expected frequency

counts, and the chi-square test statistic. Based on the chi-square statistic and

the degrees of freedom, we determine the P-value.

df=(r-1)*(c-1)

df = (r - 1) * (c - 1) = (2 - 1) * (3 - 1) = 2

Er,c =(nr *nc)/n

E1,1 = (100 * 100) / 300 = 10000/300 = 33.3

E1,2 = (100 * 110) / 300 = 11000/300 = 36.7

E1,3 = (100 * 90) / 300 = 9000/300 = 30.0

E2,1 = (200 * 100) / 300 = 20000/300 = 66.7

E2,2 = (200 * 110) / 300 = 22000/300 = 73.3

E2,3 = (200 * 90) / 300 = 18000/300 = 60.0

https://stattrek.com/Help/Glossary.aspx?Target=Degrees of freedom
https://stattrek.com/Help/Glossary.aspx?Target=P-value


𝒳 2 = Σ [ (Or,c - Er,c)
2 / Er,c ]

𝒳 2 =(50 - 33.3)2 /33.3 +(30 - 36.7)2 /36.7 +(20 - 30)2 /30 +(50 - 66.7)2 /66.7 

+(80  - 73.3)2/73.3 +(70 - 60)2 /60

𝒳 2 =(16.7)2 /33.3 +(-6.7)2 /36.7 +(-10.0)2 /30 +(-16.7)2 /66.7 +(6.7)2 /73.3 

+(10)2 /60

𝒳 2 = 8.38 + 1.22 + 3.33 + 4.18 + 0.61 + 1.67 = 19.39

The P-value is the probability that a chi-square statistic having 2

degrees of freedom is more extreme than 19.39.

We use the Chi-Square Distribution Calculator to find

P(𝒳 2 > 19.39) = 0.0001 (The actual P-value, of course, is not

exactly zero. If the Chi-Square Distribution Calculator reported

more than four decimal places, we would find that the actual P-

value is a very small number that is less than 0.05 and greater than

zero.)

Interpret results. Since the P-value (0.0001) is less than the

significance level (0.05), we reject the null hypothesis.

https://stattrek.com/Tables/ChiSquare.aspx


Chapter Six

Runs Test to Test for

Randomness of Observations
1. What is Run Test

Run test is a statistical test used to determine of the data obtained from a 

sample is random. That is why it is called Run Test for Randomness.

Randomness of the data is determined based on the number and nature of 

runs present in the data of interest.

What is a Run?
A run is a sequence of similar or like events, items or symbols that is preceded by 

and followed by an event, item or symbol of a different type, or by none at all.

Randomness of of the series is unlikely when there appear to be either too many or 

two few runs. In this case, a run test need to be carried out to determine the 

randomness.

The Run Test when performed helps us to decide whether a sequence of events, 

items or symbol is the result of a random process.



Example of Runs
A data scientist carrying out a research interviewed 10 persons during a 

survey. We denote the genders of the poepl by M for male and F for 

Female.

Assuming the respondents were chosen as follows:

Scenario 1

M M M M M F F F F F

Scenario 1 has only 2 runs and therefore the scenario cannot be considered

Scenario 2

F M F M F M F M F M

Scenario 2 has too many runs and therefore would not be considered as 

random

Scenario 3

F F F M M F M M F F

random because there are to few runs

Scenario 3 has 5 runs and therefore we need to perform a test to determine 

the randomness of the data.



Run Test Procedure

First we need to assume that the data available for the
analysis consists of a sequence of observations, recorded
in order of occurrence, which we can categorize into two
mutually exclusive types.

First, you need to determine the total sample size, then the
number of observation of each type as presented below:

n = total sample size
n1 = the number of observation of one type
n2 = the number of observations of the other type



Hypothesis

Then State the null and alternate hypothesis

A. TWO-SIDED

H0: the pattern of occurrence is random

H1: the pattern of occurrence is not random

B. ONE-SIDED

H0: the pattern of occurrence is random

H1: the pattern of occurrence is not random (because there are too few runs 

to be attributed as random)

C. ONE-SIDED

H0: the pattern of occurrence is random

H1: the pattern of occurrence is not random (because there are too few runs 

to be attributed as random)



Test Statistic and Decision Rule
The Table 1: Decision Rule

Critical Value

Critical value is determined from statistical table using n1 and n2
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Example 1

On a commuter train, the conductor want to see whether the

passengers entering a train enter in a random manner. He observes

the first 25 people, with the following sequence of Males(M) and

Females(F).

F F F M M F F F F M F M M M F F F F M M F F F M M

Test for randomness at α = 0.05



Solution

test hypothesis :
H0: The patter of occurrence of males and females enter the train is random

H1: The pattern of occurrence of males and females entering the train is not 

random

test statistic : (number of runs)

You can easily get this by grouping each run as shown below:

FFF MM FFFF M F MMM FFFF MM FFF MM

Test statistic, r = 10

n1 = number of females = 15

n2 = number of males = 10

critical value
We can find the lower and upper critical value from statistical run table

n1 = 15 ,  n2 = 10

Lower critical value = 7

Upper critical value = 18



Decision  Rule :

Since r = 10 which is between 7 and 18, we accept the null hypothesis (we fail to 

reject it)

Decision : Draw a Conclusion

There are not enough evidence to reject the claim hat the pattern of occurrence of 

males and females enter the train is determined by a random process



Example 2
We have 20 people that enrolled in a drug abuse program. Test the claim that the 
ages of the people, according to the order in which they enroll occur at random, 
at α = 0.05.

The data are as follows:
18, 36, 19, 22, 25, 44, 23, 27, 27, 35, 19, 43, 37, 32, 28, 43, 46, 19, 20, 22

Solution

Test the hypothesis :

H0: The pattern of occurrence of ages of the people enrolled in a drug abuse 

program is determined by a random process

H1: The pattern of occurrence of  ages of people enrolled in a drug abuse program 

is not random

Test statistic (number of runs)

To find the number of runs we first arrange the data in ascending order and find the median 

of the data set.

18, 19, 19, 19, , 20, 22, 22, 23, 25, 27, 27, 28, 32, 35, 36, 37, 43, 43, 44, 46

the median of the data set = 27



Then compare the original data with the median. The replace the above median in the 

original sequence with an

A if it is above the median and with 

B if it is below the median.(you can also use the mean instead of median)

We can now arrange the data according to runs and we would have the output 

below:

B A BBB A B A B AAAAAA BBB

From the above we have

Test statistic, r = 9

n1 = number or A runs = 9

n2 = number of B runs =9

https://1.bp.blogspot.com/-bg3fO3xBZkQ/WrloK2oDa-I/AAAAAAAABmg/VF-xs6SkqVA4hS9hiJCYUzn-Hud0DV8gwCLcBGAs/s1600/Run+Test+Example+2.jpg
https://1.bp.blogspot.com/-bg3fO3xBZkQ/WrloK2oDa-I/AAAAAAAABmg/VF-xs6SkqVA4hS9hiJCYUzn-Hud0DV8gwCLcBGAs/s1600/Run+Test+Example+2.jpg


Critical Value

n1 = 9, n2 = 9

From statistical table of Runs Test, we get the critical values

Lower critical value = 5

Upper critical value =15

Decision Rule

Since the statistic r is between the upper and lower critical values, we accept H0

Decision

There is not enough evidence to reject the claim that the patter of occurrence of ages 

of people in the program is determined by a random process



Example 3
This table shows the departures from normal of daily temperatures

recorded at Korek January 2016. We would like to know whether we

may conclude that the pattern of departures above and below norm

al is the result of a non- random process.

Day temperatures 

recorded

Da

y

temperatures 

recorded

Day temperatures 

recorded

Day temperatures 

recorded

1 12 9 -1 17 6 25 -2

2 13 10 3 18 7 26 -6

3 12 11 2 19 10 27 -6

4 11 12 -6 20 10 28 -5

5 5 13 -7 21 1 29 -2

6 2 14 -7 22 1 30 -2

7 -1 15 -12 23 3 31 -2

8 2 16 -9 24 7



Solution
Test  the  hypothesis:

H0: The pattern of occurrence of negative and positive deviations from normal of daily 

temperatures is determined by a random process

H1: The pattern of occurrences of negative and positive deviations from normal of daily 

temperatures is not determined by a random process (claim)

Test statistics (number of runs)

To get the number of runs, we need to find the departures from normal above 

and below zero. 

The daily temperatures that is above 0 are recorded as A

and

The daily temperatures that are below 0 are recorded as B.

If we do this we would have the arrangement as follows:

AAAAAA B A B AA BBBBB AAAAAAAA BBBBBBB



Test Statistic (number of runs)

r = 8

n1 = number of A = 17

n2 = number of B = 14

Find the critical value

n1 = 17, n2 = 14

Using statistical table we find the:

Lower critical value = 10

Upper critical value = 22

The Decision Rule

Since r = 8, which is lower than the critical value, we reject the null hypothesis (H0)

Decision
There is enough evidence to support the claim that the pattern of occurence of positive 

and negative departures from normal is not random



Chapter Seven 
7.1Confidence interval for the median based on the 

sign test
The100 1 − 𝛼 confidence interval for consists of those values of for which

we would not reject a two-sided null hypothesis 𝐻0 ∶ ෤𝜇 = ෤𝜇0,

at the level of significance 𝛼 .

We designate the lower limit of our confidence interval by( ෤𝜇𝐿 ) and the

upper limit by( ෤𝜇𝑈) .

We determine the largest positive or negative signs, (i.e. the value ƴ𝑠 such

that

𝑃 𝑆 ≤ ƴ𝑠 𝑛 =
∝

2

When the data values are arranged in order of magnitude, the ƴ𝑠 + 1 𝑡ℎ

observation is To find the upper limit of the confidence interval, we count the

ordered sample values backwards from the largest. The ƴ𝑠 + 1 𝑡ℎ

observation from the largest value locates ෤𝜇𝑈 i.e.

෤𝜇𝑈= 𝑛 − ƴ𝑠 𝑡ℎ value.



Example
Construct a 95% confidence interval for the median of the population
from which the following sample data have been drawn, using the sign
test.

0.07 0.69 1.74 1.90 1.99 2.41 3.07 3.08

3.10 3.57 3.71 4.01 8.11 8.23 9.10 10.16

-- arrange the data ascending

0.07 0.69 1.74 1.90 1.99 2.41 3.07 3.08 

3.10 3.57 3.71 4.01 8.11 8.23 9.10 10.16

The point estimate of the population median is the sample median which is the mean of the 

two middle values in the ordered array. Thus, 

the sample median = 
3.08+3.10

2
= 3. 09

 To find  ( ෤𝜇𝐿 ) we consult a table of the sign test and find that , 

and 𝑃 𝑆 ≤ 3 16 = 0.0106 and 𝑃 𝑆 ≤ 4 16 = 0.0384
 Thus, we note that we cannot obtain an exact 95% confidence interval for the median. 

Since 100[1 – 2(0.0106)] = 97.88%, which is larger than 95 and 100[1 – 2(0.0384)] = 

92.32%, which is smaller than 95. 

 This method of constructing confidence intervals for the median does not usually yield 

intervals with exactly the usual coefficients of (0.90) ,( 0.95) , and( 0.99). 



In practice, we choose between a wider interval and a higher confidence or the 

narrower interval and lower confidence. 

Suppose we choose  ƴ𝑠 = 4 then  ƴ𝑠 + 1=5     Therefore the 5𝑡ℎ value in the ordered array is 

and the  12𝑡ℎ (i.e. 16 – 4) value in the ordered array is ( ෤𝜇𝑈)

Thus ෤𝜇𝐿= 1.99      and             ෤𝜇𝑈 = 4.01

The confidence coefficient is therefore 100[1 – 2(0.0384)] = 92.32. 

We say that we are 92.32% confident that the population median is between 1.99 and 

4.01. 



Step1: Find the means,  𝜇𝑖𝑗 of all possible pairs of observation  

𝑥𝑖 and 𝑥𝑗from the sample observation    𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛 that 

is 

𝜇𝑖𝑗 =
𝑥𝑖 + 𝑥𝑗

2
, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

There are      
𝑛 𝑛−1

2
such averages, distributed symmetrically 

about the median. 

Step 2: Arrange the   𝜇𝑖𝑗 in an increasing order of magnitude.  

Step 3: The median of the  𝜇𝑖𝑗 is a point estimate of the 

population median. 

7.2 Confidence Interval for the Median, based 

on the Wilcoxon Signed-Ranks Test



Step 4: Find, from the Wilcoxon Signed Ranks Test table

𝑡 = 𝑤𝑛,𝑝
Corresponding to the sample size n and appropriate

value of p as determined by the desired confidence Level.

When the confidence coefficient is 1 −∝ then (𝑝



Chapter Eight  The goodness of fit

What Does Goodness-of-Fit Mean?
Goodness-of-Fit is a statistical hypothesis test used to see how closely
observed data mirrors expected data .or to determine whether a variable is
likely come from a specified distribution or not.

It is often used to evaluate whether sample data is representative of the full
population.

Goodness-of-Fit tests can help determine if a sample follows a normal
distribution, if categorical variables are related, or if random samples are
from the same distribution.

The goodness of fit of a statistical model describes how well it fits a set of
observations. Measures of goodness of fit typically summarize the
discrepancy between observed values and the values expected under the
model in question. Such measures can be used in statistical hypothesis
testing, e.g. to test for normality of residuals, to test whether two samples
are drawn from identical distributions (see Kolmogorov–Smirnov test), or
whether outcome frequencies follow a specified distribution (see Pearson's
chi-squared test). In the analysis of variance, one of the components into
which the variance is partitioned may be a lack-of-fit sum of squares.

goodness of fit test is a statistical hypothesis test used
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Type of the goodness of fit tests

1. Bayesian information criterion(BIC)

2. Kolmogorov–Smirnov test (KST)

3. Cramér–von Mises criterion(CVMC)

4. Anderson–Darling test(AD)

5. Shapiro–Wilk test

6. Chi-squared test

7. Akaike information criterion(AIC)

8. Hosmer–Lemeshow test(HL)

9. Kuiper's test

10. Kernelized Stein discrepancy

11. Zhang's ZK, ZC and ZA tests

12. Moran test

13. Bootstrap   Tests  

Goodness of fit in regression analysis, 

1. Coefficient of determination (the R-squared measure of goodness of fit);

2. Lack-of-fit sum of squares;

3. Reduced chi-squared

4. Regression validation

5. Mallows's Cp criterion
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Why Is Goodness-of-Fit Important?
Goodness-of-Fit tests help determine if observed data aligns with what is

expected. Decisions can be made based on the outcome of the hypothesis

test conducted. For example, a retailer wants to know what product offering

appeals to young people. The retailer surveys a random sample of old and

young people to identify which product is preferred. Using chi-square, they

identify that, with 95% confidence, a relationship exists between product A

and young people. Based on these results, it could be determined that this

sample represents the population of young adults. Retail marketers can use

this to reform their campaigns.

How Do You Do the Goodness-of-Fit Test?

The Goodness-of-FIt test consists of different testing methods. The goal of 

the test will help determine which method to use. For example, if the goal is 

to test normality on a relatively small sample, the Shipiro-Wilk test may be 

suitable. If wanting to determine whether a sample came from a specific 

distribution within a population, 



the Kolmogorov-Smirnov test will be used. Each test uses its own

unique formula. However, they have commonalities, such as a null

hypothesis and level of significance.

Goodness-of-fit tests determine how well sample data fit what is

expected of a population. From the sample data, an observed value

is gathered and compared to the calculated expected value using a

discrepancy measure. There are different goodness-of-fit

hypothesis tests available depending on what outcome you're

seeking.

Choosing the right goodness-of-fit test largely depends on what

you want to know about a sample and how large the sample is. For

example, if wanting to know if observed values for categorical data

match the expected values for categorical data, use chi-square. If

wanting to know if a small sample follows a normal distribution,

the Shipiro-Wilk test might be advantageous. There are many tests

available to determine goodness-of-fit.



Chapter Nine
Computer Applications

9.1Rank Correlation 

9.1.1 Spearman’s rank correlation 

9.2 Procedures Using Data from Three or More Related 
Samples 

9.2.1 Friedman two-way analysis of variance by ranks 

9.2.2 Kendall’s rank correlation coefficient

9.2.3 cochran

9.3 Two related Samples

9.3 .1-McNemar

9.3 .2The Wald-Wolfowitz

9.4 Several Independent Samples

9.4.1  Jonckheere terpstra

9.5 one sample Kolmogorov–Smirnov


